Quick viewing(Text Mode)

Cholangio and Hepato- Cholangiocarcinoma: Update

Cholangio and Hepato- Cholangiocarcinoma: Update

Cholangio and Hepato‐ : Update

Emma E. Furth, M.D. Professor of and Laboratory Medicine University of Pennsylvania Medical Center WHO, What, Where, How, Why The WHO

• Combined hepatocellular and cholangiocarcinoma “A rare tumour containing unequivocal elements of both hepatocellular and cholangiocarcinoma that are intimately admixed.” • Cholangiocarcinoma “An intrahepatic malignant tumour composed of cells resembling those of bile ducts. Intrahepatic (or peripheral) cholangiocarcinoma (ICC) arises from any portion of the intrahepatic bile duct , i.e. from intrahepatic large bile ducts (the segmental and area ducts and their finer branches) or intrahepatic small bile ducts. Cholangiocarcinoma arising from the right and left hepatic ducts at or near their junction is called hilar cholangiocarcinoma and is considered an extrahepatic lesion.” The “What?”

“Cholangiocarcinoma is a highly malignant and heterogeneous of biliary epithelial cells with limited understanding of its molecular pathogenesis.”

J Hepatobiliary Pancreat Sci (2014) The “Where”

Hepatocellular Intra‐hepatic Hepato‐ Cholangiocarcinoma cholangiocarcinoma

“Extra”‐hepatic Cholangiocarcinoma The “How/Why” Why Care!

• Prognoses • Treatment – choice – Transplant candidate? • Prevention • Pathogenesis Outline

• Model of stem cells and neoplastic progression • Embryology and lineage determination • – Types – Genetics – Outcomes Outline

• Model of stem cells and neoplastic progression • Embryology and cell lineage determination • Carcinomas – Types – Genetics – Outcomes Model of Normal Unit

Terminally differentiated cells Stem Daughter cell cells

Relative half life: 1 10‐5 10‐20 Given:

are genetic/ events/hits(i) • > 1 event/hit is required • These hits (i,j,k…) are, for the most part, independent events • Non‐stem cells are quickly lost and therefore gained in this population lost …then:

• Therefore, the most probable cell population to acquire and keep/”fix” multiple mutations over time are the stem cells. Example

pij = pi x p(survival) x pj x p(survival)

Stem Cell(pij) = pi x 1 x pj x 1 = pi x pj Non‐Stem Cell(pij) = pi x 10‐5 pj x 10‐5 = 10‐10 x pi x pj

Stem Cell(pij) = 1010 Non‐Stem Cell(pij) Model of Neoplastic

Progression Extra‐hepatic cholangiocarcinoma

Intra‐hepatic cholangiocarcinoma: bile duct type j,m

Bile duct stem cell Intra‐hepatic cholangiocarcinoma: j cholangiolar type

i,k,l,j,p Hepato‐cholangiocarcinoma i,k,l,j

CK19 + i,k,j i i,k i,k Hepatocellular carcinoma

Intrahepatic stem cell Outline

• Model of stem cells and neoplastic progression • Embryology and cell lineage determination • Carcinomas – Types – Genetics – Outcomes Bile DuctBile Development Duct Development

7 weeks 8 weeks 12 weeks

PV PV PV

Hepatoblasts Ductal Plate CK 7/19 Regeneration: Stem Cell(s) Niche(s)?

Portal Triad ? ? ? ? e.g. Hepatic Duct ? Key Lineage Determination Pathways

• Wnt  Hepatocyte • Notch  Biliary Allagilles

Ck7/19 Outline

• Model of stem cells and neoplastic progression • Embryology and cell lineage determination • Carcinomas – Types – Genetics – Outcomes Pathogenesis, Staging, Epidemiology, Outcomes, etc

Intra‐hepatic Cholangiocarcinoma 33%

Extra‐hepatic 67% Cholangiocarcinoma Staging

T1 Solitary, no LVI T2a Solitary, with LVI T2b Multiple T3 Perf peritoneum

Tis T1 confined to wall T2a beyond wall T2b hepatic T3 unilateral PV or HA invasion Large duct: Small duct: Stem cells in stem cells peri‐biliary in canals of ? Hering? perihilar large duct type peripheral small duct

J Hepatobiliary Pancreat Sci (2014) DOI: 10.1002/jhbp.154 bile duct cholangiolar 59% 41%

Modern Pathology (2014) 27, 1163–1173 Features Bile duct Cholangiolar 59% 41%

Association Stones Cirrhosis BIN 45% 4% Kras mutation 23% 1% IDH1/2 mutations 5% 17% Five year survival 20% 40%

Adapted from: Modern Pathology (2014) 27, 1163–1173 and other sources referenced below. Type: Survival Kras & P53 Mutations: Survival

Churi CR, Shroff R, Wang Y, Rashid A, et al. (2014) Mutation Profiling in Cholangiocarcinoma: Prognostic and Therapeutic Implications. PLoS ONE 9(12): e115383. doi:10.1371/journal.pone.0115383 Whole‐ mutational landscape of liver cancers displaying biliary phenotype reveals hepatitis impact and molecular diversity Hepatitis ‐ Hepatitis + ICC HCC ICC Combo

FLC NATURE COMMUNICATIONS 2015| 6:6120 | DOI: 10.1038/ncomms7120

AJCC 7th T1 Solitary, no LVI T2a Solitary, with LVI T2b Multiple T3 Perf peritoneum Stage: Survival

Months May 15, 2011

Bile duct type Background Liver: Diagnoses?? Background Liver: Diagnoses?? Background Liver

H&E Trichrome

Hepar Ck19 Cholangiocarcinoma: Stroma

H&E Trichrome

Hepar CK19 Model of Neoplastic Progression Extra‐hepatic cholangiocarcinoma

Intra‐hepatic cholangiocarcinoma: bile duct type j,m

Bile duct stem cell Intra‐hepatic cholangiocarcinoma: j cholangiolar type

i,k,l,j,p Hepato‐cholangiocarcinoma i,k,l,j

CK19 + Hepatocellular carcinoma i,k,j i i,k i,k Hepatocellular carcinoma

Intrahepatic stem cell Cholangiolar Type Cholangiolar type: Idh1 mutation (gain of function)  Inhibits TET CpG Methylation

Me Hnf CpG x

1 1 0 | N AT U R E | VO L 5 1 3 | 4 S E P T E M B E R 2 0 1 4 TET (ten–eleven translocation)

1. Family of a‐ketoglutarate (a‐KG)‐dependent dioxygenases. 2. Isocitrate dehydrogenase (IDH1 and IDH2) mutations result in simultaneous loss and gain of activities in the production of a‐KG and 2‐ hydroxyglutarate (2‐HG), respectively. 3. 2‐HG functions as an a‐KG antagonist by binding to the same space in the catalytic site and competitively inhibiting the activity of a‐KG‐dependent dioxygenases. !

Me Me Me CpG CpG CpG CpG DNMP TET TDG ten eleven translocation thymine‐DNA glycosylase dioxygenases Me CpG x CpG Repression Expression Model of Neoplastic Progression Extra‐hepatic cholangiocarcinoma

Intra‐hepatic cholangiocarcinoma: bile duct type j,m

Bile duct stem cell Intra‐hepatic cholangiocarcinoma: j cholangiolar type

i,k,l,j,p Hepato‐cholangiocarcinoma i,k,l,j

CK19 + Hepatocellular carcinoma i,k,j i i,k i,k Hepatocellular carcinoma

Intrahepatic stem cell Hepato‐cholangiocarcinoma

Staged as Intra‐hepatic cholangiocarcinoma hepar ck19 Hepato‐ cholangiocarcinoma with “Stem cell features” Diagnoses

• Morphology! • Pitfalls of Case History

• 72 year old male with history of hypertension hypertension – Pain radiating to right upper quadrant – 30‐40 lb unintentional weight loss – Nausea and occasional vomiting Liver Mass: FNA

TTF‐1 Napsin‐A Patient Developed Biliary Obstruction: Bile duct

TTF‐1 Final Diagnosis

Adenocarcinoma, moderately differentiated, morphologically compatible with biliary primary, involving bile duct; see note.

NOTE: …TTF‐1+, CK19+, Napsin‐A ‐…. Morphologically, a hepato‐biliary origin is favored, although TTF‐1 positivity is not typical. TTF‐1 is Expressed in a Subset of

HCC (0%) Intra‐hepatic Cholangiocarcinoma (50%)

(66%)

Distal extra‐hepatic cholangiocarcinoma (0%) Pancreatic adenocarcinoma (0%)

Am J Surg Pathol, 38(2), 224‐227. (2014). Gallbladder HepaticDuct • • CholangioCA CholangioCA 42.1% TTF expressed tumors ‐ 1

H

reactivity of

(p=0.01).

&

xrhptccoagoAexpressed cholangioCA extrahepatic

NapA.

E

was

50x 40x

more

common SUMMARY

TTF in

patients ‐ 1

TTF

>60 200x 40x ‐ 1,

years

37.5%

of

of age

which Napsin

with

also extrahepatic ‐ A

co ‐ 200x 100x Outline

• Model of stem cells and neoplastic progression • Embryology and cell lineage determination • Carcinomas – Types – Genetics – Outcomes HCC

CTNNB1 Normal CTNNB1 TP53 Cholangiocarcinoma: intra and extra

APC CTNNB1 ERBB4 FGFR2 GNAS IDH1 KIT KRAS Normal NRAS PIK3CA SMAD4 STK11 TP53 Mutation Profiling in Cholangiocarcinoma: Prognostic and Therapeutic Implications

• intrahepatic and extrahepatic CCA had equal types and frequency of genetic aberrations • Intrahepatic TP53 (29%), KRAS (24%), ARID1A (20%), IDH1 (24%), DNA repair (16%) and PBRM1 (11%) • ExtrahepaticTP53 (45%), KRAS (40%), ERBB2 (25%), SMAD4(25%), FBXW7 (15%) and CDKN2A (15%).

PLOS ONE DOI:10.1371/journal.pone.0115383 December 23, 2014 Dramatic response to dabrafenib and trametinib combination in a BRAF V600E‐mutated intra‐ hepatic cholangiocarcinoma

• 47 year old woman • Intrahepatic cholangiocarcinoma • Progressed on chemo rx • Mutation found in BRAF p.V600E c.1799T > A (allele frequency of 53%) • Regressed on Braf and MEK inhibitors

ecancer 2014, 8:479 DOI: 10.3332/ecancer.2014.479