Southwestern Corn Borer

Total Page:16

File Type:pdf, Size:1020Kb

Southwestern Corn Borer W196 Corn Insects Southwestern Corn Borer Scott Stewart, Professor, Entomology and Plant Pathology Angela Thompson McClure, Associate Professor, Plant Sciences and Russ Patrick, Professor, Entomology and Plant Pathology Classification and initially translucent white or yellowish with black Description: The spots on the body. Older larvae are creamy white southwestern corn and have more distinctive black spots. Larvae reach borer (Diatraea a maximum length of 1¼ inches. Pupae are dark grandiosella, brown, about ¾ inch long and located in the stalk Lepidoptera: or occasionally in ears or ear shanks. Overwintering Crambidae) is a well- larvae are light yellow-white and do not pupate until known caterpillar pest the following spring. Only faded spots are present on of corn. Its biology is overwintering larvae. similar to European corn borer. The moths Hosts, Life History and Distribution: Southwestern are dull white or buff- corn borer has relatively few hosts. Corn is the colored and about 1 primary host, but larvae are occasionally found on inch long, although sorghum and Johnsongrass. The SWCB is primarily their size can vary. distributed in the southern United States and Mexico. Southwestern corn borers (SWCB) lay flattened eggs Cold winter temperatures in most of the Midwestern in an overlapping mass reminiscent of fish scales. Corn Belt limit the northern range of this insect. Egg masses typically range from 2-6 eggs (whereas European corn borer egg masses normally have 8-40 A female moth only lives 5-7 days but may lay 250 eggs). Eggs are white when initially laid. They then eggs during her life span. Eggs take about five days develop red stripes within about 36 hours. Eggs that to hatch. Except for overwintering larvae, it takes are totally black have been attacked by a tiny parasitic about 20 days for a larva to develop into a pupa. wasp. Moths from the overwintering generation mostly emerge in May and produce the first generation of Larvae have brown head capsules. Small larva are borers. In Tennessee, the next moth flight and a second generation of borers typically occurs sometime in Reduced tillage systems favor SWCB, because larvae mid July. A third moth flight and a third generation of overwinter at the base of stalks. However, tillage larvae occurs during August and September. will have little impact on potential infestations the following year unless it is done across a relatively Pest Status and Injury: Southwestern corn borer is large area. Moths can re-infest an area from an important pest of corn. This species is generally neighboring, untilled fields. Some kinds of Bt corn the most common “borer” in the western part of (e.g., YieldGard® and Herculex®) produce a toxin that Tennessee. On whorl-stage corn, hatching larvae is very effective in controlling corn borers. As part of move into the whorl and feed on leaves. Feeding signs an insecticide resistance management plan, a refuge of include elongate window-pane lesions on emerging non-Bt corn is required for Bt corn. In cotton-growing leaves. In tasseling corn, small larvae usually feed areas of Tennessee, only 50 percent of a grower’s corn behind leaf collars and between ear husks. Most larvae acreage can be planted with corn that has a single Bt will be found within two leaves above or below the ear trait for controlling corn borers. Up to 80 percent Bt leaf. Older larvae tunnel into the stalk, in ear shanks, corn can be planted in non-cotton areas. Corn varieties or feed on ears until they pupate (usually inside having two or more Bt traits (i.e., YieldGard VT the stalk.) Tunneling interferes with nutrient and Pro®, SmartStax®) are being developed. A smaller water flow within the plant and to the ears. Tunneled refuge of non-Bt corn will be required for these newer shanks may break, causing ears to fall on the ground. technologies, and these technologies also provide Most second-generation larvae will overwinter. improved control of corn earworm and fall armyworm. Overwintering larvae usually girdle the stalk from the inside. Girdles are normally located 1-6 inches above It is recommended that non-Bt corn be treated with the ground and are capped with frass and plant debris. insecticides if 20-30 percent or more of plants are Girdling often results in lodging, particularly in high infested with eggs or small larvae. Insecticide choices winds or when infested corn is not harvested in a for control of SWCB are listed in the Tennessee Insect timely manner. Lodging can dramatically reduce yield Control Recommendations for Field Crops (PB 1768). and slow harvesting operations. It is important to make insecticide applications before most larvae begin tunneling into the stalk; otherwise, Management Considerations: SWCB population poor control will result. In whorl-stage corn, high levels vary widely from year to year and across volumes sprayed directly into the whorl will provide different locations. Both first- and second-generation the best results. Aerial applications are typically larvae may cause economic damage to corn. A partial needed in tasseling corn. Pheromone moth traps are third generation is too late to affect fields planted very useful in determining the timing and relative during the recommended planting window. SWCB size of moth flights. However, they do not necessarily populations are lowest during the first generation, so correlate with subsequent larval populations in widespread infestations are less likely at this time. individual fields. These traps should be used to help Moths often concentrate their oviposition in a few time scouting efforts to when infestations are likely fields, especially targeting early-planted fields. The to be present. There is usually a delay of 7-14 days second generation affects more fields, and unlike between observing an increase in moth catches and a the first generation, populations are typically highest corresponding increase in egg or larval populations in in late-planted fields. However, depending on the nearby fields. timing of moth flights, many fields can potentially be infested. Planting early in the recommended planting References: window is suggested to avoid late-season infestations Handbook of Corn Insects, K. L. Steffey et al. (eds.), of SWCB and other caterpillar pests (e.g., European Entomological Society of America, 1999. corn borer, fall armyworm and corn earworm). Controlling the Southwestern Corn Borer. C. Patrick, S. Stewart and A. Thompson, University of Tennessee Extension, SP503-E. 2 Eggs of southwestern corn borer Small larva Southwestern corn borer moth Larger larva in stalk Leaf feeding damage Girdled stalk Overwintering larva This publication contains pesticide recommendations that are subject to change at any time. The recommendations in this publication are provided only as a guide. It is always the pesticide applicator’s responsibility, by law, to read and follow all current label directions for the specific pesticide being used. The label always takes precedence over the recommendations found in this publication. Use of trade or brand names in this publication is for clarity and information; it does not imply approval of the product to the exclusion of others that may be of similar, suitable composition, nor does it guarantee or warrant the standard of the product. The author(s), the University of Tennessee Institute of Agriculture and University of Tennessee Extension assume no liability resulting from the use of these recommendations. W196 09-0094 Programs in agriculture and natural resources, 4-H youth development, family and consumer sciences, and resource development.University of Tennessee Institute of Agriculture, U.S. Department of Agriculture and county governments cooperating. UT Extension provides equal opportunities in programs and employment..
Recommended publications
  • European Corn Borer, Ostrinia Nubilalis (Hübner) (Insecta: Lepidoptera: Crambidae)1 John L
    EENY156 European Corn Borer, Ostrinia nubilalis (Hübner) (Insecta: Lepidoptera: Crambidae)1 John L. Capinera2 Distribution flights and oviposition typically occur in May, late June, and August. In locations with four generations, adults are active First found in North America near Boston, Massachusetts in April, June, July, and August-September. in 1917, European corn borer, Ostrinia nubilalis (Hübner), now has spread as far west as the Rocky Mountains in both Egg Canada and the United States, and south to the Gulf Coast Eggs are deposited in irregular clusters of about 15 to 20. states. European corn borer is thought to have originated in The eggs are oval, flattened, and creamy white in color, Europe, where it is widespread. It also occurs in northern usually with an iridescent appearance. The eggs darken Africa. The North American European corn borer popula- to a beige or orangish tan color with age. Eggs normally tion is thought to have resulted from multiple introductions are deposited on the underside of leaves, and overlap like from more than one area of Europe. Thus, there are at least shingles on a roof or fish scales. Eggs measure about 1.0 two, and possibly more, strains present. This species occurs mm in length and 0.75 m in width. The developmental infrequently in Florida. threshold for eggs is about 15°C. Eggs hatch in four to nine days. Life Cycle and Description The number of generations varies from one to four, with only one generation occurring in northern New England and Minnesota and in northern areas of Canada, whereas three to four generations occur in Virginia and other southern locations.
    [Show full text]
  • P2252 Corn Insect Identification
    Corn Insect Identification Guide Photo Credits 4,6,8,10,17,18,19,29,33,34,36,38,39,41,42,44,45- Angus Catchot, Mississippi State University 12,20,21,22,23,26,27,28,35,37,43,47– Scott Stewart, The University of Tennessee 1,27,9,11,13,14,15,24,31-Chris Daves, Mississippi State University 16, 32- Blake Layton, Mississippi State University 48, 49-Fangneng Huang, Louisiana State University 30-Marlin Rice, Iowa State University 25- Jeff Gore, Mississippi State University 5- Ric Bessin, University of Kentucky Entomology Figures 1-13. Wire Worms (1), White Grubs (2), Seedcorn Maggot (3), Corn Root Aphid (4), Corn Leaf Aphids (5), Greenbugs (6), Southern Corn Rootworm Damage (7), Southern Corn Rootworm Immature (8), Southern Corn Rootworm Adult (9), Dead Heart Plant From Southern Corn Rootworm Feeding (10), Slug (11), Thrips Injury (12), Black Cutworm and Damage (13). Figures 14-25. Cutworm Climbing Young Plant (14), Chinch Bug Immatures (15), Chinch Bug Adult (16), Sugarcane Beetle (17), Sugarcane Beetle Damage (18), Stunted Plants from Sugarcane Beetle (19), Bill- bug (20), Southwestern Corn Borer Eggs (21), Southwestern Corn Borer Leaf Etching (22), Southwestern Corn Borer Larva (23), Southwestern Corn Borer Stalk Damage (24), Overwintering Southwestern Corn Borer Larva (25). Figures 26-37. Girdled Stalk by Southwestern Corn Borer (26), Southwestern Corn Borer Moth (27), Eu- ropean Corn Borer Larva (28), Ear Shank Tunneling by European Corn Borer (29), Female and Male Eu- ropean Corn Borer Moths (30), Sugarcane Borer Tunneling Stalk (31), Lesser Cornstalk Borer Larva (32), True Armyworm Larva (33), Fall Armyworm Larva (34), Fall Armyworm Damaged Whorl (35), Fall Army- worm Larvae in Ear Showing Inverted Y on Head Capsule (36), Corn Earworm Egg on Silks (37).
    [Show full text]
  • Big Creek Lepidoptera Checklist
    Big Creek Lepidoptera Checklist Prepared by J.A. Powell, Essig Museum of Entomology, UC Berkeley. For a description of the Big Creek Lepidoptera Survey, see Powell, J.A. Big Creek Reserve Lepidoptera Survey: Recovery of Populations after the 1985 Rat Creek Fire. In Views of a Coastal Wilderness: 20 Years of Research at Big Creek Reserve. (copies available at the reserve). family genus species subspecies author Acrolepiidae Acrolepiopsis californica Gaedicke Adelidae Adela flammeusella Chambers Adelidae Adela punctiferella Walsingham Adelidae Adela septentrionella Walsingham Adelidae Adela trigrapha Zeller Alucitidae Alucita hexadactyla Linnaeus Arctiidae Apantesis ornata (Packard) Arctiidae Apantesis proxima (Guerin-Meneville) Arctiidae Arachnis picta Packard Arctiidae Cisthene deserta (Felder) Arctiidae Cisthene faustinula (Boisduval) Arctiidae Cisthene liberomacula (Dyar) Arctiidae Gnophaela latipennis (Boisduval) Arctiidae Hemihyalea edwardsii (Packard) Arctiidae Lophocampa maculata Harris Arctiidae Lycomorpha grotei (Packard) Arctiidae Spilosoma vagans (Boisduval) Arctiidae Spilosoma vestalis Packard Argyresthiidae Argyresthia cupressella Walsingham Argyresthiidae Argyresthia franciscella Busck Argyresthiidae Argyresthia sp. (gray) Blastobasidae ?genus Blastobasidae Blastobasis ?glandulella (Riley) Blastobasidae Holcocera (sp.1) Blastobasidae Holcocera (sp.2) Blastobasidae Holcocera (sp.3) Blastobasidae Holcocera (sp.4) Blastobasidae Holcocera (sp.5) Blastobasidae Holcocera (sp.6) Blastobasidae Holcocera gigantella (Chambers) Blastobasidae
    [Show full text]
  • Relationship Between Corn Stalk Strength and Southwestern Corn Borer Penetration
    Mississippi State University Scholars Junction Theses and Dissertations Theses and Dissertations 5-1-2009 Relationship between corn stalk strength and southwestern corn borer penetration Bradley Kyle Gibson Follow this and additional works at: https://scholarsjunction.msstate.edu/td Recommended Citation Gibson, Bradley Kyle, "Relationship between corn stalk strength and southwestern corn borer penetration" (2009). Theses and Dissertations. 3766. https://scholarsjunction.msstate.edu/td/3766 This Graduate Thesis - Open Access is brought to you for free and open access by the Theses and Dissertations at Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Scholars Junction. For more information, please contact [email protected]. RELATIONSHIP BETWEEN CORN STALK STRENGTH AND SOUTHWESTERN CORN BORER PENETRATION By Bradley Kyle Gibson A Thesis Submitted to the Faculty of Mississippi State University in Partial Fulfillment of the Requirements for the Degree of Master of Science in Agricultural Life Sciences in the Department of Entomology and Plant Pathology Mississippi State, Mississippi May 2009 RELATIONSHIP BETWEEN CORN STALK STRENGTH AND SOUTHWESTERN CORN BORER PENETRATION By Bradley Kyle Gibson Approved: _________________________________ _________________________________ Fred R. Musser W. Paul Williams Assistant Professor of Entomology Supervisory Research Geneticist (Plants) (Director of Thesis) United States Department of Agriculture (Committee Member) _________________________________
    [Show full text]
  • Bt Corn (Lepidoptera) Resistance Monitoring Studies
    Bt Corn (Lepidoptera) Resistance Monitoring Studies Bt corn registrants are required to submit annual resistance monitoring reports for the following lepidopteran target pests: • European corn borer (ECB); • corn earworm (CEW); and • southwestern corn borer (SWCB). These reports have generally addressed two objectives: • bioassay results of pest populations sampled from random locations in the Corn Belt; and • the results of investigations into unexpected pest damage to Bt corn fields. The table below lists the resistance monitoring reports received by EPA. Individual studies are generally identified by MRID numbers, though not all reports have assigned MRID numbers. Notes: ECB = European corn borer (Ostrinia nubilalis) CEW = corn earworm (Helicoverpa zea) SWCB = southwestern corn borer (Diatraea grandiosella) FAW = fall armyworm (Spodoptera frugiperda) Public Summary Available in IRM docket? Year Insect(s) Toxin(s) MRID# [information to be added when available] 1996 ECB Cry1Ab, Cry1Ac 443437-02, 444756-01 ECB, CEW, 1997 Cry1Ab, Cry1Ac 444754-01, 444756-01 SWCB ECB, CEW, 1998 Cry1Ab 447753-01 SWCB 1999 ECB, SWCB Cry1Ab, Cry1Ac 450369-02 1999 CEW Cry1Ab 450568-01 1999 FAW Cry1Ab 454381-01 2000 ECB, SWCB Cry1Ab 453205-02 Public Summary Available in IRM docket? Year Insect(s) Toxin(s) MRID# [information to be added when available] 2000 CEW Cry1Ab No report submitted 2000 FAW Cry1Ab 456663-01 No MRID assigned 2001 ECB Cry1Ab (Siegfried and Spencer 2001a) No MRID assigned 2001 ECB Cry1F (Siegfried and Spencer 2001b) No MRID assigned 2001 SWCB Cry1Ab (Song et al. 2001a) No MRID assigned 2001 SWCB Cry1F (Song et al. 2001b) No MRID assigned 2001 CEW Cry1Ab (Custom Bio-Products 2002a) No MRID assigned 2001 CEW Cry1F (Custom Bio-Products 2002b) No MRID assigned 2002 ECB Cry1Ab (Siegfried and Spencer 2002a) No MRID assigned 2002 ECB Cry1F (Siegfried and Spencer 2002b) No MRID assigned 2002 SWCB Cry1Ab (Song et al.
    [Show full text]
  • Tropical Insect Chemical Ecology - Edi A
    TROPICAL BIOLOGY AND CONSERVATION MANAGEMENT – Vol.VII - Tropical Insect Chemical Ecology - Edi A. Malo TROPICAL INSECT CHEMICAL ECOLOGY Edi A. Malo Departamento de Entomología Tropical, El Colegio de la Frontera Sur, Carretera Antiguo Aeropuerto Km. 2.5, Tapachula, Chiapas, C.P. 30700. México. Keywords: Insects, Semiochemicals, Pheromones, Kairomones, Monitoring, Mass Trapping, Mating Disrupting. Contents 1. Introduction 2. Semiochemicals 2.1. Use of Semiochemicals 3. Pheromones 3.1. Lepidoptera Pheromones 3.2. Coleoptera Pheromones 3.3. Diptera Pheromones 3.4. Pheromones of Insects of Medical Importance 4. Kairomones 4.1. Coleoptera Kairomones 4.2. Diptera Kairomones 5. Synthesis 6. Concluding Remarks Acknowledgments Glossary Bibliography Biographical Sketch Summary In this chapter we describe the current state of tropical insect chemical ecology in Latin America with the aim of stimulating the use of this important tool for future generations of technicians and professionals workers in insect pest management. Sex pheromones of tropical insectsUNESCO that have been identified to– date EOLSS are mainly used for detection and population monitoring. Another strategy termed mating disruption, has been used in the control of the tomato pinworm, Keiferia lycopersicella, and the Guatemalan potato moth, Tecia solanivora. Research into other semiochemicals such as kairomones in tropical insects SAMPLErevealed evidence of their presence CHAPTERS in coleopterans. However, additional studies are necessary in order to confirm these laboratory results. In fruit flies, the isolation of potential attractants (kairomone) from Spondias mombin for Anastrepha obliqua was reported recently. The use of semiochemicals to control insect pests is advantageous in that it is safe for humans and the environment. The extensive use of these kinds of technologies could be very important in reducing the use of pesticides with the consequent reduction in the level of contamination caused by these products around the world.
    [Show full text]
  • Resistance of Sugarcane Cultivars to Diatraea Saccharalis
    Resistance of sugarcane cultivars to Diatraea saccharalis Leila Luci Dinardo‑Miranda(1), Ivan Antônio dos Anjos(1), Viviane Pereira da Costa(1) and Juliano Vilela Fracasso(1) (1)Instituto Agronômico, Centro de Cana‑de‑açúcar, Rodovia SP 333, Km 321, CEP 14001‑970 Ribeirão Preto, SP, Brazil. E‑mail: [email protected], [email protected], [email protected], [email protected] Abstract – The objective of this work was to evaluate the oviposition preference of Diatraea saccharalis and the effect of ten sugarcane cultivars on larval development. Oviposition preference was assessed under greenhouse conditions by three releases of couples of moths, with subsequent counting of egg masses and eggs per plant. In order to evaluate the effect of the cultivars on larval development, each plant was infected with about 150 eggs, and, 29 days later, the total number of internodes, number of bored internodes, number of life forms found, larval and pupal weight and length, and the width of larval head capsule were evaluated. The cultivars IACSP94-2101 and IACSP96-2042, the least preferred by D. saccharalis for oviposition, and IACSP94-2094, the most unfavorable for larvae entrance and development, show resistance to the pest. Index terms: Saccharum, antibiosis, antixenosis, sugarcane borer. Resistência de cultivares de cana‑de‑açúcar a Diatraea saccharalis Resumo – O objetivo deste trabalho foi avaliar a preferência de oviposição de Diatraea saccharalis e o efeito de dez cultivares de cana-de-açúcar no desenvolvimento larval. A preferência para oviposição foi avaliada em casa de vegetação, por meio de três liberações de casais da praga, com posterior contagem de posturas e de ovos em cada planta.
    [Show full text]
  • Downloaded from BOLD Or Requested from Other Authors
    www.nature.com/scientificreports OPEN Towards a global DNA barcode reference library for quarantine identifcations of lepidopteran Received: 28 November 2018 Accepted: 5 April 2019 stemborers, with an emphasis on Published: xx xx xxxx sugarcane pests Timothy R. C. Lee 1, Stacey J. Anderson2, Lucy T. T. Tran-Nguyen3, Nader Sallam4, Bruno P. Le Ru5,6, Desmond Conlong7,8, Kevin Powell 9, Andrew Ward10 & Andrew Mitchell1 Lepidopteran stemborers are among the most damaging agricultural pests worldwide, able to reduce crop yields by up to 40%. Sugarcane is the world’s most prolifc crop, and several stemborer species from the families Noctuidae, Tortricidae, Crambidae and Pyralidae attack sugarcane. Australia is currently free of the most damaging stemborers, but biosecurity eforts are hampered by the difculty in morphologically distinguishing stemborer species. Here we assess the utility of DNA barcoding in identifying stemborer pest species. We review the current state of the COI barcode sequence library for sugarcane stemborers, assembling a dataset of 1297 sequences from 64 species. Sequences were from specimens collected and identifed in this study, downloaded from BOLD or requested from other authors. We performed species delimitation analyses to assess species diversity and the efectiveness of barcoding in this group. Seven species exhibited <0.03 K2P interspecifc diversity, indicating that diagnostic barcoding will work well in most of the studied taxa. We identifed 24 instances of identifcation errors in the online database, which has hampered unambiguous stemborer identifcation using barcodes. Instances of very high within-species diversity indicate that nuclear markers (e.g. 18S, 28S) and additional morphological data (genitalia dissection of all lineages) are needed to confrm species boundaries.
    [Show full text]
  • Southwestern Corn Borer Damage and Aflatoxin Accumulation in a Diallel Cross of Maize
    J. Genet. & Breed. 56: 165-169 (2002) Southwestern corn borer damage and aflatoxin accumulation in a diallel cross of maize W.P. Williams, F.M. Davis, -G.L. Windham and P.M. Buckley USDA-ARS Corn Horst Plant Resistance Research Unit, Box 9555, • Mississippi State, MS 39762, USA. Fax: (662) 325-8441. • Received September 18, 2001 ABSTRACT Southwestern corn borer, Diatraea grandiosella Dyar, is a serious pest of maize, Zea mays L., in the southern USA. When plants are infested during and after anthesis, larvae feed on the husks and developing cars before tunneling into the stalk. Larval feeding also provides potential sites for fungi to enter developing ears. Aflatoxin, produced by the fungus Aspergillus flavus Link: Fr, is a potent carcinogen, and its presence at levels exceeding 20 ng g restricts maize from interstate commerce. Aflatoxin contamination is a chronic problem in maize produced in the southern USA. Little is cur- rently known about the value of resistance to southwestern corn borer in reducing aflatoxin accu- mulation. This investigation was undertaken to compare aflatoxin accumulation in crosses among in- bred crosses with different levels of southwestern corn borer resistance and to study the importance of general and specific combining ability in the inheritance of resistance to southwestern corn bor- er and aflatoxin accumulation in an eight-parent diallel cross. Our results indicated that general com- bining ability was a highly significant source of variation in the inheritance of resistance to stalk tun- neling and ear damage by southwestern corn borer and resistance to aflatoxin accumulation. Stalk tunneling, ear damage, and aflatoxin accumulation were lowest in hybrids with the inbred line MP496 as a parent.
    [Show full text]
  • Crambidae Biosecurity Occurrence Background Subfamilies Short Description Diagnosis
    Diaphania nitidalis Chilo infuscatellus Crambidae Webworms, Grass Moths, Shoot Borers Biosecurity BIOSECURITY ALERT This Family is of Biosecurity Concern Occurrence This family occurs in Australia. Background The Crambidae is a large, diverse and ubiquitous family of moths that currently comprises 11,500 species globally, with at least half that number again undescribed. The Crambidae and the Pyralidae constitute the superfamily Pyraloidea. Crambid larvae are concealed feeders with a great diversity in feeding habits, shelter building and hosts, such as: leaf rollers, shoot borers, grass borers, leaf webbers, moss feeders, root feeders that shelter in soil tunnels, and solely aquatic life habits. Many species are economically important pests in crops and stored food products. Subfamilies Until recently, the Crambidae was treated as a subfamily under the Pyralidae (snout moths or grass moths). Now they form the superfamily Pyraloidea with the Pyralidae. The Crambidae currently consists of the following 14 subfamilies: Acentropinae Crambinae Cybalomiinae Glaphyriinae Heliothelinae Lathrotelinae Linostinae Midilinae Musotiminae Odontiinae Pyraustinae Schoenobiinae Scopariinae Spilomelinae Short Description Crambid caterpillars are generally cylindrical, with a semiprognathous head and only primary setae (Fig 1). They are often plainly coloured (Fig. 16, Fig. 19), but can be patterned with longitudinal stripes and pinacula that may give them a spotted appearance (Fig. 10, Fig. 11, Fig. 14, Fig. 22). Prolegs may be reduced in borers (Fig. 16). More detailed descriptions are provided below. This factsheet presents, firstly, diagnostic features for the Pyraloidea (Pyralidae and Crambidae) and then the Crambidae. Information and diagnostic features are then provided for crambids listed as priority biosecurity threats for northern Australia.
    [Show full text]
  • International Journal of Current Advan Urnal of Current Advanced Research
    International Journal of Current Advanced Research ISSN: O: 2319-6475, ISSN: P: 2319-6505, Impact Factor: 6.614 Available Online at www.journalijcar.org Volume 9; Issue 05(A); May 2020; Page No.22037-22039 DOI: http://dx.doi.org/10.24327/ijcar.2020.22039.4342 Research Article SPECIES DIVERSITY OF FAMILY CRAMBIDAE (MOTH) IN VEERANGANA DURGAVATI WILDLIFE SANCTUARY, DAMOH (M.P.) Roshni Pandey1*, S. Sambath2 and Rita Bhandari3 1Govt. College Badwara, Katni, Madhya Pradesh 2Zoological Survey of India, Jabalpur, Madhya Pradesh 3OFK Govt. College, Khamriya, Jabalpur, Madhya Pradesh ARTICLE INFO ABSTRACT Article History: The study based on the survey made at different localities in Veerangana Durgavati Received 06th February, 2020 Wildlife Sanctuary, Damoh. During the study total thirty specimens of family Crambidae Received in revised form 14th were collected with the help of light traps. This paper deals with the collection and March, 2020 identification of moths of family Crambidae (order Lepidoptera) which comprises 11 Accepted 23rd April, 2020 species of 11 genera and 2 subfamilies- Spilomelinae & Pyraustinae. Subfamily: Published online 28th May, 2020 Spilomelinae was the dominated sub family. The diversity indices for the family were also calculated. Shannon-Weiner Diversity (H’) was 2.0395, whereas Simpson’s diversity Index Key words: (D) was 0.1733 and dominance Index (1-D) was 0.8267. The species diversity is a very important parameter for functioning of an ecosystem, thus this is very important to protect Crambidae, Lepidoptera, Moths, Diversity, moth fauna by protecting the natural habitat of the sanctuary. Veerangana Durgavati Wildlife Sanctuary. Copyright©2020 Roshni Pandey, S. Sambath and Rita Bhandari.
    [Show full text]
  • Ecology and Management of European Corn Borer in Iowa Field Corn
    Ecology and management of European corn borer in Iowa field corn [3] ECONOMIC IMPORTANCE This publication discusses the European corn borer life cycle, injury to corn, and management options with a focus on Iowa field corn production. European corn borer, Ostrinia nubilalis (Figs. 1–2), is a moth in the family Crambidae (formerly Pyralidae). European corn borers in the Midwest affect corn production (i.e., field corn, popcorn, seed corn, and sweet corn), as well as sorghum, wheat, and many vegetables. Caterpillars can feed on almost any part of the corn plant, except roots, and cause severe economic injury (Fig. 3). Figure 2. European corn borer adult. [2] DISTRIBUTION IN NORTH AMERICA European corn borer is native to western Asia and Europe. It was unintentionally brought to the United States in the early 1900s, probably in broom corn, which was used to make hand brooms. The insect was discovered in Massachusetts and it quickly spread westward. European corn borers reached Iowa in 1942 and has been a consistent economic pest. This pest now occurs in nearly all corn-growing regions east of the Figure 1. European corn borer caterpillar. [1] Rocky Mountains. Prior to the widespread planting of Bt corn, this insect was estimated to cost growers in the United States one billion dollars annually in yield losses plus control costs. With the advent of transgenic Bt corn hybrids in 1996, European corn borer populations significantly declined throughout the Midwest during the following decade. Even those farmers not using Bt corn benefitted from the dramatically lower population of European corn borers in the landscape.
    [Show full text]