Quick viewing(Text Mode)

Molecular Physiology of Insect Low Temperature

Molecular Physiology of Insect Low Temperature

MOLECULAROFLOWTEMPERATURESTRESS RESPONSES DISSERTATION Inpartialfulfillmentoftherequirements forthedegreeDoctorofPhilosophyinthe GraduateSchoolofTheOhioStateUniversity By MichaelRobertMichaud,M.S. ***** TheOhioStateUniversity 2007 DissertationCommittee: ApprovedBy: ProfessorDavidL.Denlinger,Advisor ProfessorThomasG.Wilson ______ ProfessorRomanP.Lanno Advisor EntomologyGraduateProgram Copyrightby MichaelRobertMichaud 2007

ABSTRACT Insectresponsestolowtemperaturecanbebroadlycategorizedintotwogroups: freezetolerantandfreezeintolerant.Freezetolerantrespondtolowtemperatures byallowingtheirbodytissuestofreeze,anddamageistypicallymitigatedinthis mechanismbylimitingiceformationtotheextracellularspaces.Freezetolerantspecies accomplishthisbyincreasingtheamountofintracellularsolutesandpromotingice formationintheextracellullarspaces,whichlimitsdamagetomembranes.Freeze intolerantinsectssufferdamagefromcoldattemperaturesabovethepointatwhichbody tissuesfreeze.Theseorganismspreventdamagefromlowtemperaturebyincreasingthe concentrationsofpolyolsintheandrepairthedamagefromlowtemperature bytheproductionofheatshock.Noneofwhatispreviouslyknownaboutinsect lowtemperaturesurvivaliscomplete,especiallyatthemolecularlevel.Otherthanthe productionofheatshockproteinsduringrecoveryfromlowtemperaturedamage,no geneshavedefinitivelybeenidentifiedasfunctionallyupregulatedtopromotelow temperaturesurvival.Inaddition,thebodyofknowledgeconcerningcytoskeletal, membranal,andmetabolicchangesininsectsexposedtolowtemperaturesissparse,but allthreeofthesearehypothesizedtobeinvolvedinlowtemperaturesurvivalinother organisms.Itisthepurposeofthisworktoidentifypreviouslyunknownmolecular mechanismsbywhichinsectsdealwithlowtemperatures.Thisexplorationshould ii encompasstranscriptional,membranal,andmetabolicmethodsinordertogleanthe maximalamountofinformation.Thefreezetolerantmidge, Belgica antarctica ,andthe freezeintolerantflesh, Sarcophaga crassipalpis ,werechosenasmodelorganismsfor testing.

Agaschromatographymassspectroscopicanalysisofthemembranelipidsfrom fleshrevealedthatandrapidcoldhardeningbothdramaticallyalteredthe compositionoffattyacidsinmembranes.Bothphysiologicalconditionsincreased oleicacidlevels,whichpromotescellularsurvivaltolowtemperaturesbywideningthe windowbywhichcellmembranesmaintaintheirliquidcrystallinestate.Inaddition,a thinlayerchromatographicanalysisofphospholipidheadgroupsrevealedthat phosphatidycholineswerereplacedbyphosphatidylethanolamines,whichalsolowersthe temperaturewindowbywhichcellmembranesmaintain.Inshort, membranerestructuringappearstocontributetolowtemperaturesurvivalinthefreeze intolerantfleshfly.

Ametabolomicanalysisofwholebodymetabolitesisolatedfromfleshfliesin diapauseandrapidcoldhardeningrevealedwidespreadalterationsinmetabolism.

Rapidcoldhardeningproducedthepredictableincreaseinglycerolconcentration,but thisincreasewasalsocoupledwiththeincreaseofanotherpolyol,sorbitol.Rapidcold hardeningalsoproducedincreasesinmanyothermetabolitesthathavebeenpreviously unknowntobeincreased,mostnotablyalanine,glutamineandpyruvate.Inan environmentwiththesemetabolicchanges,fleshfliesexperiencingrapidcoldhardening arewellequippedtosurvivelowtemperaturestressbecausetheyhaveincreasedpolyols toprotectproteinsandmembranes,andglutamineispresentshouldtheneedforheat iii shockproteinsariseduringrecovery.Increasesinglycerol,alanine,andpyruvatewere alsoseenfordiapause,butunlikerapidcoldhardening,diapauseproducedametabolic profileconsistentwithadisruptionofKrebscycleactivity.Notonlydoesthiscellular environmentpromotecoldsurvival,butitalsoexplainsthepreviousobservationthat oxygenconsumptionisverylowduringfleshflydiapause.

Ametabolomicanalysisofthefreezetolerantmidge, Belgica antarctica ,revealed thatfreezingincreasedanumberofdifferentpolyolsinwholebodyextracts,incuding glycerol,mannitol,anderythritol.Freezingalsoincreasedalanine,asparagine,and glycine.Inaddition,thefrozenmidgelarvaeaccumulatedKrebscycleintermediates, indicatingthataerobicrespirationisconsiderablyslowed.Membraneinvolvementin freezingwasnotconclusivelysupported,althoughtherewasareductioninoleicacid levels.Acomparisonofthemetabolicresponsesofthismidgetoheat,freezingand desiccationrevealedthatfreezinganddesiccationproducedsimilarresults,supportingthe hypothesisthatthecellularresponsetothesetwostressorsisrelated.

Inconclusion,anumberofphysiologicalmechanismsbywhichinsectssurvive lowtemperatureshaveyettobediscovered,buttherichnessofthesemechanismsis clearlydisplayedinthepresentworkusingonlytwomodelspecies.Fromthepresent study,itappearsthatfreezetolerantandfreezeintolerantspeciesemploysimilar mechanismstosurvivelowtemperaturesatthemolecularlevelsincetheirresponsesto lowtemperatureweresimilar.Thesemechanismsincludepolyolincreases,alterationsin theaminoacidpool,andKrebscycleshutdown.Thedifferencesinresponsebetween

iv theseinsects(e.g.membraneinvolvement,typeofpolyolused)mostlikelyisexplained bythedifferenceinenvironmentalconditionsbetweentheseinsectsandtheir phylogeneticseparation.

v

Dedicatedtomygrandmother,RebaMcHugh,andmygrandfather,MikeMihalow.

vi ACKNOWLEDGMENTS ThankstoDr.DavidL.Denlingerforhissupport,histutelage,andhisexperteditorial andscientificcontributiontothiswork.

Thankstomywife,EricaD.Michaud,forherinfinitepatienceandclericalsupporttothis text.

ThankstothankRichardSessleroftheCampusChemicalInstrumentCenterofTheOhio

StateUniversityforhisadviceonchromatographictechniqueandAmeliaBrownforher technicalsupportinchemicalseparation.

ThankstoDr.ScottHaywardandDr.DanHahnfortheirconsultationsonlipidanalysis andDr.JohnWenzelforhisassistanceinmultivariatestatistics.

ThankstotheOhioAgriculturalResearchandDevelopmentCenter,TheOhioState

GraduateSchool,andtheDepartmentofEntomologyfortheirfinancialsupport.

ThankstotheNationalScienceFoundationfortheirresearchsupporttothiswork.

vii

VITA

March20,1971……………………………………………. Born,Bordentown,NJ

19911994………………………………………LaboratoryTechnicalAssistantII MarineBiomedicalInstitute Galveston,TX 1994………………………………………………..AssociatesofArtandScience GalvestonCollege Galveston,TX 1999………………………………………………..BachelorofScience,Biology MidwesternStateUniversity WichitaFalls,TX 19992001………………………………………….GraduateTeachingAssociate MidwesternStateUniversity WichitaFalls,TX 2001…………………………………………………………….MasterofScience MolecularandCellBiology MidwesternStateUniversity WichitaFalls,TX 20042006(intermittent)…………………………….GraduateTeachingAssistant TheOhioStateUniversity Columbus,OH 20012007(intermittent)…………………………….GraduateResearchAssociate TheOhioStateUniversity Columbus,OH viii PUBLICATIONS Michaud,M.R.,Denlinger,D.L.,2005.Molecularmodalitiesofinsectcoldsurvival: currentunderstandingandfuturetrends.In: and Environments ,Morris,S., Vosloo,A,eds.Elsevier,Amsterdam.pp.3246. Michaud,M.R.,Denlinger,D.L.,2006.Oleicacidiselevatedincellmembranesduring rapidcoldhardeningandpupaldiapauseinthefleshfly, Sarcophaga crassipalpis . JournalofInsectPhysiology52,10731082. FIELDSOFSTUDY MajorField:Entomology

ix TABLEOFCONTENTS Page Abstract…………………………………………………………………………. ii Dedication………………………………………………………………………. vi Acknowledgements……………………………………………………………… vii Vita……………………………………………………………………………… viii ListofTables……………………………………………………………………. xiii ListofFigures…………………………………………………………………… xiv Chapters: 1.Introduction:Molecularmodalitiesofinsectcoldsurvival:currentunderstandingand futuretrends……………………………………………………………………… 1 Abstract…………………………………………………………………. 1 1.1Introduction………………………………………………………… 2 1.2Coldhardinessphenotypes…………………………………………. 3 1.3Thenatureoflowtemperatureinjury………………………………. 5 1.3.1Injuryatthewholebodylevel…………………………… 6 1.3.2Injuryatthelevelandbelow………………………. 7 1.4Detectionoflowtemperaturestimuli……………………………… 9 1.4.1Detectionofdenatured…………………………… 10 1.4.2Transientreceptorpotentialionchannels………………… 11 1.4.3Membranefluidityandhistidinekinase………………….. 12 1.5Establishedmechanismsofcoldhardiness………………………… 13 1.5.1Polyolsandotherlowmolecularweightspecies………… 13 1.5.2AFPsandINAs………………………………………….. 15 1.5.3Heatshockproteins……………………………………… 16 1.6Frontiersincoldhardinessmechanisms…………………………… 19 1.6.1Theroleofthecytoskeleton……………………………... 19 1.6.2Insectgenesupregulatedbycold………………………... 21 1.6.3Genomewidestudiesinotherorganisms………………… 21 Acknowlegements……………………………………………………….. 22 References……………………………………………………………… 23 2.Chapter2:Oleicacidiselevatedincellmembranesduringrapidcoldhardeningand pupaldiapauseinthefleshfly,Sarcophagacrassipalpis………………………… 33 Abstract…………………………………………………………………. 34 2.1Introduction………………………………………………………… 35 2.2MaterialsandMethods……………………………………………... 36 x 2.2.1Insectrearing……………………………………………… 38 2.2.2Rapidcoldhardening…………………………………….. 38 2.2.3Diapause………………………………………………….. 39 2.2.4Fattyacidmethylesters………………………………….. 39 2.2.5Gaschromatographymassspectrometry………………… 40 2.2.6Thinlayerchromatography………………………………. 41 2.2.7Dataanalysisandstatistics……………………………….. 41 2.3Results……………………………………………………………… 42 2.3.1Fattyacidcomposition…………………………………… 42 2.3.2Rapidcoldhardening……………………………………. 43 2.3.3Diapause………………………………………………….. 43 2.3.4Shiftinphospholipidheadgroups……………………….. 45 2.4Discussion………………………………………………………….. 45 2.4.1Fattyacidcompositionofcellmembranesin Sarcophaga crassipalpis ………………………………………………………………………. 45 2.4.2Rapidcoldhardening…………………………………….. 46 2.4.3Diapause………………………………………………….. 48 2.4.4Oleicandlinoleicacid……………………………………. 50 2.4.5Acknowledgements………………………………………. 52 2.4.6References………………………………………………… 53 2.4.7Illustrations………………………………………………… 58 3.Chapter3:Shiftsinthe,polyol,andaminoacidpoolsduringrapidcold hardeninganddiapauseassociatedcoldhardeninginfleshflies………………... 64 Abstract………………………………………………………………….. 65 3.1Introduction………………………………………………………… 66 3.2Materialsandmethods……………………………………………… 67 3.2.1InsectRearing…………………………………………….. 67 3.2.2Sampling………………………………………………….. 67 3.2.3Separationandderivatization…………………………….. 68 3.2.4Chromatographicanalysis………………………………... 69 3.2.5Quantificationanddataanalysis………………………….. 69 3.3Results……………………………………………………………… 70 3.3.1GeneralObservations…………………………………….. 72 3.3.2Rapidcoldhardening…………………………………….. 73 3.3.3Diapause………………………………………………….. 74 3.4Conclusions………………………………………………………… 75 3.4.1EfficacyofGCMSbasedinsectmetabolomics………….. 75 3.4.2Rapidcoldhardeningmetabolicphenotype…………….… 76 3.4.3Diapausemetabolicphenotype…………………………... 80 Acknowledgments……………………………………………….……… 84 References…………………………………………………………..…… 85 Illustrations………………………………………………………………. 92 xi 4.Chapter4:Metabolomicsrevealsuniqueandsharedmetabolicchangesinresponseto heatshock,freezing,anddesiccationintheAntarcticmidge, Belgica antarctica …97 Abstract………………………………………………………………. 98 4.1Introduction………………………………………………………. 99 4.2Materialsandmethods……………………………………...... 101 4.2.1Insectcollectionandstorage…………………………... 101 4.2.2Stressexposure…………………………………...... 102 4.2.3Separationandderivitization………………………….. 102 4.2.4Chromatographicanalysis……………………………... 103 4.2.5Quantificationanddataanalysis……………………….. 103 4.3Results……………………………………………………………. 104 4.3.1Generalobservations…………………………………… 104 4.3.2Responsetoheatshock………………………………… 105 4.3.3Responsetofreezing…………………………………… 106 4.3.4Responsetodesiccation………………………………… 107 4.3.5Principlecomponentanalysisandclustering…………… 108 4.4Discussion………………………………………………………… 109 4.4.1Metabolicresponsetoheatshock……………………… 109 4.4.2Metabolicresponsetofreezing………………………… 111 4.4.3Metabolicresponsetodesiccation……………………… 115 4.4.4Summary……………………………………………….. 117 Acknowledements…………………………………………………….. 118 References…………………………………………………………….. 119 Illustrations……………………………………………………………. 126 Appendices…………………………………………………………………….. 131 AppendixA……………………………………………………………. 131 AppendixB……………………………………………………...... 133 AppendixC……………………………………………………………. 134 AppendixD……………………………………………………………. 135 Bibliography……………………………………………………………………. 137

xii LISTOFTABLES TablePage 1.1. Trancriptsandproteinsupregulatedfromcoldtreatments…………………20 3.1. Metabolitesidentifiedin Sarcophaga crassipalpis metabolomics samples…………………………………………………………………………… 91 4.1. SelectedmetabolitesidentifiedinmetabolomicsamplesfromtheAntarctic midge, Belgica antarctica .………………………………………………………. 125 B.1. Selectgenesdetectedasupregulatedinmicroarraysofcoldshockedandrapid coldhardenedSarcophagacrassipalpisandtheresultsofNorthernblot………… 133

xiii LISTOFFIGURES 2.1 Changeinindividualfattyacids(FA)asaresultofchillingisconsistentwiththe inductionofrapidcoldhardening………………………………………………….58 2.2 Changeinfattyacidseries(A)andindexofunsaturation(B)offleshfly phospholipidsduringconditionsthatinducerapidcoldhardening………………..59 2.3 Changeinmajor(A)andminor(B)fattyacid(FA)proportionsduetodiapause andchillinginthefleshfly, Sarcophaga crassiplapis ……………………………..60 2.4 Changeinproportionsoffattyacids(FA)fromeachseriesindiapausingand chilledfleshflies……………………………………………………………………61 2.5 Changeinoverallphospholipidfattyacidsaturationduetodiapauseandchilling inthefleshfly, Sarcophaga crassipalpis …………………………………………..62 2.6 Changeinphospholipidclassduetorapidcoldhardeninganddiapauseinthe fleshfly, Sarcophaga crassipalpis ……………………………………………...... 63 3.1 RepresentativeGCMSchromatographdepictingthemetabolicprofileof S. crassipalpis duringpupaldiapause(day30).…………………………………….. 92 3.2 Metabolitesalteredbyrapidcoldhardeningin Sarcophaga crassipalpis .. 93 3.3 Principalcomponentanalysis(PCA)ofmetabolomicsamplesfrom Sarcophaga crassipalpis duringmaximumrapidcoldhardening…………………………….. 94 3.4 Figure4.Metabolitesalteredbydiapausein Sarcophaga crassipalpis …. 95 3.5 Principalcomponentanalysis(PCA)ofmetabolomicsamplesfromdiapausing andnondiapausingpupaeof Sarcophaga crassipalpis …………………………. 96 3.6 Venndiagramrepresentationofmetabolitesthatarealteredinabundancebyrapid coldhardening(left)anddiapause(right)in Sarcophaga crassipalpis ………….. 97 4.1 Metaboliteselevated(A)orreduced(B)inlarvaeoftheAntarcticmidge, Belgica antarctica by1hheatshockat30 oC…………………………………………….. 126 xiv 4.2 Metaboliteselevated(A)orreduced(B)inlarvaeoftheAntarcticmidge, Belgica antarctica bya6hfreezingat10 oC…………………………………………….. 127 4.3 Metaboliteselevated(A)orreduced(B)bydesiccation(5dat98%RH,resulting ina50%waterloss)………………………………………………………………. 128 4.4 MultivariateanalysisofmetabolomicdataderivedfromlarvaeoftheAntarctic midge Belgica antarctica subjectedtoheatshock,freezing,anddesiccation……. 129 4.5 Venndiagramsillustratingtheoverlapofelevated(above)andreduced(below) metabolitesinresponsetothreeabioticstressorsintheAntarcticmidge, Belgica antarctica ………………………………………………………………………….. 130 A.1. Survivalof Sarcophaga crassipalpis injectedwithheatshockprotein23(A)or heatshockprotein70(B)doublestrandedRNA…………………………………. 132 C.1. Survivalofcoldselectedstrainsof Sarcopahaga crassipalpis tocoldshock(A) andrapidcoldhardeningfollowedbyacoldshock(B)………………………….. 134 D.1. Changesinfattyacidcompositionofphospholipidsin Belgica antarctica followingfreezing(toppanel)anddesiccation/heat(bottompanel)……………… 136

xv

CHAPTER1

INTRODUCTION

Molecularmodalitiesofinsectcoldsurvival:currentunderstandingandfuture

trends.

M.RobertMichaud,D.L.Denlinger

Department of Entomology, Ohio State University, Columbus, OH 43210, USA

Abstract. Insect cold survival has drawn increased attention in recent years,

promptinganewclassificationofsurvivalphenotypesthatreflecttheecological

andphysiologicaldifferencesinthemannerinwhichinsectssurvivethewinter.

Inaddition,moreisknownaboutthenatureofcoldinjuryanditseffectsonan

insectsystemfromthewholebodytothesubcellularlevel,althoughthisareaof

researchisstillpreliminary.

Otherthanthedetectionofmisfoldedproteinbytheheatshockresponse,signal

transductionoflowtemperaturesbyinsectsislargelyunknown,althoughrecent

advancesin Drosophila andafewsystemsrevealthepotential

1 importanceoftransientreceptorpotentialionchannelsinlowtemperaturesignal transduction.Membranefluidityalsopossiblyplaysaroleinthedetectionoflow temperaturesbyinsects.

Physiologicalchangesthatoccurininsectcellsasaresultoflowtemperaturesor inanticipationoflowtemperaturesincludetheinductionofasuiteofheatshock proteins, metabolic polyol synthesis, antifreeze protein production, and the inductionofextracellularicenucleation.Inaddition,avarietyofnewgenesare now known to be induced upon cold exposure, although the roles of these moleculesincoldsurvivalawaitsexperimentation.

Keywords: cold shock; Insecta; heat shock protein; molecular response; cytoskeletoncryobiology

1.1. Introduction

Thefieldofinsectcryobiologyhasadvancedconsiderably in recent years duetoitspotentialapplicabilityinpestcontrol,itscontributiontounderstanding evolutionary trends in to abiotic stress, and its potential role in understanding effects of global climate change. A number of strategies, mechanisms,andphenotypeshavebeenelucidatedforthe250+speciesthathave been studied thus far, weaving a convoluted tapestry that has underscored the greatvariabilityofinsectsystems,butthesestudieshaveshedlightoncommon adaptivestrategiesarisingindependentlyoverseveralinsectlineages[1].

2 Survivingthecoldcanencompassanumberofabioticandbioticvariables.The lowest temperature which the insect experiences, the length of time the environmentremainsatthattemperature,therateofcooling,andthepresenceof water all influence survival at the abiotic level and have been proposed to influencecertainadaptivestrategies,aswell[2].Bioticvariablesareevenmore widespread. The detection of token stimuli with subsequent employment of cryoprotective mechanisms (e.g. diapause) greatly influences the ability of an insect to survive the upcoming winter. In addition, insects can benefit from trackingtheconditionsofthenaturalenvironmentinrealtimeandadjustingtheir physiology accordingly (e.g. rapid coldhardening). Finally, an insect can influence its survival by employing reparative mechanisms that ameliorate the damagesustainedfromacoldinsultwhenconditionsreturntonormal(e.g.heat shockproteins).

Eachofthesevariablesimpliesamolecularmechanism, and even though manyofthesepathwayshavebeenstudiedindetail,evidencesuggeststhatthere arepathwaysandmolecularspeciesyetundiscovered.Inthisreviewwebriefly discusscoldsurvivalphenotypes,thenatureofcoldinjury,andthenprovidean overviewofthemolecularaspectsofinsectcoldhardiness.

1.2. Cold hardiness phenotypes

Insects in temperate and cooler climates employ various mechanisms to survive temperatures of 0 oC or lower. These mechanisms fall into two broad categories:freezetoleranceandfreezeavoidance[3].Freezetolerantinsectsare 3 characterized by their ability to raise their supercooling point to freeze extracellularspaces,preventingdamagetothecellmembranesfromencroaching icecrystals[4].Thesecondcategory,freezeavoidance,coversabroadrangeof insectsthatsurvivethecoldbypreventingtheformationoficecrystals,although thecoldsurvivalphenotypeofthesespeciesandthemechanismsemployedvary considerably.

Because of this variation, Bale [5,6] has proposed that freezeavoidance shouldbefurthersubcategorizedintofourgroupsbasedontheobservationthat freezeavoidance falls into four distinct survival phenotypes. The first of these categories, freezeavoidance (sensu stricto), applies only to insects that do not experience significant mortality until the body begins to freeze. These insects benefitfromaloweringofthesupercoolingpointalone.Onaworldwidescale, thenumbersofinsectspeciesthatfallintofreezetoleranceandfreezeavoidance

(sensulato)categoriesiscomparativelysmall[5].

The next three categories are based on the observation that many insects begintoexperiencemortalitylongbeforethesupercoolingpointisreached.The firstofthese,chilltolerance,referstospeciesthatexperiencemortalityonlyafter long exposures (days) to temperatures below 0 oC but above the supercooling point. A similar category, chillsusceptibility, describes insects that experience mortalityaftershort(minutesorhours)exposuretotemperaturessimilartothose above. Eventhoughthedividinglinebetweenthese two groups is not clearly defined, acknowledgment of these two categories reflects the physiological

4 distinctionbetweenfleshflies( Sarcophaga crassipalpis )thatarechilltolerantin thediapausestatebutchillsusceptibleduringtheremainderoftheirlifecycle[7].

Thefinalcategory,opportunisticsurvival,refers to insects that are incapable of employing preventative cold hardening mechanisms. To survive, these insects must avoid low temperatures altogether by seeking thermally favorable microhabitats[5].

Thisnewsubcategorizationoffreezeavoidanceconformstonaturaltrends

[2]andencompassestheentirerangeofobservedresponsesinspeciesfromthe tropicstothepoles[6].

1.3. The nature of low-temperature injury

Coldinjuryfallsintothreecategoriesbasedontheexposuretemperatureand itsrelationtothefreezingpointofwaterandthefreezingpointoftheinsectitself.

If the insect suffers damage from positive temperatures at or near 0 oC, usually overaperiodoftimeexpressedindays,thentheinsectissaidtohavesuffered fromindirectchillinginjury[4].Directchillinginjury,orcoldshock,describes damage from temperatures that are below 0 oCbutabovethesupercoolingpoint

[8].Coldshockinjuryarisesfromlowtemperatureexposuresofminutes,hours, or days, depending on the insect species under study and the intensity of the exposure.Finally,insectsthatsufferdamagebecauseofintracellularicecrystal formation (due to temperature depression below the supercooling point) suffer fromfreezinginjury[9].Forfreezetolerantinsects,freezinginjuryoccurswell

5 belowthesupercoolingpointiftheinsectisphysiologicallyprepared forwinter

[10],butfreezeavoidinginsectsexperiencethisinjuryattheirsupercoolingpoint

[4].

1.3.1 Injury at the whole-body level

A few studies have concentrated on the effects of cold exposure at the wholebody level. The flesh fly, S. crassipalpis ,cansurviveforupto25days whenexposedto0 oC[11],butfliesthathavesufferedfromindirectchillinginjury at 2 oC for ten days are slow to emerge from the puparium, provided they are capable of opening the puparium at all. Many that fail to emerge after this exposurearealsounabletoretracttheptilinumifthefliesareremovedfromthe pupariumartificially.Thecoordinationofmuscularmovementispreservedinthis particularinstance,buttheamplitudeofsuchmovementisreducedtoonethird thelevelofuntreatedcontrols,hencetheimpairmentofeclosion.Manyfleshflies thatsuccessfullyemergehavewingabnormalitiesfromfailuretoproperlyexpand theirwingsaftereclosion[12].Developmentalabnormalitieshavebeenreported fromindirectchillinginjuryinotherspeciesaswell[13,14]Studyoftheblood suckinghemipteran, Panstrongylus megistus ,revealedthatshortexposures(1h)to

5oCor0 oCgreatlyreducesmoltingincidence,butsurvivalisonlyaffectedby0 oC exposures, with 96.7% mortality reached after 12 hours without induced cryotolerance[15].

Nondiapausing Sarcophaga crassipalpis pupae exposed to a 10 oC cold shock(16 oCabovetheirsupercoolingpoint)for45minutesfailtoemerge50%of 6 the time and die soon afterwards. These flies also have disrupted emergence patterns and reduced coordination of extrication movements, although the amplitudeofmuscularcoordinationisunaffected[12].Coldshockedfleshflies have reduced motor conductivity and decreased activity at the neuromuscular junction [16]. Even more important to overall viability, the fecundityofthesefliesisalsoaffected,showingareductionofviableeggsaftera onehourcoldshockat10 oC.Fecundityreductionfromcoldshockwascaused byadramaticreductioninmalematingfrequency[17].Incontrast,astudyinthe house fly, Musca domestica , has shown that cold shock reduces total egg productioninfemales,buttheeffectonmaleswasnotmeasured[18].

By definition, freezing injury often leads to immediate, catastrophic consequencesforthesurvivaloffreezeavoidinginsects.Oftenthefreezinginjury beginsinthegutwherepotentialicenucleatorsreside;thisisonereasonwhy S. crassipalpis possessesalowersupercoolingpoint(SCP)initsnonfeedingstages

[7].Freezetolerantspeciescanonlywithstandlowtemperaturestoacertainpoint belowtheirSCP,oftenafewdegreesbelowtheSCPintheSouthernhemisphere andtensofdegreesbelowtheSCPintheNorthernhemisphere[1].Whenthis criticalpointisreached,thefreezetolerancemechanismlosesitsabilitytostem theincreasinggrowthoficecrystals,andthecellslethallyfreeze.

1.3.2 Injury at the tissue level and below

Atthetissueandcellularlevel,coldinjuryispoorlyunderstood,although researchinthisareaisbeginningtoattractmoreattention.Itisgenerallyaccepted 7 that damage from cold shock at the cellular level results from the loss of cell functionduetodenaturation,theformationofinsoluble protein aggregates, and the loss of membrane homeostasis from phase transitions [19]. Vital dyes and direct microscopic examination have been applied to insect cells to determine what effects are the most common after cold exposure. In Panstrongylus megistus ,exposuretosequentialtemperaturesof5 oCand0 oCleadstoareduction in apoptotic events for Malphigian tubule epithelial cells compared to control.

Concurrently,thelevelofnecrosisincreaseswhencomparedtocontrols,leading to the hypothesis that cold shock injury favors necrosis either through direct apoptoticsuppressionorindirectlybyATPdepletion[15].

Vitaldyestudiesofbodycellsfromthefreezetolerantspecies, Eurosta solidaginis , have demonstrated that after freezing, these cells have much larger lipiddropletsbutfailtoshowsignsofmembranedamage [20]. A subsequent

Eurosta investigationusingfluorescentvitaldyesrevealedincreasedfreezeinjury susceptibility (>50% cell mortality) for integumentary muscle, hemocytes, tracheae, the distal portion of the Malphigian tubules, and the fat body after treatmentfor10daysat80 oC.Thetissuesleastsusceptibletodamagefromthis treatment were the gut, proximal portion of the Malphigian tubules, and the salivary[9].

Ultrastructuralanalysisoflethallyfrozentissuesfrom Eurosta larvae demonstratedintermembranousexpansionsofthenuclearenvelopeandclumping ofchromatininthebrainwithassociatedroughendoplasmicreticulumexpansion, andincreasedpresenceofautophagicbodiesinthecytoplasm.Musclesstudiedin 8 thismannerhadmissingZlinesasaresultofmyofilamentbreakdown, andthe nuclei went from a structured peripheral array of chromatin to a diffuse organization. Finally, the Malpighian tubules of lethally frozen Eurosta had expanded mitochondria with broken cristae and an increased number of autophagicbodies[10].

All of the evidence above reveals tissue vulnerability to cold damage in nervous tissues and muscles, both of which are heavily reliant on membrane integrity, cytoskeletal structure, and energy for normal functioning. To further complicatematters,energyproductionmaybehamperedbytrachealdamageand mitochondrialdisruption,althoughnoimmediatechangeinoxygenconsumption has been reported from cold shock damage in S. crassipalpis [8]. Changes in nuclearorganizationalsoseemstobeacommonalityassociatedwithdamageto insects from the cold [10,15], although the evidence is preliminary. In future studiesofcolddamageatthetissuelevelorbelow,itwouldbeusefultoseethe differencesbetweenthetypesofcoldinjuryforeachofthefivegroupsoflow temperaturesurvivalphenotypes.Suchworkmayrevealthecellularbenefitsof thevariousinsectcoldsurvivalstrategiesbasedondifferencesinobservedtissue damageorintracellularphenomenaafterlowtemperatureinsult.

1.4. Detection of low-temperature stimuli

Foraninsecttoinitiateprotectivemechanismsthataidinlowtemperature survival without seasonal acclimation, the cell must be able to detect low temperatures directly or to detect subtle changes in the cell composition or 9 architecture that accompany reduction in temperature. For insects, this area of research is still in its infancy, although work in other model systems may illuminatepotentialtargetsforstudy.

1.4.1 Detection of denatured protein

As previously discussed, cold shock damage is thought to lead to the denaturationofmanydifferentproteinspecieswithinthecell[21].Asaresult, theseproteinsoftenlosetheirhydrophobic/hydrophilicinteractionsandfalloutof thecytoplasmicsolution.Whenthisoccurs,theHeatshockcognate70(Hsc70) protein, which normally is heterodimerized with the Heatshock transcription factor (HSF), dissociates from HSF in favor of binding to the newlydenatured protein [22]. The free HSF molecule then trimerizes with other free HSF moleculesandsubsequentlyentersthenucleustobindwithpromoterregionsof

DNAcalledheatshockelements(HSE’s)[23].

By far, the most notable group of molecules to contain HSE’s in their promoterregionsarethevariousheatshockproteins(Hsps),which,uponanHSF trimerbindingtotheHSE,arethentranscribedandtranslatedtoprotectthecell from further damage and to repair the damage already sustained (Section 5.2).

Studies of heat shock in have not only shown the presence of most of these molecules in the Drosophila genome, but have also drawn functional conclusionsformany ofthesemolecules [24], including HSF

[25].Thefactthatheatshockproteins(includingHsc70)arehighlyexpressed

10 duringrecoveryfromcoldshockin Sarcophaga crassipalpis [26,27,28,29,30]is thebestindicatorthattheHSFcascadeisinvolvedincoldshockrecovery,butas ofyet,thishasnotbeenconfirmedexperimentally.

Although this method of lowtemperature detection and repair is highly conservedthroughoutallkingdoms[22],itisnotproactive;itisreactive.Other cellularmethodsoflowtemperaturedetectionmaybeinvolvedinprimingthecell forcoldhardinesslongbeforedamageissustained,aresponsestrategyarguably morefavorablethanadamagedependentresponse.

1.4.2 Transient receptor potential ion channels

Whenfacedwithatemperaturegradient,insectstendtomovetoapointin the gradient that is optimal for their physiology. This behaviour must be controlledbyareceptionsystemthatcandetectsmalldifferencesintemperature inorderto“know”whattemperatureisideal.Foradultinsects,coldsensingcells intheantennaecalled“coldcells”generateactionpotentialsinresponsetolow temperature[31].Recentworkin Drosophila larvae has identified the terminal organsforcoldreceptionusingCa 2+ influxasamarkerforneural activity[32].

These,whichhavethesamephysiologicalcharacteristicsof“coldcells”

[33], can changes in temperature as small as 0.3 oC, beginning at temperaturesbelow18 oC[34].

Molecular temperature sensors for insects have yet to be convincingly identified, but evidence is emerging that painless , a transient receptor potential

(TRP) gene, is responsible for detection of supraoptimal temperatures in 11 Drosophila larvae[35]. Painless isrelatedtovertebrateTRPV1,theproteinmost responsibleforthermoreceptionin[36]. Inaddition,researchin mammals has also uncovered a TRP Ca2+ channel that is responsible for the receptionofcoldaswellasmenthol[37].ABLASTsearchthroughGenbankhas uncovered a similar gene in both the Drosphila melanogaster (3e76) and

Anopheles gambiae (8e77)genome,althoughbothgenesawaitstudy.

1.4.3 Membrane fluidity and histidine kinase 33

Exciting research in plants has recently revealed the role of membrane fluidity in cold reception. When the ambient temperature drops, decreasing membrane fluidity leads to membrane transport perturbations [19]. To counter this,plantscellshavedevelopedasystembywhichthehistidinekinases,Hik33 and Hik19, act in concert with the transcription regulator, Rer1, in response to decreasing fluidity [38,39]. The cell’s response to this cascade features the inductionofmembranedesaturasegenes(desA,desB,oleI)aswellasothercold acclimatinggenes[19,40,41,42].Membranedesaturasegenesincreasethecell’s membranefluidity,restoringtransportfunctions[19].AGenBankBLASTsearch reveals that the Anopheles genome has two ESTs with weak similarity to the

Hik33andHik19genesin Synechocystis sp.(7e11,1e10). Drosophila Hsp83 andGp93 chaperoneshave ahistidinekinaselikeATPase domain, thus further supportingthepossibilitythatthispathwayisinvolvedininsectcoldtolerance.

Changesinmembrane fluidityinresponsetoshortterm lowtemperature exposurehavenotbeenwellstudiedininsects,althoughareductioninsaturated 12 fattyacidsistypicalofwinterpreparation[44,45].Onestudyinthearctiid,

Cymbalophora pudica ,foundextensivelipidcompositionchangesinthebrainand gutinresponsetoaoneday4 oCacclimation.Membranefluidityforthesetwo tissueswasunaltered.Inaddition,thedegreeoflipiddesaturationincreasedinthe fat body, the silk , and the body wall, although these increases were moderate. This moth does not have pronounced cold hardiness even with acclimation,thusamoderatechangeinlipidcompositionmightbeexpectedfor thisspecies[46].Althoughnogeneswereimplicatedinthisstudy,insectssucha

Drosophila and many have multiple desaturase genes which could potentiallyberesponsibleforalteringmembranefluidity[47],especiallysincede novolipidsynthesisfromfatstoreswasnotfoundinthearctiidstudy[46].

1.5. Established mechanisms of cold-hardiness

The insect cryobiology literature reveals four main mechanisms for insect cold hardiness. Any one of these mechanisms or any combination of these mechanisms may be utilized by an insect to survive suboptimal temperatures.

Generally,themoremechanismsemployedorthegreatertheinductionisfora particularmechanism,themorecoldhardytheinsectbecomes.

1.5.1 Polyols and other low-molecular weight substances

Polyhydricalcohols(polyols)andotherlowmolecular weight compounds aremanufacturedbymanyinsectseitherinresponsetoorinpreparationforalow temperatureinsult.Seasonally,thesecompoundsaremanufacturedinthefatbody 13 where they are released into the hemolymph to colligatively (0.2 M or greater concentration) protect the entire body from lowtemperature damage by either reducing the supercooling point or increasing the osmolarity of the cell [4,48].

Someinsectsupregulatelowmolecularweightcompoundstolevelsfarbelow0.2

M and still increase coldhardiness [48,49]. Noncolligative effects of polyols includestabilizationofnascentproteins,increasedrepairofdamagedproteinby molecular chaperones [50], and membrane stabilization [51]. Lowmolecular weightcompoundsthatareknowntoprotectinsectsfromcoldincludeglycerol, sorbitol,mannitol,trehalose,andproline[4,52,53].

Seasonally, insects upregulate polyols and other lowmolecular weight compoundsinresponsetoshorteningdaylengthanddecreasingtemperaturesover aperiodofdaysorweeks[4,24].Seasonalincreasesinthesecompoundsmaybe attributed to freezetolerance [48], freezeavoidance, or diapause [4].

Additionally,someinsectscanupregulatethesecompoundsonatimescalefrom twentyminutestoeighthoursinaprocessknownasrapidcoldhardening(RCH), although the level of polyol upregulation is lower than that seen for seasonal acclimation [49,54,55]. Rapid cold hardening may not be a strategy found in freezetolerantinsects[56].

The mechanism of induction for glycerol involves the temperature dependentactivationofglycogenphosphoylase,which,uponitsinduction,frees glucosemoleculestobecleavedintoglycerol[52].Glycerolsynthesismay be further enhanced by the diversion of carbon flow to the pentose phosphate pathway[57,58].Inthericestemborer, Chilo suppressalis ,glycerolproduction 14 results from the inhibition of fructose 1,6 bisphosphate and pyruvate kinase.

Glycogen phosphorylase, glyceraldehyde3phosphatase and polyol dehydrogenaseareallactivatedinthestemborerduringseasonalacclimation[58].

Inhibition of protein phosphatase1 during glycerol synthesis is found in both freezetolerantandfreezeavoidinginsects[60].Inthegoldenrodmoth, Epiblema scudderiana ,hexokinaseisstronglyactivated(300%)inthepresenceofglycerol

3phosphate and low temperatures [61]. For the freezetolerant Eurosta solidaginis ,glycerolis madeutilizingthepentosephosphate pathway, but after temperaturesdropbelow5 oC,phosphofructokinaseisstronglyinhibited,diverting theinsect’smetabolismfromglyceroltosorbitolsynthesisinaonestepprocess

[62,63].

Clearly, more research needs to be done to match the identity of the cryoprotective compound with coldhardy insect species, measure rates of induction,andidentifyinvolvedinthesepathways.Theinformationthus gleanedwouldservetofurtherdefinetherelationshipbetweenthesecompounds and lowtemperature survival, possibly highlighting common mechanisms that occurwithinaninsectlineageoracrosslineages.

1.5.2 AFPs and INAs

Antifreeze proteins (AFPs) and ice nucleating agents (INAs) are used by someinsectstopreventinjuryfromicecrystalformation.INAsareproducedin freezetolerantinsectstodrivethecrystallizationtemperatureofthehemolymph upward,forcingicecrystalstoformintheextracellularspacesathighersubzero 15 temperatures.Icecrystalspullwateroutofsolution extracellularly, driving the osmolarity of the cells higher and higher because water flows from the intracellular space to the extracellular space to compensate for water lost to ice

[64]. In the end, the insect is quite well protected from intracellular ice formation.ThisattributeiswelldevelopedinNorthernhemisphereinsectsthat are known to be able to survive freezing to several tens of degrees below their supercoolingpoints[1].INAshavenotbeenobservedinfreezeavoidinginsects.

Some insects, particularly beetles, produce AFPs in preparation for overwintering [65]. AFPs protect the insect by preventing the growth of ice crystalsthathavenucleatedbyadheringtothesurfaceofthecrystal,hinderingthe additionofnewwatermoleculestotheicelattice.AFPslowerthefreezingpoint ofinsecthemolymphupto8.5 oCwithoutaffectingthemeltingpointinacondition knownasthermalhysteresis[66].FishhavefivedifferentclassesofAFPs,each withpreferentialbindingtoaspecificsurface of the growing ice crystal lattice

[67].InsectAFPshavenotbeensubdividedintoasmanyclasses,butevidence showsthatfishandinsectAFPsbindtoicewithcomparableaffinityandgreater effectivenessasmeasuredbythedegreeofthermalhysteresis[68].AFPactivity isenhancedbyproteinenhancers[69],polyols,andorganicanions[70].

1.5.3 Heat shock proteins

Incaseswherecoldtoleranceisnotenoughtosustainaninsectthrougha particularly strong lowtemperature insult without injury, Hsps must be manufactured to repair, contain, or remove damaged proteins. Thus far, investigationsintoHspexpressionaftercoldexposureininsectshavebeenlimited 16 to Sarcophaga crassipalpis [27,28,29], Drosophila (fourspecies)[24,71],andthe

Colorado potato beetle ( Leptinotarsa decemlineata ) [29]. In all of these cases, heat shock protein transcripts are upregulated from 1 to 12 hours at recovery temperaturesfollowingthecoldshock.

Themostcommonlystudiedtranscriptistheinducibleformofheatshock protein 70, hsp70 . This protein (~70 kDa) product of this transcript is highly conserved(>50%)acrossallkingdomsoforganismsandisexpressedaftercold shockinallsixoftheaboveinsects.Hsp70aidsinstresssurvivalbyrefolding damaged protein, redissolving insoluble proteins [72], and tagging irreparable proteinfordegradation [73],althoughthespecific function of insect Hsp70 for lowtemperature survival has not been studied. However, induction of S. crassipalpis Hspsbyheatshockanddiapausehasbeencorrelatedwithincreased survival to cold [7,27,74]. Stronger cold shocks induce stronger and longer induction of hsp70 transcripts for S. crassipalpis , but the induction is delayed whencomparedtomildercoldshocks[27].Acclimationtolowerdevelopmental temperaturesreducesthethresholdof hsp70 expressionin Drosophila triauraria , but this has not been observed in the other two Drosophila species tested for hsp70 expressionthresholds[71].

Theconstitutiveformofheatshockprotein70(Hsc70)normallydoesnotchange its expression profile in response to stress, but Sarcophaga crassipalpis hsc70 transcriptsareupregulatedinresponsetocoldshock[27].TheroleofHsc70in

17 stresssignallingisimportantinthatitisprimarilyresponsibleforthereleaseof heat shock transcription factor (HSF) [22], although the purpose of Hsc70 upregulationaftercoldstressremainsunclear.

Smallheatshockproteins(sHsps)areadiversefamilyofproteins(12to40 kDa)thatareidentifiedbythepresenceofanalphacrystallinedomain.Theirrole instresstoleranceinvolvesrefoldinglocaldomainsofdamagedproteins,tagging aberrantproteinintheearlystagesofdenaturationforotherchaperones tofold, andinhibitionofproteolysis[22,75].Also,sHspsareeffectiveinpreservingthe cytoskeletoninmammalianhypothermia,whichisparticularlyimportantfor cold tolerance because cold is known to break down the cytoskeleton in vitro

[76,77].In S. crassipalpis , hsp23 transcriptsareupregulatedinresponsetocold shock,heatshock,andduringpupaldiapause[26,29],althoughwhatbenefitsuch upregulationconfershasnotbeenverified.

The90kDafamilyofheatshockproteinsinfleshfliesarealsoupregulated inresponsetocoldshock[26],butnotdiapause[28].Normally, hsp90 transcripts areexpressedatlowconstitutivelevelsbutareinducedquicklyaftercoldshock(1 hour),peakafter4hoursandremainexpressedathighlevelsevenafter12hours postcold shock [28]. Hsp90 recognizes and repairs damaged proteins that are boundbyHsc70,sequestersHSFinthesamemannerasHsc70,andtargetsprotein for degradation in the ubiquitindependent proteosomepathway[78].Hsp90is alsoknowntoactivatethereceptorultraspiraclecomplex.Thismaybe thereasonitisnotexpressed,likeotherHsps,duringdiapause,astagedependent ontheabsenceofecdysteroids[28,78]. 18 Eventhoughheatshockproteinshavebeencorrelated with cold survival, thereislittledirectevidenceintheliteratureto confirmthis.Fortunately,new

RNAinterference(RNAi)technologyallowsforthefunctionalstudyoftranscripts inavarietyofectothermicorganisms,notablyinsects[23],andourlaboratory’s unpublisheddataindicatesalossofcoldtolerancewhenHspsareknockeddown usingRNAi.

1.6. Frontiers in cold-hardiness mechanisms

1.6.1 The role of the cytoskeleton

Studies of plant responses to cold have emphasized the increasing importanceoftheplantcytoskeletoninconferringtolerancetolowtemperatures.

In addition, cold tolerance of the cytoskeleton has been documented in the

Atlantic cod [79]. Cold tolerance may be acquired through two cytoskeletal methods:depolymerizationofcytoskeletalelementstriggercellularresponsesto cold, and microtubules may be assembled in a coldstable configuration in anticipation of lowtemperature. In the former process, calcium channels are attachedtothedepolymerisingactincytoskeleton,andconsequentlytheabilityto preventCa 2+ fromenteringthecellislostatlowtemperature[80].Theensuing

Ca 2+ cascadeleadstoanundeterminedsignallingmechanismthatresultsincold stablecells[81,82]. In thelattermechanism,posttranslational modification of tubulinpolymers[83],additionofcoldstabilizingproteins[76,84]suchasHsps

[83,85],ortubulinaminoacidsubstitutions[79,86]areaddedtothegrowing

19 microtubules to increase the stability of the cytoskeleton. A coldstable cytoskeletonpresumablywillmaintainthestructure,function,andorganizationof cellsuponexposuretopotentiallydamaginglowtemperatures.

Name Species Observations Reference Hsp70 Drosophila (4 Upregulationduringrecoveryfromcoldshock [71] species), Sarcophaga Upregulationduringdiapauseandrecoveryfrom [27,30] crassipalpis coldshock. Leptinotarsa decemlineata Hsc70 S. crassipalpis Upregulationduringdiapause,recoveryfrom [27] coldshock Hsp23 S. crassipalpis Upregulationduringdiapause,recoveryfrom [22,29] coldshock Hsp90 S. crassipalpis Recoveryfromcoldshock [22,28] Dca D. Upregulationfrom15 oCacclimation [88] melanogaster Fst D. Upregulationduringrecoveryfroma0 oCcold [89] melanogaster shock Hsr- omega Drosophila (3 Inducesthe93kDheatshockpuffaftercold [90] species) shock Svp Bombyx mori Transcriptionfactorupregulatedfromchilling [91] sorbitol B. mori Upregulatedafterchillingfor50days [91] dehydro- genase Samui B. mori Chillinducibleproteinthattransmitslow [92,93] temperaturesignals c-fos-like Galleria Inducedinthebrainduring3hchillingat0 oC [94] mellonella Cp1,Cp2 Spodoptera Proteinsinducedafter2htreatmentsat0 oC& [95] exigua 5oC Hik19 Synechocysts Cytoplasmic,inducesdesaturasesupon [40,43] sp .(algae) membranefluidityloss,similargeneininsects Hik33 Synechocysts Membranal,inducesdesaturasesuponmembrane [40,43] sp .(algae) fluidityloss,similargeneininsects cmr1 Rattus rattus Responsibleforcoldsignalinginneurons, [37] (rat) similargeneininsects CIRP Mus musculus Upregulatedduringhypothermia,similargenein [96] (mouse) insects Table1.1.Transcriptsandproteinsupregulatedfromcoldtreatments.

20 The role of the cytoskeleton for lowtemperature survival has not been investigated in insects, although it is known that sHsps associate with the cytoskeletonin Drosophila melanogaster [87].Preliminaryresultsfromcross speciesmicroarrays( S. crassipalpis cDNAon Drosophila arrays)indicatechanges in tubulin transcripts as a result of cold treatments, especially shortterm acclimation(ourunpublisheddata).

1.6.2 Insect genes upregulated by cold

Anumberofproteinsandtranscriptsareupregulated as a result of low temperature treatment in insects, although none of these genes have been the objectoflowtemperaturestudiesatthefunctionallevel.Table1highlightsmany ofthegenesidentifiedthusfar.Includedinthetablearetranscriptsfoundinother modelsystemswithsimilaritytoknowninsectESTsonGenBank.

1.6.3 Genome-wide studies in other organisms

Recentadvancesinfunctionalgenomicshaveprovidedvaluabletoolsinthe forms of cDNA macro and microarrays. Through the use of this technology, thousandsofgenescanbescreenedforaparticulartreatment,evenacrossspecies.

Certainly,thefieldofinsectcryobiologymaybenefitfromtheapplicationofthis technologytothevariouscoldtreatmentsandstrategies,includingrecoveryfrom coldshock,rapidcoldhardening,seasonalacclimation,andfreezetolerance.

Microarray analyses of lowtemperature treatment in other model systems have revealed a great variety of genes related to cold. Arabidopsis thaliana 21 exposed to 24 hours of4 oCincreasesexpressionof40transcriptionfactors, 11 osmoprotective genes, 24 cellular metabolic genes, 20 carbohydrate metabolic genes, 4 heat shock genes, and 6 detoxification enzymes [97]. Similar results wereobtainedfromricetreatedinthesamemanner,althoughthenumberofgenes tested was fewer [98]. Of note in these studies was the upregulation of beta tubulin in Arabidopsis andactininrice,indicating changesinthe cytoskeleton during cold acclimation. GlutathioneStransferase was upregulated in

Arabidopsis during cold acclimation, which was also noted on microarrays of freezeinjured yeast [99]. The only lowtemperature transcriptome study in animalswasperformedonmacroarraysofthechannelcatfish, Ictalarus punctatus , revealingconsiderablechangesinribosomalproteinconstituentsandanincrease in hsp70 , calmodulininhibitor, and beta actin due to acclimation from 24 oC to

12 oC[100].

Ourlaboratory’sunpublishedworkon S. crassipalpis reliesoncrossspecies hybridization with Drosophila melanogaster EST’s. Genes that appear to be upregulated in the flesh fly as a result of coldtreatments include 11 defensive genes (including glutathioneStranfersase), 16 metabolic genes, 21 cytoskeletal genes (including both α and βtubulin), 36 genes related to transcription and translation (especially spliceosomal elements), and 13 signal transduction molecules (especially calciumbinding and proteins related to Gprotein signalling).AlthoughnoneofthesegeneshavebeenconfirmedbyNorthernblot

22 hybridizationatpresent,itisclearthatmicroarraystudiessuchasthiswillenable thefieldtomakeaquantumleapforwardbyallowingtheidentificationofmajor genenetworksnotpreviouslyknowntobeinvolvedintemperatureresponses.

Acknowledgements

ThisstudywasfundedinpartbyNSFgrantIBN9728573.

23 References [1] Sinclair, BJ. Climatic variability and the evolution of insect freezing tolerance.BiolRev2003;78:181195.

[2] Vernon P, Vannier G. Evolution of freezing susceptibility and freezing toleranceinterrestrial.CRBiologies2002;325:11851190.

[3] SaltRW.1961Principlesofinsectcoldhardiness.AnnRevEnt1961;6: 5574.

[4] Lee RE. Principles of insect low temperature tolerance. In: Lee RE, DenlingerDL,editors.Insectsatlowtemperature.NewYork:ChapmanandHall, 1991.p1746.

[5] Bale JS. Insects and low temperatures: from molecular biology to distributionsandabundance.PhilTransRSocLondB2002;357:849862.

[6] Bale JS. Insect cold hardiness: a matter of life and death. Eur J Ent 1996;93:369382.

[7] Lee RE, Denlinger DL. Cold tolerance in diapausing and nondiapausing stagesofthefleshfly, Sarcophaga crassipalpis. PhysiolEnt1985;10:309315.

[8] DenlingerDL,JoplinKH,Chen,CP,Lee,RE.Coldshockandheatshock. In: Lee RE, Denlionger, DL, editors. Insects at low temperature. New York: ChapmanandHall,1991.p131147.

[9] YiSX,LeeRE.Detectingfreezeinjuryandseasonalcoldhardeningofcells andtissuesinthegallflylarvae, Eurosta solidaginis (Diptera:Tephritidae)using fluorescentvitaldyes.JInsectPhysiol2003;49:9991004.

[10] CollinsSD,AllenspachAL,LeeRE.Ultrastructuraleffectsoflethalfreezing onbrain,muscle,andMalpighiantubulesfromfreezetolerantlarvaeofthegall fly, Eurosta solidaginis. JInsectPhysiol1997;43:3945.

[11] Chen CP, Denlinger DL. Reduction of cold injury in flies using an intermittentpulseofhightemperature.Cryobiology1992;29:138143.

[12] YocumGD,ZdarekJ,JoplinKH,etal.Alterationof the eclosion rhythm andeclosionbehaviorinthefleshfly, Sarcophaga crassipalpis ,bylowandhigh temperaturestress.JInsectPhysiol1994;40:1321.

[13] TezzeAA,BottoEN.Effectofcoldstorageonthequalityof Trichogramma nerudai (:Trichogrammatidae).BiolControl2004;30:1116.

24 [14] GarciaSL,GarciaNL,RodriguesVLCC,MelloMLS.Effectofsequential cold shocks on survival and molting incidence in Panstrongylus megistus (Burmeister)(Hemiptera,Reduviidae).Cryobiology2001;41:7477.

[15] GarciaSL,PacheraRM,RodriguesVLCC,MelloMLS.Effectofsequential heat and cold shocks on nuclear phenotypes of the bloodsucking insect, Panstrongylus megistus (Burmeister) (Hemiptera, Reduviidae). Mem Inst OswaldoCruz2002;97:11111116.

[16] Kelty JD, Killian KA, Lee RE. Cold shock and rapid cold hardening of pharate adult flesh flies ( Sarcophaga crassipalpis ): Effects on behaviour and neuromuscularfunctionfollowingeclosion.PhysiolEnt1996;21:283288.

[17] Rinehart JP, Yocum GD, Denlinger DL. Thermotolerance and rapid cold hardening ameliorate the negative effects of brief exposures to high or low temperaturesonfecundityinthefleshfly, Sarcophaga crassipalpis .PhysiolEnt 2000;25:330336.

[18] Coulson SC, Bale JS. Effect of rapid cold hardening on and survival of offspring in the Musca domestica . J Insect Physiol 1992;38:421424.

[19] Vigh L, Maresca B, Harwood JL. Does the membrane’s physical state control the expression of heat shock and other genes? Trends Biochem Sci 1998;23:369374.

[20] DavisDJ, LeeRE. Intracellularfreezing,viability, andcompositionof fat bodycellsfromfreezeintolerantlarvaeof Sarcophaga crassipalpis .ArchInsect BiochemPhysiol2001;48:199205.

[21] Parsell, DA, Lindquist S. The function of heat shock proteins in stress tolerancedegradation and reactivation of damaged proteins. Ann Review Gen 1993;27:437496.

[22] Denlinger DL, Rinehart JP, Yocum GD. Stress proteins: a role in insect diapause? In: Denlinger DL, Giebultowicz JM, Saunders DS, editors. Insect Timing: Circadian Rhythmicity to Seasonality. Amsterdam: Elsevier Science, 2001.p.155171.

[23] Marchler G, Wu C. Modulation of Drosophila heat shock transcription factoractivitybythemolecularchaperoneDROJ1.EMBOJ2001;20:499509.

[24] Hoffmann AA, Sorensen JG, Loeschcke V. Adaptation of Drosophila to temperatureextremes:bringingtogetherquantitativeandmolecularapproaches.J ThermBiol2003;28:175216.

25 [25] Lerman, DN, Feder, ME. Laboratory selection at different temperatures modifies heat shock transcription factor (HSF) activation in Drosophila melanogaster .JExpBiol2001;204:315323.

[26] JoplinKH,YocumGD,DenlingerDL.Coldshockelicitsexpressionofthe heat shock proteins in the flesh fly Sarcophaga crassipalpis. J Insect Physiol 1990;36:825834.

[27] Rinehart JP, Yocum GD, Denlinger DL. Developmental upregualtion of induciblehsp70transcripts,butnotthecognateform,duringpupaldiapauseinthe fleshfly, Sarcophaga crassipalpis .InsectBiochemMolBiol2000;30:518521.

[28] RinehartJP,DenlingerDL.Heatshockprotein90isdownregulatedduring pupaldiapauseinthefleshfly, Sarcophaga crassipalpis, butremainsresponsive tothermalstress.InsectMolBiol2000;9:641645.

[29] YocumGD,JoplinKH,DenlingerDL.Upregulationofa23kDasmallheat shock protein transcript during pupal diapause in the flesh fly, Sarcophaga crassipalpis .InsectBiochemMolBiol1998;28:677682.

[30] YocumGD.DifferentialexpressionoftwoHSP70transcriptsinresponseto coldshock,thermoperiod,andadultdiapauseintheColoradopotatobeetle.JIns Physiol2001;47:11391145.

[31] LoftusR.,CorbiereTichane,G.Responseofantennalcoldreceptorsofthe catopid beetles Speophyes lucidulus Delar. and Choleva angustata Far. to very slowlychangingtemperature.JCompPhysiolA1987;161:399406.

[32] Liu L, Yermolaieva O, Johnson WA, Abboud FM, Welsh MJ. Identification and function of thermosensory neurons in Drosophila larvae. NatureNeuroscience2003;6:267273.

[33] AltnerH.,andLoftusR.Ultrastructureandfunctionofinsectthermoand hygroreceptors.AnnRevEnt1985;30:273295.

[34] ZarsT.Hotandcoldin Drosophila larvae.TrendsNeurosci2003;26:575 577.

[35] Tracey,WD,WilsonRL,LaurentG,BenzerS. painless ,aDrosophilagene essentialfornociception.Cell2003;113:261273.

[36] Caterina,MJ,SchumacherMA,TominagaM,RosenTA,LevineJD,Julius D. The capsaicin receptor: a heatactivated ion channel in the pathway. Nature1997;389:816824.

[37] PeierAM,MogrichA,HergardenAC,etal..ATRPchannel that coldstimuliandmenthol.Cell2002;108:705715. 26 [38] Suzuki I, Los DA, Kanesaki Y, Mikami K, Murata N. The pathway for perceptionandtransductionoflowtemperaturesignalsin Synechocystis .EMBOJ 2000;19:13271334.

[39] SuzukiI,LosA,MurataN.Perceptionandtransductionoflowtemperature signalstoinducedesaturationoffattyacids.BiochemSocTrans2000;28:628630.

[40] Carratu,L,FranceschelliS,PardiniCL,etal.Membranelipidperturbation modifiesthesetpointofthetemperatureofheatshock response in yeast. Proc NatlAcadSciUSA1996;93:38703875.

[41] Inaba M, Suzuki I, Szalonti B, et al. Geneengineered rigidification of membrane lipids enhances the cold inducibility of gene expression in Synechocystis .JBiolChem2003;278:1219112198.

[42] Mikami K, KanesakiY, Suzuki I, Murata N. The histidine kinase Hik33 perceives osmotic stress and cold stress in Synechocystis sp. PCC 6803. Mol Microbiol2002;46:905915.

[43] VighL,LosDA,HorvathI,MurataN.Theprimarysignalinthebiological perception of temperature: Pdcatalyzed hydrogenation of membrane lipids stimulatedtheexpressionofthedesAgeneinSynechocystisPCC6803.ProcNatl AcadSciUSA1993;90:90909094.

[44] Holmstrup M, Hedlund K, Boriss H. Drought acclimation and lipid composition in Folsomia candida : implications for cold shock, heat shock and acutedesiccationstress.JInsectPhysiol2002;48:961970.

[45] HodkovaM,BerkovaP,ZahradnickovaH.Photoperiodicregulationofthe phospholipidmolecularspeciescompositioninthoracicmusclesandfatbodyof Pyrrhocoris apterus (Heteroptera)viaanendocrinegland,corpusallatum.JInsect Physiol2002;48:10091019.

[46] KostalV,SimekP.Changesinfattyacidcompositionofphospholipidsand triacylglycerols after coldacclimation of an aestivating insect prepupa. J Comp PhysiolB1998;168:453460.

[47] KnippleDC,RosenfieldCL,NielsenR,YouKM,JeongSE.Evolutionof the integral membrane desaturase gene family in mothsandflies.GenSocAm 2002;162:17371752.

[48] StoreyKB.Organicsolutesinfreezingtolerance.JCompBiochemPhysiol 1997;117A(3):319326.

[49] LeeRE,ChenCP,DenlingerDL.Arapidcoldhardeningprocessininsects. Science1987;238:14151417.

27 [50] MengFG,ParkYD,ZhouHM.Roleofproline,glycerol, andheparin as protein folding aids during refolding of rabbit muscle creatine kinase. Int’l J BiochemCellBiol2001;33:701709.

[51] Quinn,PJ.Alipidphaseseparationmodeloflowtemperature damage to biologicalmembranes.Cryobiology1985;22:128146.

[52] ChenCP,DenlingerDL.Activationofphosphorylaseinresponseto cold and heat stress in the flesh fly, Sarcophaga crassipalpis . J Insect Physiol 1990;36(8):549553.

[53] MisenerSR,ChenCP,WalkerVK.Coldtoleranceand proline metabolic geneexpressionin Drosophila melanogaster .JInsectPhysiol2001;47:393400.

[54] Chen CP, Denlinger DL, Lee RE. Coldshock injury and rapid cold hardening in the flesh fly Sarcophaga crassipalpis . Physiol Zool 1987;60:297 304.

[55] Lee RE, Chen CP, Meacham MH, Denlinger DL. Ontogenetic patterns of coldhardiness and glycerol production in Sarcophaga crassipalpis. J Insect Physiol1987;33:587592.

[56] Sinclair BJ, Chown SL. Rapid responses to high temperature and desiccation but not to low temperature in the freeze tolerant subAntarctic caterpillar Pringleophaga marioni (, ). J Insect Physiol 2003;49:4552.

[57] Kageyama, T. Pathways of carbohydrate metabolism in the eggs of the silkwormmoth, Bombyx mori .Insect1976;6:507511.

[58] Wood,FEJr,Nordin,J.H.Activationofthehexosemonophosphateshunt during coldinduced glycerol accumulationby Protophormia terranovae . Insect Biochem1980;10:8793.

[59] LiYP,DingL,GotoM.Seasonalchangesinglycerolcontentand activities in overwintering larvae of the Shonai ecotype of the rice stem borer, Chilo suppressalis Walker.ArchInesctBiochemPhysiol2002;50:5361.

[60] Pfister TD, Storey KB. Purification and characterization of protein phosphatase1fromtwocoldhardygoldenrodgallinsects.ArchInsectBiochem Physiol2002;49:5664.

[61] Muise AM, Storey KB. Regulation of hexokinase in a freeze avoiding insect: role in the winter production of glycerol. Arch Insect Biochem Physiol 2001;47:2934.

28 [62] Storey,KB.Regulationofcryoprotectantmetabolismintheoverwintering gall fly , Eurosta solidaginis. Temperature control of sorbitol and glycerol levels.J.CompPhysiol1983;149:495502.

[63] TsimukiH,RojasRR,StoreyKB,BaustJG.Thefateof[ 14 C]glucoseduring coldhardeningin Eurosta soildiaginis (Fitch).InsectBiochem1987;17:347352.

[64] Zacchariassen, KE. Physiology of cold tolerance in insects. Physiol Rev 1985;65:799832.

[65] DumanJG,BennettV,SformoT,HochstrasserR,BarnesBM.Antifreeze proteinsinAlaskaninsectsandspiders.JInsectPhysiol2004;50:259266.

[66] Duman JG, Serianni AS. The role of endogenous antifreeze proteins enhancersinthehemolymphthermalhysteresisactivityofthebeetle Dendriodes canadensis .JInsectPhysiol2002;48:103111.

[67] Cheng CC, Brown CJ, Sonnichsen FD. The structure of fish antifreeze proteins. In: Ewart KV, Hew CL, editors. Fish Antifreeze Proteins. London: WorldScientific,2002.p.109138.

[68] MarshallCB,TomczakMM,GauthierSY,et al.Partitioning of fish and insect antifreeze proteins into ice suggests they bind with comparable affinity. Biochemistry2004;43:148154.

[69] DumanJG.Theinhibitionoficenucleatorsbyinsectantifreezeproteinsis enhancedbyglycerolandcitrate.JCompPhysiolB2002;172:163168.

[70] LiN,AndorferCA,DumanJG.Enhancementofinsectantifreeze protein activitybysolutesoflowmolecularmass.JExpBiol1998;201:22432251.

[71] Goto, SG, Kimura MT. Heat and coldshock responses and temperature insubtropicalandtemperaturespeciesof Drosophila .JInsectPhysiol 1998;44(12):12331239.

[72] Lindquist, S. The heat shock response. Annual Review of Biochem 1986;55,11511191.

[73] Terlecky,S.R.,Chiang,H.L.,Olson,T.S.,Dice,J.F.Proteinandpeptide bindingandsimulationofinvitrolysomalproteolysisbythe73KDaheatshock protein.JBiolChem1992;267,92029209.

[74] ChenCP,LeeRE,DenlingerDL.Coldshockandheatshock:acomparison of the protection generated by brief pretreatment at less severe temperatures. PhysiolEnt.1991;16:1926.

29 [75] FederME,HofmannGE.Heatshockproteins,molecular chaperones, and the stress response: evolutionary and ecological physiology. Ann Rev Physiol 1999;61:243282.

[76] Job D, Rauch CT, Fischer EH, Margolis RL. Recycling of coldstable microtubules: Evidence that cold stability is due to substoichiometric polymer blocks.Biochemistry1982;21:509515.

[77] RussottiG,CampbellJ,TonerM,YarmushML.StudiesofheatandPGA 1 induced cold tolerance show that HSP27 may help preserve actin morphology duringhypothermia.TissueEng1997;3:135147.

[78] YoungJC,Moarefi,HardFU.Hsp90:aspecializedbut essential protein foldingtool.JCellBiol2001;154:267273.

[79] Detrich,HW,ParkerSW,WilliamsRCJr.,Nogale,E,Downing,KH.Cold adaptation of microtubule assembly and dynamics. Structural interpretation of primarysequencechangespresentintheαandβtubulinofAntarcticfishes.J BiolChem2000;275:3703837047

[80] KnightH,TrehavasAJ,KnightMR.Coldcalciumsignalingin Arabidopsis involvestwocellularpoolsandachangeincalciumsignatureafteracclimation. PlantCell1996;8:489503

[81] OrvarBL,SangwanV,OmannF,DhindsaRS.Earlystepsincoldsensing by plant cells: the role of actin cytoskeleton and membrane fluidity. Plant J 2000;23:78794.

[82] Timofeeva OA, Khokhlova LP, Chulkova YY, Grareva LD. Microtubules regulateactivityofcellwalllectinsincellsofTriticum aestivum L.plantsduring coldhardening.CellBiolInt’l2003;27:281282.

[83] Liang P, MacRae TH. Molecular chaperones and the cytoskeleton. J Cell Science1997;110:14311440.

[84] BarrosoC,ChanJ,AllanV,DoonanJ,HusseyP,LloydC.Twokinesin related proteins associated with the coldstable cytoskeleton of carrot cells: characterizationofanovelkinesin,DcKRP1202.PlantJ2000;24:859868.

[85] Bluhm WF, Martin JL, Mestril R, Dillmann WH. Specific heat shock proteins protect microtubules during simulated ischemia in cardiac myocytes. AmerJPhysiol1998;275:H2243H2249.

[86] Nyporko AY, Demchuk ON, Blume YA. Cold adaptation of plant microtubules: structural interpretation of primary sequence changes in a highly conservedregionofαtubulin.CellBiolInt’l2003;27:241243.

30 [87] LeichtBG,BeissmannH,PalterKB,BonnerJJ.Smallheatshockproteins of Drosophila associate with the cytoskeleton. Proc Natl Acad Sci USA 1986;83:9094.

[88] Goto SG, Expression of Drosophila homologue of senescence marker protein30duringcoldacclimation.JInsectPhysiol1998;46:11111120.

[89] Goto SG. A novel gene that is upregulated during recovery from cold shockin Drosophila melanogaster .Gene2001;270:259264.

[90] SinghAK,LakhotiaSC.Lackofeffectsofmicrotubulepoisonsonthe93D andthe93DlikeheatshockpuffsinDrosophila .IndianJExpBiol1984;20:569 576.

[91] Katoh H, Niimi T, Yamashita O, Yaginuma T. Enhanced expression of Bombyx sevenup,aninsecthomologofchickenovalbuminupstreampromoter transcription factor, in diapause eggs exposed to 5oC. J Insect Biotech Sericol 2002;71:1724.

[92] Moribe Y, Niimi T, Yamashita O, Yaginuma T. Samui , a novel cold induciblegene,encodingaproteinwithaBAGdomainsimilartosilencerofdeath domains (SODD/BAG4), isolated from Bombyx diapause eggs. Eur J Biochem 2001;268:34323442.

[93] Moribe Y, Shirota T, Kamba M, Niimi T, Yamashita O, Yaginuma T. Differential expression of the two coldinducible genes, Samui and sorbitol dehydrogenase, in Bombyx diapause eggs exposed to low temperature. J Insect BiotechSericol2002;71:167171.

[94] Cymborowski, B. Expression of Cfoslike protein in the brain and prothoracic glands of Galleria mellonella larvae during chilling stress. J Insect Physiol1996;42:367371.

[95] Kim Y, Kim N. Cold hardiness in Spodoptera exigua (Lepidoptera: Noctuidae).EnvironEnt1997;26:11171123.

[96] FujitaJ.Coldshockresponseinmammaliancells.JMolMicrobiolBiotech 1999;1:243255.

[97] SekiM,NarusakaM,IshidaJ,etal.Monitoringtheexpressionprofilesof 7000 Arabidopsis genesunderdrought,coldandhighsalinitystressesusingafull lengthcDNAmicroarray.PlantJ2002;31:279292.

[98] RabbaniMA,MaruyamaK,HiroshiA,etal.Monitoringexpressionprofiles of rice genes under cold, drought, and highsalinity stresses and abscisic acid application using cDNA microarray and RNA gelblot analyses. Plant Physiol 2003;133:17551767. 31 [99]OdaniO,KomatsuY,OkaS,IwahashiH.Screeningofgenesthatrespondto cryopreservation stress using yeast DNA microarray. Cryobiology 2003;47:155 164.

[100] Ju A, Dunham RA, Liu Z. Differential gene expression in the brain of channelcatfish( Ictalurus punctatus )inresponsetocoldacclimation.MGGMol GenGenomics2002;268:8795.

32

CHAPTER2 Oleicacidiselevatedincellmembranesduringrapidcoldhardeningandpupal diapauseinthefleshfly, Sarcophaga crassipalpis . M.RobertMichaud*andD.L.Denlinger DepartmentofEntomology,OhioStateUniversity,318West12 th Avenue, Columbus,OH432101242,USA. *correspondingauthor Emailaddress: [email protected] Telephone:6142924477 Fax:6142922180

33

Abstract Theintegrityofcellularmembranesiscriticaltothesurvivalofinsectsatlow temperatures,thusanadvantageisconferredtoinsectsthatcanadjusttheir compositionofmembranefattyacids(FAs).Suchchangescontributeto homeoviscousadaption,aprocessthatallowscellularmembranestomaintaina liquidcrystallinestateattemperaturesthatarepotentiallylowenoughtocausethe membranetoenterthegelstateandtherebyloseitsabilitytomaintain homeostasis.Fleshflies( Sarcophaga crassipalpis )weresubjectedtotwo experimentalconditionsthatelicitlowtemperaturetolerance:rapidcold hardeninganddiapause.FAswereisolatedandanalyzedusinggas chromatographymassspectrometry.FAschangedinresponsetobothrapidcold hardeninganddiapause.Inresponsetorapidcoldhardening(8hat4 oC),the proportionofoleicacid(18:1n9)inpharateadultsincreasedfrom30%to47%of thetotalfattyacidpool.Theproportionofalmosteveryotherfattyacidwas reduced.Byenteringdiapause,pupaeexperiencedanevengreaterincreasein oleicacidproportion,to58%ofthetotalFApool.Oleicacidnotonlypromotes membranefluidityatlowtemperaturebutalsoallowsthecellmembraneto maintainaliquidcrystallinestateiftemperaturesincrease.

Keywords: Homeoviscous adaptation; Phospholipid; Fatty acid;

34 2.1. Introduction Preventingcellulardamageduetolowtemperatures(coldshock)isamajor challengeforinsects.Ifthecoldshockisofsufficientintensity,proteinsdenature andthecellularmembraneceasesfunctioning,leadingtolossofhomeostasis.For pharateadultsofthefleshfly, Sarcophaga crassipalpis ,coldshockdamageis achievedwithinanhourofexposureto10 oCandisevidencedbyafailurein adulteclosionasaconsequenceofreducedmuscularcoordinationandcontraction

(Yocumetal.1994).Eveniftheadultemergesafteracoldshock,theremaybea significantlossinfecundityaswellasapossiblebreakdownofmuscular coordinationandcontrol(Rinehartetal.2000).

S. crassipalpis possessestwoknownmechanismsbywhichcoldshockcan bepreventedorattenuated:byenteringintoacoldhardypupaldiapauseandby rapidcoldhardening(RCH),aquickresponsethatcanoccuratanystageofthe lifecycle.Diapausefor S. crassipalpis isaphotoperiodinduceddevelopmental arrestthatfeaturesphysiologicalchangesthatcontributetolowtemperature survivalsuchaslongtermupregulationofheatshockproteins(Haywardetal.

2005)andglycerol(Leeetal.1987a).Theheatshockproteinsfunctionin preventingorrepairingproteindenaturation,andtheglycerolservestolowerthe organism’ssupercoolingpointandprovideforthestabilizationofmembranesand proteins(Chenetal.1987b,TsvetkovaandQuinn1994,TangandPikal2005).

Thetotaleffectofallthesephysiologicalchangesallowsdiapausingfleshfliesto achievecoldhardinessthatincreaseslowtemperaturesurvivalfarbeyondthe capacityoftheirnondiapausingcounterparts(Chenetal.1987a). 35 RCHisacoldhardeningmechanismthatfleshfliesandotherinsectspossess throughouttheirlifespan,althoughthedegreeofprotectionimpartedbyRCH varieswithlifestage(Chenetal.1987b).RCHforthefleshflyisinducedat ambienttemperaturesbetween0 oCand10 oCatthecellularlevel(YiandLee

2004)andcanincreasethesurvivalofpharateadultsfromlessthan60minutesto over120minutesfollowingexposureto10 oC(Chenetal.1987b).Thetimeof inductionisshort,rangingfromamildincreaseinsurvivalafter20minutesof

RCHinductiontoanachievementofmaximumbenefitat24hours(Chenand

Denlinger1992).Physiologically,thewholebodyglycerolcontentof S. crassipalpis increasesthreefoldduringRCH,ostensiblyprotectingtheinsectin thesamemannerasdiapauseinducedglycerolupregulation(Chenetal.1987b).

However,theupregulationofglycerolprobablydoesnotfullyexplainthe protectionimpartedbyRCHbecausethefinalglycerolconcentrationafter inductionremainsfarbelowthatshowntoprotectproteinsandmembranes in vitro ,andsomeotherinsectsthatpossessRCHabilitydonothaveanydetectable upregulationofpolyols(KeltyandLee2001).

Astemperaturesdecrease,cellularmembraneswithastaticcompositiontend toincreaserigidityuntilregionsofthemembranetransitionfromaliquidcrystal togelstateandthemembranelosesitsabilitytofunctionasabarrier(Cossins

1983).Tocounterthiseffect,themembranemaychangeincompositionto maintaintheliquidcrystallinestateatlowertemperatures,aprocessknownas homeoviscousadaptation(Sinensky1974).Thebestevidenceforhomeoviscous adaptionisdetermineddirectlybythemeasurementofmembraneviscosityat 36 fluctuatingtemperatures,butitcanalsobeinferredbymembranecompositional changes(Hazel1995).Thesechangesoccuratlowtemperaturesbyanincreasein pointsofunsaturationalongphospholipidfattyacidchains,butcanalsobe broughtaboutbychangesinothermembranecompositioncharacteristicssuchas increasedcholesterolcontentorachangeinphospholipidclassdistribution

(Thompson1983,Hazel1995).

TheprotectionfromlowtemperaturethatdiapauseandRCHimpartstothe insectmaybepositivelyinfluencedbychangesinmembranecomposition.

Diapauseinducedalterationinmembranephospholipidshasbeendemonstrated forseveralinsectspeciesinwhichthediapauseprogramalsofeaturescold hardiness(Furusawaetal.1994,Hodkovaetal.1999,Kostaletal.2003,Bashan andCakmak2005).Acorrelationbetweenlackofmembranechangesandcold susceptibilitywasdemonstratedbyKostalandSimek(1998)intheirstudyofa summerdiapausingarctiidmothwhichdidnotdisplaywidespreaddiapause inducedfattyacidchanges.Membranecompositionalchangeisyettobestudied inaninsectwithacoldhardypupaldiapause,suchas S. crassipalpis ,although

Sarcophaga bullata ,acloselyrelatedspecies,hasbeendemonstratedtoincrease cellmembranefluidityinresponsetorapidcoldhardening(Leeetal.,2006).The onlyinsecttobeinvestigatedformembranecompositionalchangeinresponseto

RCHis Drosophila melanogaster (Overgaardetal.2005).Whentheflieswere chilled,survivalafterasubsequentcoldshockwasgreatlyincreased,andthefatty acidsunderwentasignificantbutmodestchange.Inthepresentstudywe investigatetheroleofphospholipidcompositionalchangesin S. crassipalpis 37 duringRCHofpharateadultsanddiapausebychromatographicanalysisoffatty acidconstituentsofphospholipidsandbythinlayerchromatographyof phospholipidclasses.

2.2. Materials and Methods 2.2.1. Insect rearing Thecolonyof Sarcophaga crassipalpis wasmaintainedinthelaboratoryas described(Denlinger1972).Fliesusedforrapidcoldhardeningstudieswerekept innondiapausingconditions(15L:9Dphotoperiod,25 oC)andallowedtodevelop intoredeyestagepharateadultsbeforetheexperimentaltreatment.Parentsof diapausingflieswerekeptataphotoperiodof12L:12Dandatemperatureof25 oC untillarviposition,andtheiroffspringwererearedat20 oCunderthesame photoperiod.Experimentsusedpupaethathadbeenindiapausefor30days.

Nondiapausingpupaeusedascontrolsforthediapauseexperimentswere maintainedunderlongdayconditions(15L:9D)at20oCandallowedtodevelopto thephanerocephalicstage,thedevelopmentalstagecomparabletodiapause.

2.2.2. Rapid cold-hardening

Approximately120femalepharateadultflieswereplacedinanopenpetri dishina4 oCwalkincoldroomandfivefemaleflies(each~100mg)were removedfromthepetridishafter0,1,2,4,and8hrsandhomogenized individuallyforlipidextraction.Thepupariumwasnotincludedinthelipid extraction.

38 2.2.3. Diapause

Groupsoffivepupaethathadbeenindiapausefor30dayswere homogenizedforlipidextractionatroomtemperature(~22 oC).Groupsoffive nondiapausingfliesinthephanerocephalicstageofdevelopmentwereextracted inthesamemanner.Toinvestigatetheresponseofdiapausingfliestofurther chilling,agroupoffivefliesthathadbeenindiapausefor30dayswereplacedat

4oCandsampled8hrslater.

2.2.4 Fatty acid methyl esters WholebodylipidswereextractedintwophasesbyamodifiedBlighand

Dyer(1959)procedure.Toimproveyieldandencourageefficientphase separationinasmallvolume(approximately5ml),avacuumfiltrationstepwas addedimmediatelyaftertwophaseswereformed,andtheemulsionwasallowed tositfor15minbeforethebottom,organiclayerwasremoved.Thechloroform extractcontainingthetotallipidsamplewasevaporatedtodrynessbyagentle streamofnitrogengas.Thedrysamplewasresuspendedinchloroformand subjectedtosolidphaseextraction(800mgsilicicacidinthecolumn)with10ml chloroformfollowedby15mlof9:1acetone:methanol.Theseeluateswere discarded.Finally,thephospholipidswereelutedwith10mlofmethanolandthe eluatewasevaporatedtodrynessundernitrogen.Toremovethefattyacidsfrom theirphospholipidbackboneandimprovetheirchromatographicbehavior,the phospholipidsweretransesterifiedinmethanolicKOH.A0.5ml1:1 methanol:tolueneresuspensionofthetotalsampleofphospholipidswasaddedtoa cappedtesttubecontaining0.5ml0.2NKOHinmethanolandheatedto40 oCina 39 waterbathfor30min.Thesolutionwascooledtoroomtemperaturefor30 minutesandneutralizedwith0.5ml0.2NaceticacidinmoleculargradeH 2O.

Thistransesterificationprocesswasdeterminedtoproducefattyacidmethylesters fromphospholipidsasdeterminedbyGC/MS(datanotshown).Thevolumeofthe solutionwasincreasedwithanadditional2mlofchloroformand2mlofH 2O, andtheorganiclayerwassubsequentlyremovedandevaporatedtodrynessunder anitrogenstream.Thesamplewasthendissolvedin200lofhexanecontaininga

1ng/lheptadecanoicacidmethylester(17:0,notfoundin S. crassipalpis ,as determinedbypreliminaryresults)internalstandard.Thesamplewasplacedinan autosamplervial,cappedunderanitrogenstream,andstoredat20 oCuntilGC

MSanalysis.

2.2.5 Gas chromatography – mass spectrometry Hexanesamplescontainingfattyacidmethylesterswereloadedintoa

FinniganTraceGC/MSand1lofeachsamplewassubjectedtochromatographic analysis.Theoventemperaturerampedfrom70to300 oCandthetemperature incrementwas8 oC/min,whichproducedachromatographofsufficientresolution toseparatethepeaksofallfattyacidsobserved.ThecolumnwasaRestek30m fusedsilicacolumn(I.D.25mm,95%dimethylsiloxane,5%diphenyl)with heliumgasusedasacarrieratarateof50ml/min.Aftereachsamplewasrun,the ovenremainedat300 oCfor7minutestocleanimpuritiesfromthecolumn.

40 2.2.6 Thin-layer chromatography Todeterminewhethertherewerechangesinphospholipidclass,non transesterifiedreplicatesofallsamplesincludedinthediapauseGCexperiment werealsoanalyzedbythinlayerchromatography.Phospholipidswererunona boricacidimpregnatedTLCplatefor2hourswith30:35:7:35 chloroform:ethanol:water:triethylamineasdescribedbyLeRayetal.(1987)and visualizedunderUVlightwith1%primuline.Spotareaswerecarefully calculatedandconvertedintoapercentageoftotalspotsizepersample.As determinedbyR fcomparisonwithstandards,onlyphosphatidylcholines(PC)and phosphatidylethanolamines(PE)wereresolvedabovetracelevelsinsamplesof individualfleshflies,thereforeonlythesetwosignalpercentagesarereported.

2.2.7 Data analysis and statistics IdentificationofeachfattyacidbyGCMSwasattainedbycomparingthe spectrumofeachpeakwithmultiplechemicallibraries(Xcalibursoftware,

Thermo).FattyacidpeaksidentifiedwithanSIvaluegreaterthan800were consideredidentifiedwithareasonabledegreeofconfidenceandassigneda designationofX:YnZwhereXrepresentsthetotalnumberofcarbonsinthefatty acidchain,Yrepresentsthenumberofdoublebonds,andZrepresentsthefatty acidserieswhere(nZ)isthenameofthefattyacidseries.Inaddition,methyl branchedfattyacidsweregiventheadditionaldesignationof(m).Thepeakareas wereconvertedtopercentagesoftotalcontentoffattyacidswithinthesame chromatogram(relativeproportions)foreachfattyaciddetectedandthearcsin transformationsofthesevalueswereanalyzedbyaonewayANOVAfollowedby 41 aTukeyKramermeancomparisontest(Graphpad,Inc.)witha95%confidence interval.Quantificationwasachievedthroughtheuseofexternalaswellas internalfattyacidstandards.Theindexofunsaturationwascalculatedasaratio ofthetotalproportionofunsaturatedfattyacidsoverthetotalproportionofall saturatedfattyacids.Meansforeachfattyacidseries(n3,n6,etc.)arethesums ofallunsaturatedfattyacidsthatbelongtothegivenseries.Forthinlayer chromatography,arcsintransformationsofthemeanpercentagesofPCandPE signalpersampleweresubjectedtoaonewayANOVAwithaTukeyKramer posttest.

2.3. Results 2.3.1 Fatty acid composition Allchromatographsofphospholipidfattyacidsfrom S. crassipalpis were dominatedbypalmiticacid(16:0)andthethreeunsaturates,palmitoleicacid

(16:1n7),oleic(18:1n9),andlinoleicacid(18:2n6).Together,thesefourfatty acidsrepresented>80%ofthetotalphospholipidfattyacidsinnondiapausing fliesraisedat25 oC.Peaksthatwereoflesserabundance,butabovetracelevel(2

5%)includearachidonicacid(20:4n6),stearicacid(18:0),andeicosapentaenoic acid(20:5n3).Fattyacidsfoundintraceamountsacrossnearlyallsampleswere

14:0,14:0(m,methylbranched),15:0,16:0(m),16:1n9,18:3n3,18:3n6,20:0,

20:2n6,and20:3n9.

42 2.3.2 Rapid cold-hardening Whenredeyepharateadultsof S. crassipalpis wereexposedtotheRCH inducingconditionof4 oCfor08hours,oleicacid(18:1n9)levelsinthe phospholipidpoolincreasedmoderatelybytwohoursandrosedramaticallyfrom

48hrs(Fig.1).After8hoursat4 oC,thetotalproportionofoleicacidchanged from30%to47%,ahighlysignificantincrease(Tukey’sttest,n=5,p<0.0001).

Themostsubstantialdecreaseoccurredintheproportionofpalmitoleic(16:1n7) acid,whichdroppedfrom13%to4%after8hoursofexposuretoRCHinducing conditions,especiallyafterthe2hourtimepoint(Fig.1).Palmiticacid(16:0)and linoleicacid(18:2n6)proportionsshowednosignificantchange.Allother detectablefattyacidswerereducedorwerefoundinlevelstooclosetotheGC

MSdetectionlimitsforconfidentanalysis(Fig.1BD).

Overall,thelargeincreaseinoleicacidlevelsduetoRCHshiftedtheentire phospholipidfattyacidpooltofavorthen9(TukeyKramerttest,n=5,p<0.0001) seriesattheexpenseofthen7andn6series(Fig.2A).Oleicacid,whichhasits singledoublebondinthemiddleofthelengthofthefattyacylchain,isthe primaryconstituentofthen9seriesin S. crassipalpis .Theindexofunsaturation wasnotaffectedbyexposureto4 oCfor8h(Fig.2B),althoughaslightdecrease wasevidentafter4h(TukeyKramer,n=5,p<0.05).

2.3.3 Diapause Theinductionofpupaldiapausecausedoleicacid(18:1n9)proportions withinthephospholipidfattyacidpooltosignificantlyincreasefrom43%innon diapausingpupaeto58%indiapausingpupae(TukeyKramerttest,n=5, 43 p<0.0001)(Fig.3A).Palmiticacid(16:0)andlinoleicacid(18:2n6)proportions werebothreducedindiapause(TukeyKramerttest,n=5,p<0.01).The proportionofpalmitoleicacid(16:1n7)wasnotsignificantlychanged.Three fattyacids(18:3n6,20:4n6,and20:5n3)wereeasilydetectableabovetrace levelsinnondiapauseflies,buttheirproportionsweresubstantiallyreducedin diapause(Fig.3B).Otherlowabundancefattyacids(<1%)hadsignificant changes,butthesepeaksaretooclosetobackgroundlevels(<5Xavg.noise)to drawconclusionswithconfidence.

Likerapidcoldhardening,diapauseincreasedtheproportionofn9(Tukey

Kramerttest,n=5,p<0.01)fattyacidsinthewholebodyphospholipidpoolatthe expenseofn6andn7fattyacids(TukeyKramerttest,n=5,p<0.05)(Fig.4).

Phospholipidfattyacidchangeduetodiapauseadditionallyreducedthen3pool offattyacids,butthiswasnotthecaseforRCH.Theratioofunsaturatedfatty acidstosaturatedfattyacidsinthewholebodyphospholipidpoolof S. crassipalpis wasconsiderablyincreasedfrom1.8to2.7duetodiapause(Tukey

Kramerttest,n=5,p<0.01)(Fig5).

Chillingdiapausingpupaeat4 oCfor8hrsdidnotincreasethelevelsofoleic acidoverthatseenfordiapausealone.Infact,theamountofoleicacidrecorded waslower,butthisdifferencewasnotsignificant.Theonlynotablechangein majorfattyacidsseeninresponsetochillingdiapausingpupaewasarisein palmitoleicacidproportions(16:1n7),howeverproportionsofpalmitoleicacidin chilled,diapausingpupaewerenotsignificantlydifferentfromlevelsobservedin nondiapausingpupae. 44 2.3.4 Shift in phospholipid head groups ThedataindicatedanincreaseintheproportionofPEattheexpenseofPC proportionforbothdiapauseandchillingat4 oCfor8hrs(RCH).Thiswasmost evidentwhenthePEproportionsofnondiapausing S. crassipalpis pharateadults

(44%)werecomparedwithdiapausingpupaethathadbeenchilledat4 oCfor8hrs

(TukeyKramer,n=5,p<0.05)(Fig.6).DiapauseincreasedtheproportionofPE

(65%)toahigherlevelthanthatobservedforRCH(TukeyKramer,n=5,p<0.05).

Chillingadiapausingat4oCfor8hoursneitherelicitedasignificantincrease inPEbeyondthatseenfordiapause(69%),nordiditresultinachangeinthe indexofunsaturation.

2.4. Discussion

2.4.1 Fatty acid composition of cell membranes in Sarcophaga crassipalpis Thefattyacidcomponentsofphospholipidsinthecellmembranesof S. crassipalpis weresimilartothoseinotherDiptera,buttheproportionof palmitoleicacid(16:1n7)wasslightlylower(Downer1985).Ontheotherhand, palmiticacid(16:0)proportionswerehigherthanreportedforotherDiptera.The

20carbonfattyacids,particularlyarachidonicacid(20:4n6)werefoundin amountsthataremarkedlygreaterthanthetracelevelsseeninmostterrestrial insects(OggandStanleySamuelson1992),possiblyaconsequenceofthisfly’s lipidrichdietofbeefliver.Nonetheless,20carbonfattyacidsdidnotexceed

13%ofthephospholipidfattyacidpool.

45 2.4.2 Rapid cold-hardening

Ourexperimentsprovidestrongevidenceforrestructuringofcell membranesduringRCHinthefleshfly.Fattyacidchangesweredetectable within2hrsofexposureto4 oCforsomefattyacidspeciesandwerestatistically significantforpracticallyalldetectablefattyacidsafter8hrs.Within8hoursat

4oC,oleicaciddramaticallyincreasedfrom30%to47%ofthetotalphospholipid fattyacidpool,anditdidsoattheexpenseofpracticallyallotherfattyacids,with thenotableexceptionof16:0,whichremainedatthesameproportion.Thisisa changeinmagnitudeoneorderhigherthanthelinoleicacid(18:2n6)increase notedduringRCHin Drosophila melanogaster (Overgaardetal.2005),theonly otherstudyoffattyacidchangesduringRCH. S. crassipalpis isconsiderably morecoldhardythan D. melanogaster ,whichmayaccountforthegreater responsenotedinthefleshfly.NeitherofthesetwoinvestigationsofRCHin fliesproducedasignificantincreaseintheratioofunsaturatedfattyacidsto saturatedfattyacids.Afewotherstudiesofinsectmembranecompositional changealsoreportaresponsewithoutanincreaseintheunsaturatedtosaturated fattyacidratio(Ohtsuetal.1998,Hodkovaetal.1999).Themainreasonthat

RCHfailstoincreasetheunsaturatedtosaturatedfattyacidratioin S. crassipalpis isduetotheconcomitant(albeitslight)riseinpalmiticacid(16:0)levels.It shouldbenotedthatthe17%oleicacidincreaseobservedinthisstudywould causetheproportionsofotherfattyacidstobereducedmarkedlyasanartifactof

46 theuseofproportionaldata.Theslightupregulationofasinglefattyacidspecies againstsuchadrasticchangecouldbemaskedorappearasnochangeatallwhile therestofthefattyacidspeciesappeartobereduced.

InadditiontotheboostinoleicacidwenotedinassociationwithRCH,we alsoobservedarestructuringofmembranephospholipidheadgroupstofavorPE overPC.Thisfindingisconsistentwithobservationsthathavebeenmadein manyorganismsthathavebeeninvestigatedforhomeoviscousadaptation(Hazel

1995,Hodkova1999,McCoy2003).TheheadgrouprestructuringthatfavorsPE servesasan“emergencyresponse”thatreducestorsionalstressontheouter hemilayerofthemembraneastemperaturesdrop(Thompson1983).Theinverted wedgeshapeofPEmakesthispossiblebylimitingmembranephasetransitionsby curtailinglateralpackingofthephospholipidmoleculesastemperaturesdrop

(Weislander1980).

GlycerolupregulationisalsoafeatureofRCHinS. crassipalpis andfollows thesamechronologicalscaleasfattyacidchangesseenhere(Leeetal.1987b).

Glycerolmaybeactinginconcertwithchangesinphospholipidcompositionto ensuremembranestabilityatlowertemperatures.Thedirectmembranechanges

(fattyacids,phospholipidclass,etc.)helptomaintainproperbarrierchemical characteristicswhiletheglycerolservestostabilizemembraneproteinsand preventiceformationbycompetingwithwaterforhydrogenbondingwiththe membrane(Jensen2001).Thisisinadditiontootherprotectiveeffectsofglycerol thatarenotassociatedwithcellmembranes.

47 2.4.3 Diapause

UnliketheRCHresponsethatisobservedinnondiapausingindividuals, diapauseisaseasonalarrestindevelopmentprogrammedwellinadvanceofthe onsetofdiapause.

S. crassipalpis overwintersinacoldhardypupaldiapausebroughtaboutbyshort dayphotoperiodicsignalingearlyinembryonicandlarvaldevelopment

(Denlinger1971).Coldhardinessisacomponentofthediapauseprograminthis species,anddiapausingpupaereadilysurvivetemperaturesaslowas17 oCfor manyweeks(LeeandDenlinger1985),whereasnondiapausingpupaecanonly survive12hrsat10 oC(Leeetal.1987a).Theincreasedcoldtoleranceduring diapausein S. crassipalpis hasbeenpreviouslycorrelatedwiththeexpressionof heatshockproteins(Flannaganetal.1998)andglycerolproduction(Leeetal.

1987b).Eventhoughglycerolcanstabilizecellmembranes(TsvetkovaandQuinn

1994),thelevelofprotectionconferredto S. crassipalpis fromupregulationof glycerolto<0.1Mhasnotbeendemonstratedtoprotectmembranesdirectly.

Fromthepresentinvestigation,itisclearthatmembranephospholipidchangesare animportantcomponentofthediapauseprogramin S. crassipalpis andmayactin concertwithheatshockproteinandglycerolupregulationtoconfercoldhardiness.

Phospholipidalterationshavebeenassociatedwithdiapauseinanumberofother insectsaswell(KostalandSimek1998,Hodkovaetal.1999,Kostaletal.2003,

BashanandCakmak2005,TangandPikal2005),butthisisthefirstreportforan

48 insectwithacoldhardy,pupaldiapause.Inthisstudywealsodemonstrateclearly thatthechangeinmembranefattyacidsisacomponentofthediapauseprogram ratherthantheeffectoflowtemperatures.

AsobservedforRCH,oleicacidistheprimaryfattyacidupregulatedduring diapausein S. crassipalpis ,andtheorderofthechangeisroughlythesameas notedforRCH(1020%increase).However,diapauseinducedphospholipid alterationsinthefleshflydifferfromRCHinthatpalmiticacid(16:0)is downregulatedwhilepalmitoleicacid(16:1n7)levelsremainunchanged(16:0 wasunchangedinRCH,while16:1n7wasdownregulated).Theeffectofthis differenceisenoughtoincreasetheunsaturatedtosaturatedfattyacidratioof diapausingfliesfrom1.8toasignificant2.8.Ourpreliminaryanalysisof phospholipidheadgroupdistributionshowsthatPEwasfavoredoverPCin amountsthatweresignificantlygreaterthantheproportionalchangemeasuredin

S. crassipalpis during RCH.Diapausingpupaeofthefleshflyarefarmorecold hardythannondiapausingfliesthathavebeenrapidcoldhardened,thusitis perhapsnotsurprisingthatphospholipidchangewasmorepronouncedduring diapause.

Chillingdiapausingpupaefor8hoursat4 oChadverylittleoveralleffectonthe fattyacidproportionsofphospholipidsbeyondthatalreadyobservedfordiapause, however,therewasanevengreatershifttopalmitoleicacid,butthistimethe changeoccuredattheexpenseofoleicacid.Shorterchainfattyacidsarethought tocontributemoretomembranefluiditythanlongerchainfattyacids,thusthis

49 subtleshiftcouldbefurtherenhancingtheabilityofthemembranetohandlelow temperature(Thompson1983).Chillingdiapausingpupaefor8hat4 oCdidnot significantlyaltertheproportionsofPEandPC.

2.4.4 Oleic acid vs. linoleic acid TheprimaryfattyacidthatincreasedduringRCHanddiapausein S. crassipalpis wasoleicacid(18:1n9),amonoeneofthen9series.Thereare severalpossiblereasonswhyitmaybebeneficialtoupregulatethisparticularfatty acidinresponsetoorinpreparationforlowtemperatures.Thedoublebondinthe acylchainofoleicacidislocatedinthecenterofthechain,whichisthoughttobe thebestlocationforasingledoublebondtomaximizelateraldisplacementofthe endofthechainandcontributetooverallmembranedisorder,i.e.fluidity(Barton andGunstone1975).Theprimarymonoeneupregulatedin Drosphila cold selectionexperimentswaspalmitoleicacid(16:1n7),which,likeoleicacid,has itssingledoublebondinthecenteroftheacylchain(Overgaardetal.2005).In thisstudy,diapausingpupaeof S. crassipalpis didnotchangetheproportionof palmitoleicacid,buttheremainingfattyacidswerereducedinanenvironmentof massiveoleicacidincrease.Theeffectofincreasedoleicacidwouldbe maximizedifthefattyacidweretobelocatedatthesn2positionoftheglycerol backboneofthemolecule.Thefattyacidatthesn2positionhasagreatereffect onmembranefluiditythanafattyacidlocatedatthesn1positionbecausethe fattyacidatthesn2positionisthrustdeeperintothehydrophobicportionofthe membranebyvirtueoftheangleoftheglycerolmoleculeinrelationtotheplane ofthemembrane.Indeed,Kostaletal.(2003)foundthatthesn2positionofcold 50 changedphospholipidsinthedrosphilid, Chymomyza costata ,hadanunsaturated

18carbonfattyacidinthesn2positionandanunsaturatedmoleculeatthesn1 position.Thepresentstudydoesnotaddressfattyacidlocation,butsuch informationwouldbeusefulforfurtherstudyoftheroleoflowtemperature membranerestructuringininsects.

Manystudiesthatexaminechangesinphospholipidsduetocoldacclimation ordiapauseininsectsreportthatlinoleicacid(18:2n6)isthefattyacidthatis increasedforwinterclimates(Hodkovaetal.1999,KostalandSimek2003,

Overgaardetal.2005).Only14of40insectsinvestigatedpossess 12 desaturase, theenzymeneededforaddingadoublebondtooleicacidtomanufacturelinoleic acid(Crippsetal.1986).Insectsthatdonothavea 12 desaturasegeneorcannot regulateitsexpressionmayutilizethe 9desaturaseinsteadtoinitiatemembrane fattyacidchanges.Bothdesaturaseshavebeenshowntobetranscribedand activatedatlowtemperatures(WodtkeandCossins1991,Macartneyetal.1994,

Batcabeetal.2000,HseihandKuo2005).Ameasurementoftheexpressionand activitylevelsofthesedesaturasegenesmayprovideaclearreasonwhylow temperaturephospholipidchangesincertaininsectsfavorsonefattyacidover another.

Oleicacidandlinoleicacidsharemanybiologicalproperties,includingthe abilitytoprovideawidetemperaturewindowforgrowth,asdemonstratedfor bacteria(McElhaney1974).Oleicacidprovidesthebestenvironmentforcritical membraneproteinssuchasmembraneATPases.Thisenzymefunctionsat optimumlevelswhenoleicacidispresentinthecellmembrane(Starlingetal. 51 1993),thusanincreaseinoleicacidinresponsetoorinpreparationoflow temperaturemayprovideproperfluidityofthemembranewithoutsacrificingthe delicatebalanceneededtokeepsensitivemembraneproteinsfrommaintaining optimumfunction. Eurosta solidaginis upregulatesoleicacidwhenitacquires freezingtolerance(Bennettetal.1997),andtwodiapausinghemipteranswerealso foundtoincreaseoleicacidlevelsduringdiapause(BashanandCakmak2005).

Oleicacidisenergeticallymorefavorabletomanufacturethanlinoleicacid

(onelessdoublebond),thusinsectsthatupregulateoleicacidratherthanlinoleic acidinpreparationforlowtemperaturesmaybepreservingfiniteenergyreserves whilestillgainingthebenefitofawidewindowoffluidity.Foratemperateinsect enteringdiapause,suchas S. crassipalpis ,oleicacidmaybeimportantfor unexpectedwarmtemperaturesduringthewinterbecausetheinsectdoesnotneed tocontinuouslyreadjustitsmembranefattyacidstomaintainfluidity.

Acknowledgements

ThisworkwassupportedinpartbyNSFGrant10B0416720andby

OARDCandOSUPresidentialFellowshipstoM.R.M.SpecialthankstoRichard

SesslerintheOhioStateChemicalInstrumentsCenterforadviceandguidance withtheanalysisoffattyacidsamples.AdditionalthankstoAmeliaBrownand

JonathanHoforlaboratoryassistanceandtothereviewersofthisarticlefortheir thoughtfulcommentsandsuggestions.

52 REFERENCES

Barton,P.G.,Gunstone,F.D.,1975.Hydrocarbonchainpackingandmolecular motioninphospholipidbilayersformedfromunsaturatedlecithins.Synthesisand propertiesofsixteenpositionalisomersof1,2dioctadecenoylsnglycero3 phosphorylcholine.JournalofBiologicalChemistry250,44704476.

Bashan,M.,Cakmak,O.,2005.Changesincompositionofphospholipidand tracylglycerolfattyacidspreparedfromprediapausinganddiapausingindividuals of Dolycoris baccarum and Pezodorus lituatus (Heteroptera:Pentatomidae). AnnalsoftheEntomologicalSocietyofAmerica95,575579. Batcabe,J.P.,Howell,J.D.,Blomquist,G.J.,Borgeson,C.E.,2000.Effectsof developmentalage,ambienttemperature,anddietaryalterationson 12 desaturase activityinthehousecricket, Acheta domesticus .ArchivesofInsectBiochemistry andPhysiology44,112119. Bennett,V.A.,Pruitt,N.L.,Lee,R.E,Jr.,1997.Seasonalchangesinfattyacid compositionassociatedwithcoldhardeninginthirdlarvaeof Eurosta solidaginis .JournalofComparativePhysiologyB167,249255. Bligh,E.G.,Dyer,W.J.,1959.Arapidmethodfortotallipidextractionand purification.CanadianJournalofBiochemistryandPhysiology37:911917. Chen,C.P.,Denlinger,D.L.,Lee,R.E.,Jr.,1987a.Responsesofnondiapausing fleshflies(Diptera:Sarcophagidae)tolowrearingtemperatures:developmental rate,coldtolerance,andglycerolconcentrations.AnnalsoftheEntomological SocietyofAmerica80,790796. Chen,C.P.,Denlinger,D.L.,andLee,R.E.,Jr.,1987b.Coldshockinjuryand rapidcoldhardeninginthefleshfly Sarcophaga crassipalpis .Physiological Zoology60,297304. Chen,C.P.,Denlinger,D.L.,1992.Reductionofcoldshockinjuryinfliesusing andintermittentpulseofhightemperature.Cryobiology29,138143. Cossins,A.R.,1983.Theadaptationofmembranestructureandfunctionto changesintemperature.In:Cossins,A.R.,Sheterline,P.(eds)Cellular acclimitisationtoenvironmentalchange.CambridgeUniversityPress, Cambridge,pps.331. Cripps,C.,Blomquist,G.,deRenobales,M.,1986.Denovoof linoleicacidininsects.BiochimicaetBiophysicaActa876,572–580. 53 Denlinger,D.L.,1971.Embryonicdeterminationofpupaldiapauseintheflesh fly, Sarcophaga crassipalpis .JournalofInsectPhysiology17,18151822. Downer,R.G.H.,1985.Lipidmetabolism.In:Kerkut,G.A.,Gilbert,L.I.(eds) Comprehensiveinsectphysiology,biochemistry,andpharmacology.Pergamon Press,Oxford,pp77113. Flannagan,R.D.,Tammariello,S.P.,Joplin,K.H.,CikraIreland,R.A.,Yocum, G.D.,Denlinger,D.L.,1998.Diapausespecificgeneexpressioninpupaeofthe fleshfly Sarcophaga crassipalpis .ProceedingsoftheNationalAcademyof SciencesU.S.A.95,56165620. Furusawa,T.,Nishida,M.,Narutaki,A.,1994.Changesinfattyacidcomposition ofphosphoglyceridesduringthediapauseandembryonicdevelopmentofthe Japaneseoaksilkworm, Antheraea yamamai .JournalofSericulturalScienceof Japan63,5763. Hayward,S.A.L.,Pavlides,S.C.,Tammariello,S.P.,Rinehart,J.P.,Denlinger, D.L.,2005.Temporalexpressionpatternsofdiapauseassociatedgenesinflesh flypupaefromtheonsetofdiapausethroughpostdiapausequiescence.Journalof InsectPhysiology51,631640. Hazel,J.R.1995.Thermaladaptationinbiologicalmembranes:ishomeoviscous adaptationtheexplanation?AnnualReviewofPhysiology57,1942. Hodkova,M.,Simek,P.,Zahradnickova,H.,Novakova,O.,1999.Seasonal changesinthephospholipidcompositioninthoracicmusclesofthehemipteran, Pyrrhocoris apterus .InsectBiochemistryandMolecularbiology29,367376. Hsieh,S.L.,Kuo,C.M.,2005.StearolyCoAdesaturaseexpressionandfattyacid compositioninmilkfish( Chanos chanos )andgrasscarp( Ctenopharyngodon idella )duringcoldacclimation.ComparativeBiochemistryandPhysiologyB 141,95101. JensenM.O.,Tajkhorshid,E.,Schulten,K.,2001.Themechanismofglycerol conductioninaquaglyceroporins.Structure9,10831093. Kelty,J.D.andR.E.Lee,Jr.,2001.Rapidcoldhardeningof Drosophila melanogaster (Diptera:Drosophilidae)duringecologicallybasedthermoperiodic cycles. Journal of Experimental Biology 204.16591666. Kostal,V.,Simek,P.,1998.Changesinfattyacidcompositionofphospholipids andtriacylglyceridesaftercoldacclimationofanaestivatinginsectprepupa. JournalofComparativePhysiologyB168,453460. 54 Kostal,V.,Berkova,P.,Simek,P.,2003.Remodellingofmembrane phospholipidsduringtransitiontodiapauseandcoldacclimationinthelarvaeof Chymomyza costata (Drosophilidae).ComparativeBiochemistryandPhysiology B135,407419. Lee,R.E.,Denlinger,D.L.,1985.Coldtoleranceindiapausingandnon diapausingstagesofthefleshfly, Sarcophaga crassipalpis .Physiological Entomology10,309315. Lee,R.E.,Chen,C.P.,Meacham,M.H.,Denlinger,D.L.,1987a.Ontogenic patternsofcoldhardinessandglycerolproductionin Sarcophaga crassipalpis . JournalofInsectPhysiology33,587592. Lee,R.E.,Chen,C.P.,Denlinger,D.L.,1987b.Arapidcoldhardeningprocessin insects.Science238,14151417. Lee,R.E.,Damodaran,K.,Yi,SX.,Lorigan,G.A.,2006.Rapidcoldhardening increasesmembranefluidityandcoldtoleranceofinsectcells.Cryobiology(in press). LeRay,C., Pelletier,X.,Hemmendinger,S.,Cazenave,JP.,1987.Thinlayer chromatographyofhumanplateletphospholipidswithfattyacidanalysis.Journal ofChromatography BiomedicalApplications420,411416. Macartney,A.,Maresca,B.,Cossins,A.R.,1994.AcylCoAdesaturasesandthe adaptiveregulationofmembranelipidcomposition.In:Cossins,A.R.,(Eds.), Temperatureadaptationofbiologicalmembranes.PortlandPress,London.pp. 129139. McElhaney,R.N.,1974.Theeffectofalterationsinthephysicalstateofthe membranelipidsontheabilityof Acholeplasma laidlawii Btogrowatvarious temperatures.JournalofMolecularBiology84,145157. McCoy,T.,2003.Changesinphospholipidclasscompositionwiththeonsetof freezetoleranceinthegoldenrodgallfly,Eurostasolidaginis.ColgateUniversity JournalofSciences1,18. OggC.L.,StanleySamuelson,D.W.,1992.Phospholipidandtriacylglycerol fattyacidcompositionsofthemajorlifestagesandselectedtissuesofthetobacco hornworm Manduca sexta .ComparativeBiochemistryandPhysiology101,345 351.

55 Ohtsu,T.,Kimura,M.T.,Katagiri,C.,1998.How Drosophila speciesacquire coldtolerance:qualitativechangesofphospholipids.EuropeanJournalof Biochemistry252,608611. Overgaard,J.,Sorensen,J.G.,Petersen,S.O.,Loeschcke,V.,Holmstrup,M., 2005.Changesinmembranelipidcompositionfollowingrapidcoldhardeningin Drosphila melanogaster .JournalofInsectPhysiology51,11731182. Rinehart,J.P.,Yocum,G.D.,Denlinger,D.L.,2000.Thermotoleranceandrapid coldhardeningamelioratethenegativeeffectsofbriefexposurestohighorlow temperaturesonthefecundityofthefleshfly, Sarcophaga crassipalpis . PhysiologicalEntomology25,330336. Sinensky,M.,1974.Homeoviscousadaptation–Ahomeostaticprocessthat regulatestheviscosityofmembranelipidsin Escherichia coli .Proceedingsofthe NationalAcademyofSciences,U.S.A.71,522525. Starling,A.P.,East,J.M.,Lee,A.G.,1993.Effectsofphosphatidylcholinefatty acylchainlengthoncalciumbindingandotherfunctionsofthe(Ca 2+ Mg 2+ ) ATPase.Biochemistry32,15931600. Tang,X.,Pikal,M.J.,2005.Theeffectsofstabilizersanddenaturantsonthecold denaturationtemperaturesofproteinsandimplicationsforfreezedrying. PharmaceuticalResearch(Dordrecht)22,11671175. Thompson,G.A.,Jr.,1983.Mechanismsofhomeoviscousadaptationin membranes.In:Cossins,A.R.,Sheterline,P.(eds.)Cellularacclimatisationto environmentalchange.CambridgeUniversityPress,Cambridge,pps.3354. Tsvetkova,N.M.,Quinn,P.J.,1994.Compatiblesolutesmodulatemembrane lipidphasebehaviour.In:Cossins,A.R.,(Eds.),Temperatureadaptationof biologicalmembranes.PortlandPress,London.pp.4962. Wieslander,A.,Christiansson,A.,Rilfors,L.,Lindblom,G.,1980.Lipidbilayer stabilityinmembranes.Regulationoflipidcompositionin Acholeplasma laidlawii asgovernedbymolecularshape.Biochemistry19,36503655. Wodtke,E.,Cossins,A.R.,1991.Rapidcoldinducedchangesofmembraneorder and 9–desaturaseactivityinendoplasmicreticulumofcarpliver:atimecourse studyofthermalacclimation.BiochimicaetBiophysicaActa1064,343350. Yi,S.X.,Lee,R.E.,Jr.,2004.Invivoandinvitrorapidcoldhardeningprotects cellsfromcoldshockinjuryinthefleshfly.JournalofComparativePhysiology B174,611615.

56 Yocum,G.D.,Zdarek,J.,Joplin,K.H.,Lee,R.E.,Jr.,Smith,D.C.,Manter,K.D., Denlinger,D.L.1994.Alterationintheeclosionrhythmandeclosionbehaviorin thefleshfly, Sarcophaga crassipalpis ,bylowandhightemperaturestress. JournalofInsectPhysiology40,1321.

57

ILLUSTRATIONS

60 12 A FA'sofgreatest B FA'sofintermediate abundance 50 abundance 10 16:0 40 8 18:0 16:1n7 20:4n6 18:1n9 30 6 20:5n3 18:2n6 20 4

10 2

0 0 0 1 2 4 8 0 1 2 4 8 0.7 1.2 C FA'soflowabundance D FA'soflowabundance 0.6 shortchain 1 longchain

0.5 14:0 percentageofFAsignal 0.8 18:3n3 0.4 14:0(m) 18:3n6 15:0 0.6 0.3 20:0 16:0(m) 0.4 20:2n6 0.2 16:1n9 20:3n9 0.2 0.1

0 0 0 1 2 4 8 0 1 2 4 8 timeexposedto4 oC(h) Figure 2.1. Change in individual fatty acids (FA) as a result of chilling is consistent with the induction of rapid cold-hardening. Sarcophaga crassipalpis pupaeweresubjectedto4 oCforaperiodof08hoursandtheirfatty acids(asmethylesters)wereanalyzedwithGCMS.Eachdatapointrepresents themean ±standarderror(n=5).Itisclearfromtheabovedatathatoleicacid (18:1n9)isdramaticallyincreased(17.6%totalincrease)between4and8hoursat theexpenseofmanyotherfattyacids(onewayANOVAwithTukey’sposttest).

58 b 50 A

40

n3 30 n6 n7 20 b n9 percentage of FA signal FA percentage of b 10 c

0 1 2 3 4 5

3

B a ab

2.75 a a

2.5

b 2.25 index of unsaturation

2 0 1 2 4 8 time exposed to 4 oC (h) Figure 2.2. Change in fatty acid series (A) and index of unsaturation (B) of flesh fly phospholipids during conditions that induce rapid cold-hardening. Fattyacidswereisolatedfromnondiapausing Sarcophaga crassipalpis pupae exposedto4 oCfor08hours.Barsrepresentmean±standarderror(n=5).Letters abovethebarsrepresentstatisticalgroupingscomparedwiththeirrespective0 hourcontrols(Tukey’sttest).Barsin(A)withoutaletterarenotstatistically differentthantheir0hrcounterpart.Fromthesedata,itisclearthatfattyacidsof then9seriesarefavoredduringchillingattheexpenseofn7andn6fattyacids, buttheindexofunsaturationdoesnotconsistentlytrendinthesamedirection. 59 70 Major peaks A abb 60

50 ND D 40 abb D+C 30

20 aaa abb percentage of FA signal FA of percentage 10

0 16:0 16:1 18:1 18:2 Minor peaks 1.6 B aaa abb 1.4 aab

1.2

percentage of FA signal FA of percentage abc 1

0.8 aba 0.6 aab aab 0.4 aaa aba percentageof FA signal 0.2 aaa aba aba 0

:0 :1 :0 :2 :3 :4 :5 14:0 15 16 18 20 20 20 20 14:0(m) 16:0(m) 18:3n3 18:3n6 fatty acid Figure 2.3. Change in major (A) and minor (B) fatty acid (FA) proportions due to diapause and chilling in the flesh fly, Sarcophaga crassiplapis .Fatty acids(asmethylesters)fromnondiapausingpupae(ND)werecomparedwith30 daydiapausingpupae(D)and30daydiapausingpupaethathadbeenchilledat 4oCfor8hours(D+C).Barsrepresentmeans±standarderror(n=5).Significance foreachfattyacidpeakwasdeterminedbyonewayANOVA,andsignificant peakswereassignedstatisticalgroupings(a,b,c)byTukey’spostANOVAttests. 60

70 abb 60

50

40

30 ND aaa D 20 abb D+C abb

percentage of FA signal percentage 10

0 n3 n6 n7 n9 fatty acid series Figure 2.4. Change in proportions of fatty acids (FA) from each series in diapausing and chilled flesh flies. Sarcophaga crassipalpis pupaeinanon diapausestate(ND)werecomparedwith30daydiapausingpupae(D)and30day diapausingpupaethathadbeenchilledat4 oCfor8hours(D+C).Significancefor eachfattyacidserieswasdeterminedthroughaonewayANOVA,andsignificant peaks(mean±standarderror,n=5)wereassignedstatisticalgroupings(a,b,c)by Tukey’spostANOVAttests.

61 b 3.5 b

3

2.5 a 2

1.5

1 index index of unsaturation 0.5

0 ND D D+C

Figure 2.5. Change in overall phospholipid fatty acid saturation due to diapause and chilling in the flesh fly, Sarcophaga crassipalpis .Fattyacids(as methylesters)fromnondiapausingpupae(ND)werecomparedwith30day diapausingpupae(D)and30daydiapausingpupaethathadbeenchilledat4 oCfor 8hours(D+C).Barsrepresentmean±standarderror(n=5).Ttestsrevealthe markedriseinindexofunsaturationduetodiapause,butchillinghadno additionaleffectbeyonddiapauseinducedfattyacidunsaturation.

62 80 c c a b 60

40 PE PC 20 percentage of phospholipids of percentage

0 ND ND D D Figure 2.6. Change in phospholipid class due to rapid cold-hardening and diapause in the flesh fly, Sarcophaga crassipalpis .Phosphatidylethanolamines (PE)areupregulatedattheexpenseofphosphatidycholines(PC)duetorapidcold hardening(p<0.05)anddiapause(p<0.01),butchillingaflyindiapausedoesnot enhancethisresponsebeyondthatinducedbydiapausealone.Lettersabovethe bars(mean±standarderror,n=5)representstatisticalgroupings(Tukey’spost ANOVAttest).

63 CHAPTER3 Shiftsinthecarbohydrate,polyol,andaminoacidpoolsduringrapidcold hardeninganddiapauseassociatedcoldhardeninginfleshflies( Sarcophaga crassipalpis ):ametabolomiccomparison. M.RobertMichaud*andDavid.L.Denlinger DepartmentofEntomology,OhioStateUniversity,318W.12 th Avenue, Columbus,OH432101242,USA. *correspondingauthor Emailaddress: [email protected] Telephone:6142924477 Fax:6142922180

Abbreviations :ANOVA(analysisofvariance);GCMS(gaschromatography– massspectrometry);h(hour);NMR(nuclearmagneticresonance);PCA(Principal componentanalysis).

64 Abstract

Fleshfliescanenhancetheircoldhardinessbyenteringaphotoperiodinduced pupaldiapauseorbyatemperatureinducedrapidcoldhardeningprocess.To determinewhetherthesameordifferentmetabolitesareinvolvedinthesetwo responses,derivatizedpolarextractsfromfleshfliessubjectedtothesetreatments wereexaminedusinggaschromatographymassspectrophotometry.This metabolomicapproachdemonstratedthatlevelsofmetabolitesinvolvedin glycolysis(glycerol,glucose,alanine,pyruvate)wereelevatedbybothtreatments.

Metaboliteselevateduniquelyinresponsetorapidcoldhardeninginclude glutamine,cystathionine,sorbitol,andureawhilelevelsofbetaalanine,ornithine, trehalose,andmannoselevelswerereduced.Rapidcoldhardeningalsouniquely perturbedtheureacycle.Inadditiontotheelevatedmetabolitessharedwithrapid coldhardening,leucineconcentrationswereelevatedduringdiapausewhilelevels ofanumberofotheraminoacidswerereduced.Poolsoftwoaerobicmetabolic intermediates,fumarateandcitrate,werereducedduringdiapause,indicatinga reductionofKrebscycleactivity.Principlecomponentanalysisdemonstratedthat rapidcoldhardeninganddiapausearemetabolicallydistinctfromtheiruntreated, nondiapausingcounterparts.Wediscussthepossiblecontributionofeachaltered metaboliteinenhancingtheoverallcoldhardinessoftheorganism,aswellasthe efficacyofGCMSmetabolomicsforinvestigatinginsectphysiologicalsystems.

Keywords :insect,diapause,aminoacid,polyol,metabolism

65

3.1 Introduction

Lowtemperatureposesoneofthegreatestchallengestoinsectsurvival, andconsequently,insectshavedevelopedarangeofbehavioralandphysiological mechanismsforpreventinglowtemperatureinjury.Forthefleshfly, Sarcophaga crassipalpis ,lowtemperatureinjurycanbecounteredbytwodistinctlydifferent physiologicalmechanisms,rapidcoldhardeningandaphotoperiodinduced overwinteringpupaldiapause.

Rapidcoldhardening,asthenameimplies,isaquickphysiological response(minutestohours)thatallowsinsectstosurviveexposuretolow temperaturesthatwouldnormallycausemortalityintheabsenceofrapidcold hardening(Leeetal.1987a).Forthefleshfly,rapidcoldhardeningisachieved withinatemperaturewindowof0to11 oC,eitherthroughnormaldaily thermocyclesorinthelaboratory,andisevidencedbya23foldelevationof glycerolandadramaticenhancementofsurvivalat10 oC(Chenetal.1987,Leeet al.1987a).Theeffectsofrapidcoldhardeningcanbeseenafterexposingthefly to0 oCforonly20min,butmaximalbenefitisimpartedafter8h(Chenetal.

1991).

Eventhoughglycerolelevationinfleshflieshasbeenstronglycorrelated withsurvivalinrapidcoldhardening,increasedsurvivalisnotlikelytobe explainedbytheresultofglycerolalone.Themillimolartitresofglycerolinthe hemolymphof S. crassipalpis cannotaffectthemeltingpointofthewholeinsect beyond1 oCcolligatively(Leeatal.1987b),andthenoncolligativeeffectsof 66 glycerolonproteinandmembranestabilizationrequirehigherconcentrationsof glycerol,aswell(TsvetkovaandQuinn1994,TangandPikal2005).Itthus appearslikelythatrapidcoldhardeningexploitsmorethanonemechanism.

Supportingevidenceforadditionalplayersinvolvedinrapidcoldhardeningis providedbytherecentfindingthatrapidcoldhardeningaltersbiological membranestructureinflies(Overgaardetal.2005,MichaudandDenlinger2006).

Diapausein S. crassiplapis isaprogrammeddevelopmentalarrestatthe phanerocephalicstageofpupaldevelopment,broughtaboutbyshortdaylengths andlowtemperatures(Denlingeretal.1972).Aswithrapidcoldhardening, glycerollevelsincreaseduringfleshflydiapause(Leeatal.1987b),andheat shockproteinsareelevated(Flannaganetal.1998,Haywardetal.2000).A diapausingflypupacansurviveexposuresof17 oCfordaysand10 oCforweeks atatime,whereasanondiapausingfleshfly,atbest,cantoleratethese temperaturesforonlyminutesorhours(LeeandDenlinger,1985).

Asachemicalchaperone,glycerolmayactsynergisticallywiththeheat shockproteinstogenerateprotection(Diamantetal.2001,Chattopadhyayetal.

2004).Theslowmetabolicrateofdiapausingfliesmayalsoincreasesurvivalby reducingtheneedforcellularenergyandmetabolicefficiencyinanenvironment whereenzymesmaybedamagedbylowtemperatureandneedrepair.Itisnot knownwhethermetabolitesotherthanglycerolaccumulateduringdiapausein fleshflies,butdiscoveryofsuchmetaboliteswouldfurtherourunderstandingof themetaboliceventsassociatedwithdiapauseandhighlightadditionalsubstances thatcouldpotentiallyenhancecoldhardiness. 67 Metabolomics,alongwithmetabolicprofilingandmetabonomics,isan emergingtechnologyforquantitativelysamplingtheentiresuiteofdetectable metabolitesinabiologicalsystemtothusprovideaholisticviewofphysiological processesandconditions(DunnandEllis2005,WeckworthandMorganthal2005,

Kopka2006).Theadvantageofmetabolomicsforanalyzingchangesina biologicalcontextistheunbiasednatureoftheanalysis;alldetectablemetabolites arequantifiedtoeliminate a priori determinationofanalyticaltargets.Also, metabolomicsistheonlyfieldof“–omics”thataddressestheterminaltargetof thecentraldogmaofmolecularbiology,thesubstrate.Thelimitationstothis technology,whichchieflyemploysdetectionofmetabolitesthroughgas chromatographymassspectroscopy(GCMS)ornuclearmagneticresonance

(NMR),isthelowerlimitofdetectionandtheabilitytoproperlyidentifydetected metabolites(Kopka2006).

Metabolomictechniqueshavebeenappliedtophysiologicalstudiesof plants(Weckworthetal.2004),clinicalscreeningofhumans(Zytkoviczetal.

2001),andthedetailedstudyofmetabolisminbacteria(Buchholzetal.2002).In spiteofitslimitations,metabolomicspromisestoprovideusefulinsightsforinsect physiology,especiallyifcoupledwithinformationderivedfromother“–omics” studies.WeareawareofonlyonepublishedNMRbasedmetabolomicstudyon aninsectsystem(Malmendaletal.2006).Inthisstudy,weuseGCMS metabolomictechniquestoidentifymetabolitesthatarealteredbyrapidcold hardeningandtheoverwinteringpupaldiapausein S. crassipalpis .Ourgoalisto

68 identifyamorecompletespectrumofmetaboliteselevatedbycold hardeningandtodetermineifthesamemetabolitesareelevatedinthesetwo formsofcoldhardening.

3.2. Materials and methods

3.2.1 Insect rearing

Coloniesof Sarcophaga crassipalpis weremaintainedinthelaboratoryas described(Denlinger1972).Fliesusedforrapidcoldhardeningstudieswere rearedinnondiapausingconditions(15L:9Dphotoperiod,25 oC)andallowedto developintoredeyestagepharateadultsbeforebeingusedforexperiments.The maximallowtemperaturesurvivaleffectfromrapidcoldhardeningisobserved duringtheredeyestage.Parentsofdiapausingpupaewerekeptataphotoperiod of12L:12Dandatemperatureof25 oCuntillarviposition,andtheoffspringwere rearedat20 oCunderthesamephotoperiod.Experimentsusedpupaethathad beenindiapausefor30days(middiapause).Nondiapausingpupaeusedas controlsforthediapauseexperimentsweremaintainedunderlongdayconditions

(15L:9D)at20 oCandsampledatthephanerocephalicstage,thedevelopmental stageequivalenttodiapause.

3.2.2. Sampling

Forrapidcoldhardening,femalepharateadultflieswereplacedinanopen petridishandtransferredfrom25 oCto4 oC.After8h,n=6groupsofthreefemale flieswerehomogenizedfor1minina3.8mlcoldchloroform:methanol:water

(1:2:0.8)mixtureusingahandoperatedglasshomogenizer.Thepupariumwas 69 notincludedinthehomogenization.Eachflyusedintheexperimentweighed approximately85100mg,whichisarobustbutcommonsizefor S. crassipalpis .

Sixgroupsofthreefliesheldcontinuouslyat25 oCweresampledasuntreated controls.Forthediapauseexperiment,sixgroupsofthreepupaethathadbeenin diapausefor30daysat20 oCwerehomogenized.Sixgroupsofthreenon diapausing,phanerocephalicpupaewereextractedasuntreatedcontrols.

3.2.3. Separation and derivatization

OnemlofdH 2Ocontaining25gxyulose(internalstandardnotnormally detectedin S. crassipalpis )and1mlchloroformwereaddedtoeachsample,and thesamplewasvortexedfor30sec.Theresultanttwophasemixturewasallowed tositfor30minandthenvacuumfilteredthroughaglassfiltertoremove particulatematterandprecipitates.Thefilterwaswashedwith1ml chloroform:methanol:water(2:1:0.8)toremovesolubletracemetabolitesfromthe filtermatrix.Afterfiltration,thetwophasemixturewasseparatedintoan aqueousphasecontainingpolarmetabolites(sugars,polyols,aminoacids)andan organicphasecontainingnonpolarmetabolites(lipids).Theorganicphasewas discardedbecauseidentifiedcompoundsintheorganicphaserepresentedonly

10%ofthetotalnumberofobservedpeaks,andmanypeakscouldnotbe adequatelyseparated.

Theaqueousphasewasthenplacedunderagentlenitrogenstreamand evaporatedat22 oC25 oCtodryness.Thedriedsamplewasthenimmediately methoxyaminatedbyadding1.0mlmethoxyaminehydrochlorideinpyridine, incubatedfor1hrat60 oC(turnsclearasmetabolitesdissolve),followedbya16 70 hincubationatroomtemperature.Thesamplewasthentrimethylsilyatedbythe additionof300lMSTFAandincubatedat50 oCfor30min.150lofthe trimethylsilyatedsamplewasaddedtoaglassinsertwithinanautosamplervial andanalyzedwithGCMS.Aqueoussamplesprocessedinthismannerproduced distinctiveandrepeatablechromatographicpeaksthatdifferedacrosssamplesby5 to60%,withintheexpectedrangeforthistypeofexperiment.

3.2.4. Chromatographic analysis

OnemicroliterofeachsamplewasantoinjectedintoaFinniganTrace

GCMSandsubjectedtochromatographicanalysis(50450m/z).Theinjector temperaturewasheldat280 oC.Theoventemperaturerangedfrom50to300 oC, andthetemperatureincrementwas5 oCmin 1,whichproducedachromatographof sufficientresolutiontoseparate~175chromatographicpeakspersample.The columnwasaRestek30mfusedsilicacolumn(I.D.25mm,95%dimethyl siloxane,5%diphenyl)withheliumgasusedasacarrieratarateof50ml/min.

Sampleswererunusingsplitlessmode.Aftereachsamplewasrun,theoven remainedat300 oCfor10mintocleanimpuritiesfromthecolumn.

3.2.5. Quantification and data analysis

Individualintegratedpeakareaswereconvertedtoresponseratiosin relationtotheinternalstandard(xylulose)bydividingthepeakareaofthe metabolitebythepeakareaoftheinternalstandard.OnewayANOVAwithan acceptablesignificancelevelofp≤0.01wasperformedoneachmetaboliteto determinewhichindividualmetaboliteswereaffectedbyrapidcoldhardeningor diapausewithrespecttotheircontrols.Peakidentitiesweredeterminedwhere 71 possiblebycomparisonofretentiontimeswithaminoacid,sugar,andpolyol standardspreparedinthesamemannerasthesamples.Matchesofspectralpeaks withtheNationalInstituteofStandardsandTechnologies(NIST)andWiley

ChemicalStructurallibrariesfurtherconfirmedorestablishedmetaboliteidentities providedthematchcarriedanRSIvalue≥700.Forprincipalcomponentanalysis

(PCA),peakareasofmetabolites(orcombinedpeakareasofmetaboliteswith morethanonepeak)werenormalizedbydividingeachpeakareavaluebythe meanpeakareaforthatcompound,andtheresultantnormalizeddatawereentered intoMetaGeneAlyse1.7(MaxPlanckInstituteofMolecularPlantPhysiology,

Berlin,Germany)andseparatedbytheirprincipalcomponents.

3.3. Results

3.3.1. General observations

Separationandderivativizationofpolarmetabolitesfrompupaeand pharateadultsof S. crassipalpis yieldedpeaksthatweredistinctandgenerally consistentacrosssamples.Arepresentativeportionofachromatographisseenin

Fig.1.Withinanytreatmentgroup,peakheightrelativetotheinternalcontroldid notvarymorethan40%foranypeakwhoseareawas>10Xbackground.Across allsamples,anaverageof62of159peakscouldbeidentifiedasmetaboliteswith areasonableamountofcertainty,avaluetypicalforGCMSmetabolomics

(Shaueretal.2005).Thefirsthalfofthechromatographcontainedaminoacids, phosphate,andureawhilethelasthalfofthechromatographcontainedmostly andpolyols.Thispatternissimilartothatofothermetabolomic 72 studiesutilizingGCMS(Binoetal.2004).Metabolicintermediatesofthe glycolyticandrespiratorychainwerefoundthroughoutthechromatograph.Alist ofidentifiedmetabolitesrecordedfrom S. crassipalpis isenumeratedinTable1.

Ofthese62metabolites,14wereaminoacids,14weresugarsorpolyols,8were metabolicintermediates,4weresmallmolecules,andanadditional22 representingacollectionofdiversemetabolites.

3.3.2. Rapid cold-hardening

Whentheresponseindexofpeaksfromredeyepharateadultsof S. crassipalpis exposedto4 oCfor8h(rapidcoldhardening)wascomparedwiththe responseindexoffliesheldcontinuouslyat25 oC(ANOVA,df=10,p≤0.01),a numberofalteredmetaboliteconcentrationswereidentified(Fig.2).Sevenofthe identifiedmetaboliteswereelevatedinresponsetorapidcoldhardeningandfour werereduced.Glycerol,theonlypolyolpreviouslyknowntobeaccumulated duringfleshflyrapidcoldhardening,increased23fold(p=0.0038).Another polyol,sorbitol,increased1.6fold(p=0.0032).Amongtheaminoacids,alanine andglutamineincreasednearly2fold(eachp<0.001),whilelevelsofβalanine andornithinedroppedtohalfofthecontrolvalue(p=0.01andp≤0.001, respectively).Othermetabolitesupregulatedwerecystathionine(p=0.005), glucose(p=0.0018),pyruvate(p=0.014),andurea(p=0.0012).Mannose

(p=0.0011)andtrehaloselevelswerereduced(p=0.0017).15unidentified metabolitesalsochangedinresponsetorapidcoldhardening(9increased,6 decreased).

73 MultivariatePCAanalysisofthenormalizedrawpeakareasina metabolomicexperimentgivesameasureoftheseparationoftwodifferent biologicalsamples,basedonthecontributionofasetofmetabolites,orprincipal components,inrelationtotheoverallvarianceoftheexperiment.Plottingthe principalcomponentsofeachsampleonanxyplotfromtwophysiologically distincttreatmentsshouldrevealatreatmentdependentclusteringofsamplesin twodimensionalspace.WhenPCAanalysiswasappliedtopeaksfromrapid coldhardenedfliesandpeaksfromfliessampledat25 oC,theresultantprincipal componentplotshowedaloose,butdefinable,clusteringeffectalongthefirst principalcomponent,orPC1(Fig.3).PC1fortherapidcoldhardening experimentincludedglycerol,proline,glucose,ornithine,andfreephosphateand accountedfor36%ofthevarianceintheexperiment.Therefore,thelevelsof metabolitesthatcontributedthemosttothevarianceacrosssamplesalsowere deterministicwithrespecttothetreatmentgroups.Thisimpliesthatrapidcold hardenedfliesareinaphysiologicalstatedistinctivelydifferentfromthatoftheir nonhardenedcounterparts.

3.3.3. Diapause

Anumberofalteredmetaboliteconcentrationswerenotedwhen metabolitepeaksfromdiapausingpupae werecomparedtopeaksobservedintheir nondiapausingcounterparts(Fig.4).ANOVAanalysis(df=10,p≤0.01)confirmed

5identifiableelevatedcompoundsand8identifiablecompoundsthatwereless abundantduringdiapause.Theonlymetabolitepreviouslyknowntobeelevated duringdiapauseinthisspecies,glycerol,quadrupledinconcentration(p=0.0034). 74 Thegreatestincreaseswereintheglucoseandpyruvatepools,whichwere elevated30foldand10fold,respectively(p<0.0001foreach).Amongtheamino acids,alanineincreased9fold(p=0.0004),andleucineslightlyincreased

(p<0.0066).Levelsofaspartate(p=0.0012),glycine(p<0.0001),phenylalanine

(p<0.0001),proline(p<0.0001),andtyrosine(p<0.0001)werelowerduring diapause.Inadditiontothereductioninaminoacids,themetabolitessorbitol

(p=0.0003),fumarate(p<0.0001),andisocitrate(p<0.0001)weresignificantly reduced.Anadditional15metaboliteswerealteredbydiapause(5increased,10 decreased),butthesecompoundswerenotidentifiablewithanydegreeof certainty.

PCAanalysisofmetabolitepeaksderivedfromsamplesinthediapause experimentrevealedanunambiguousclusteringeffectalongthefirstprincipal component,PC1(Fig.5).Thefirstprinciplecomponentinthisexperiment consistedofcystathionine,isocitricacid,proline,andtrehaloseandaccountedfor

46%ofthetotalvarianceinthisexperiment.Thus,thephysiologicalstateof diapauseisbiologicallydistinctfromthatofnondiapausingpupaeatthesame temperature(20 oC)andthisdistinctionmaybedefined(inpart)bythepeak intensitiesofthesefourmetabolites.Thisseparationisgreaterthanthatseen betweenrapidcoldhardenedindividualsandthosethatwerenotrapidcold hardened(Fig.4).

75 3.4. Conclusions

3.4.1 Efficacy of GC-MS insect metabolomics

Metabolomicshasproventobeapowerfulhypothesisbuildingtool inavarietyofadvancedbiologicalfields,buthasnotbeenusedextensivelyfor insects,withtheexceptionofasinglestudyconcerningheatshockin Drosophila

(Malmendaletal.2006).Inthatexperiment,NMRbasedtechnologydetected51 differentcompounds,with16beingpositivelyidentifiedinbothuntreatedand heattreatedflies.Inthepresentstudy,GCMSmetabolomicswereemployedto derivatizedsamplesandtheresultantmetabolicprofilesproduced62identifiable peaksoutof159,withsubsequentmultivariateanalysissuccessfullyseparating samplesintotheirrespectivetreatmentgroups.Theabilitytoenhance chromatographicbehaviorthroughderivativizationandtheavailabilityof extensivemassspectrallibrarysearchesmostlikelycontributedtothedisparityin thenumberofmetabolitesdetectedandidentifiedbetweenthesetwomethods.

Nevertheless,metabolomicsbyeithermethodhassuccessfullydefinedaltered physiologicalstatesduringhightemperature,lowtemperature,anddiapauseand identifiedtargetcompoundsforsubsequentcomparisonwithgenetic,proteomic, ortranscriptomicdata.

3.4.2. Rapid cold-hardening metabolic phenotype

Whenredeyepharateadultsof S. crassiplapis arechilledat4 oC,glycogen isconvertedtoglucosebyphosphorylaseA(ChenandDenlinger1990)andis presumedtobeusedeitherasanenergyreserveorisconvertedtoglycerol,a polyolpreviouslylinkedtorapidcoldhardening(Leeetal.1987a).Inthepresent 76 study,bothglycerolandglucoseincreasedinresponsetorapidcoldhardening, confirmingpreviousresults.Glycerolisapolyhydricalcohol,orpolyol, possessinguniquechemicalpropertiesthatallowsittoprotectmembranesand proteinsandpromotesupercoolingofbodyfluids(Lee1991).Metabolomic analysisofrapidcoldhardenedfliesinthisstudyrevealsanotherelevatedpolyol, sorbitol,althoughitiselevatedtoalesserdegreethanglycerol.Sorbitol presumablycontributestolowtemperaturesurvivalinthesamemanneras glycerol,asitisawellknowncryoprotectantfoundinotherinsects(Salvucci

2000,WangandKang2005).Thegoldenrodgallfly, Eurosta solidiginis ,also accumulatessorbitolatlowtemperaturesthroughglucoseoverloadingfrom glycogenreserves,coupledwithactivationofthehexosemonophosphateshunt

(JoanisseandStorey1995).Theproductionofsorbitolisthoughttobeadirect responsetolowtemperaturesratherthanaresponseinanticipationoflow temperatures(StoreyandStorey1983),thusexplainingwhyanincreaseinsorbitol wasnotobservedindiapausingfleshfliesat20 oCbutwasdetectedafter8hat4 oC

(Fig.6).Eventhoughthismetabolomicexperimentwasnotdesignedtodetermine metabolicratesorrateconstantsofbiochemicalpathways,itiseasytoseehow,in anenvironmentofgreaterglucoseavailability,bothpolyolscanbesynthesized andcontributetocoldsurvivalduringrapidcoldhardening.

Thisstudyalsorevealedthattheendproductoftheglycolyticpathway, pyruvate,waselevatedafterrapidcoldhardening.Thisconditionwouldoccur eitherfromoverproductionfromtheglycolyticpathway,orfromtheinactivation ofenzymesdownstreamofpyruvate,suchaspyruvatedehydrogenase.Evidence 77 oftheformerisinferredfromthehighrateofproductionofglycerolandsorbitol

(bothshuntedfromtheglycolyticpathway),theoverloadingofglucosefrom glycogenstores,andthelackofdetectabledifferencesinKrebscycle intermediatesbetweentreatmentsinthisstudy.Theobservedreductioninlevels ofmannoseandtrehaloseseenduringrapidcoldhardeningmayresultfromthe transformationofthesesugarsintoglucoseequivalentsforuseintheglycolytic pathway,althoughthissuggestionisspeculative.

GC/MSmetabolomicsalsorevealsanelevationofalanineduringrapid coldhardening.Alanineissynthesizeddirectlyfrompyruvate,thereforeits elevationmaybeabyproductofincreasedpyruvatelevels,alanine dehydrogenaseactivation,oracombinationofboth.Alanineupregulationhas beencorrelatedwithanumberofinsectcoldhardystates(e.g.Fieldsetal.1998,

Riversetal.2000,Gotoetal.2001),includingdiapauseinthefleshfly(Kukalet al.1991).Thecolligativeeffectivenessofalanineisroughlythesameasthatof glycerol.Inaddition,studiesinplantssuggestthatashifttoalaninesynthesis frompyruvateispreferabletoitsalternative,lacticacid(foranimals),because alanineislesstoxictocells(TouchetteandBurkholder2000).Theobserved reductioninβalanineseenduringrapidcoldhardeningpossiblyresultsfrom conversionofthismetaboliteintoLalanine.

Anintriguingobservationfromthisstudyistheelevationofglutamine duringrapidcoldhardening.Glutamineaccumulationinresponsetolow temperaturehasbeendocumentedforcrickets(Tomebaetal.1988),andthis aminoacidisincreasedinassociationwithdiapauseinthesilkworm Bombyx 78 mori (OsanaiandYonezawa1986),Coloradopotatobeetle Leptinotarsa decemlineata (YiandAdams2000),andthe Drepanosiphum platanoidis

(Douglas2000).Inadditiontocontributingtotheoverallosmolalityofthe organism,glutaminehasthenoncolligativepotentialofincreasingthe responsivenessofheatshockproteins(Phanvijhitsirietal.2005)andsuppressing apoptosis(FuchsandBode2006).Heatshockproteintranscriptsareexpressed aftercoldshockinthefleshfly(Rinehartetal.2000),thusglutaminepossibly elevatesthisresponse.Glutaminehasapositiveeffectonlowtemperature survivalatconcentrationsaslowas2mMandincreasessurvivalofratcellsif presentbeforetheonsetofcoldshock(Kruuvetal.1988).

Urealevelsin S. crassipalpis wereelevatedslightly,butsignificantly,in responsetorapidcoldhardening.Infrogs,ureahasacolligativecryopreservative effectthatissimilartoglycerolandsucrose(CostanzoandLee2005).The increaseinurealevelsseenin S. crassipalpis mayalsobetheresultofhigh alaninelevels,whichareknowntoperturbtheureacycle(HensgensandMeijer

1980).Theriseinalanineiscoupledwithareductioninornithine,anotherfeature consistentwithperturbationoftheureacycleduringrapidcoldhardening.

Cystathionineisalsoelevatedduringrapidcoldhardening,butitisnot clearhowthismetabolitecontributestocoldhardinessotherthanbyelevating osmolarity.Cystathionineincreasehasalsobeennotedintheoverwinteringbeach pea(ChinnasamyandBal2004),butitsincreasehasnotbeencorrelatedwithany particularcoldhardinessmechanism.

79 Severalrecentstudieshaveincreasedourunderstandingoftherapidcold hardeningprocessinfleshflies.Theinitialobservationthatglycerolelevation characterizesthisprocess(Leeatal.1987a)hasbeenexpandedtodemonstratean increaseinmembranefluidity(Leeetal.2006),membranephospholipids restructuring(MichaudandDenlinger2006),andnowthepresenceofadditional metabolitesthatpresumablycontributetothisprocess.Theoverallpatternof changedmetabolitesindicatesarapidincreaseinglycolyticactivityfromglucose

“frontloading”coupledwithanincreaseinaminoacidsandpolyolsderivedfrom glycolyticintermediates.Krebscycleactivitydoesnotappeartobealteredby rapidcoldhardening,althoughthereisanindicationthattheureacycleis perturbedtofavorureaproduction.Mostofthealteredmetaboliteswehavenoted potentiallycontributetocoldhardinessinavarietyofways,notallofwhichare colligative.Rapidcoldhardening(andcoldhardinessingeneral)haslongbeen suspectedtoinvolveasuiteofbiochemicalchanges,andourcurrentanalysis clearlysupportsthishypothesis.

3.4.2. Diapause metabolic phenotype

Fleshfliesspendthewintermonthsinpupaldiapause.Duringthistime, heatshockproteintranscriptsincrease(Haywardetal.2005)andglycerolis elevatedinthebodytissues(Leeatal.1987a);bothofthesephysiological responsesrenderthediapausingpupaemuchmorecoldhardythananyotherlife stage.Diapausingfleshfliescansurvivemonthsatsubzerotemperatureswithout illeffects(Leeatal.1987a).

80 Themetabolomictechniquesappliedinthisstudyconfirmthepreviously observedelevatedlevelsofglycerolassociatedwithdiapauseinthisspecies.

Glyceroliselevatedduringdiapauseinanumberofinsectspecies(e.g.Chino

1958,YiandBai1991,Stanicetal.2004)andisassumedtohaveacryoprotective roleintheseorganisms,ultilizingthesamemechanismsmentionedintheprevious section.Theglycerolelevationduetodiapauseinthisexperimentistheresultof theinsect’sresponsetoatokenstimulus(photoperiod),ratherthanaresponseto lowtemperature.Thechangeinbiochemicalequilibriumfavoringglycerolmay betheresultofdirecteffectsonanexistingenzymeortheresultofenzyme synthesisfromanalternativealleleorlocus.

Glucoseandpyruvatealsoincreasedduringdiapauseinthefleshfly, indicatingthattheglycolyticcycleisactiveduringthisperiod.Glucoseelevation washuge,nearly30fold,thusgreatlyincreasingtheavailablilityofsubstrate enteringtheglycolyicpathway.Theglucoseincreaseispresumedtobederived fromglycogenreservesinamannersimilartothatseenduringrapidcold hardening(ChenandDenlinger1990).Glucoseisupregulatedfordiapauseinthe

Coloradopotatobeetle, Leptinotarsa decemlineata (Lefevereetal.1989)anda tropicalbeetle, Stenotarsus rotundus (PullinandWolda1993).Interestingly,the tropicalbeetleaccumulatedglucoseduringdiapauseintheabsenceofany temperaturestimuli,inamannersimilartothatobservedinthisstudy.Glucose hasapositiveeffectoncoldhardiness(CostanzoandLee2005)andisalso

81 moderatelyeffectiveininhibitingdevelopmentinembryosof Bombyx mori (Horie etal.2000).Also,glucosecarbonsmaybeconvertedintoanumberofdifferent polyolsandaminoacidsthroughtheglycolyticpathwayanditsbranches.

Pyruvatelevelsalsoincreasedduringdiapause.Pyruvatewaspreviously detectedinlarvaeofthediapausingricestemborer, Chilo suppressalis ,andits levelwasinverselyproportionaltolevelsoflacticacidwhentheinsectswere exposedtoanoxia(TsumukiandKanehisa1980).Theincreaseofpyruvateduring diapauseinthefleshflyismostlikelytheresultoflowactivityintheKrebscycle

(evidencedbyareductioninfumarateandcitrateduringdiapauseinthisstudy) whiletheglycolyticpathwayremainsactive.Thereareseveralpotentialeffectsof increasedlevelsofpyruvateduringdiapause.First,pyruvatemaybeusedatthe endofdiapauseasareadilyavailableenergysourcefortheKrebscycle,a pathwayknowntobedepressedduringdiapause(KageyamaandOhnishi1971).

Pyruvateiswidelyrecognizedasanaccessibleenergysource,afeaturethatis commonlyexploitedmedicallyduringlivertransplantation(SoandFuller2003).

Inaddition,thepresenceofpyruvatecouldserveasabuildingblockforthe synthesisofaminoacids,especiallyalanine.

Aswithrapidcoldhardening,ourmetabolomicsexperiments demonstratedthatalaninelevelsincreasedwhenthefliesentereddiapause.This wasalsopreviouslyobservedduringdiapauseinthisspecies(Kukaletal.1991,

Riversetal.2001),aswellasinanumberofotherspecies(e.g.Osanaiand

Yonezawa1986,MorganandChippendale1983,Lietal.2001).Highalanine levelshaveasynergistic,colligativeeffectwithothersolutesandthuscontribute 82 tocoldtoleranceinspeciessuchas Eurosta solidaginis (ChurchillandStorey

1989),butalaninealsomayserveasanalternativeandlesstoxicbyproductto lacticacidintheglycolyticcycleasseenforethanolprotectioninplants

(TouchetteandBurkholder2000).

Theaminoacidleucinealsoaccumulatedduringdiapause.Tothebestof ourknowledge,theonlyotherreportofleucineaccumulationduringinsect diapauseisintheintegumentofthediapausingembryoof Bombyx mori (Dordea etal.1987),butleucinelevelsarealsoelevatedduringdiapauseinacopepod

(Wangetal.2005).Althoughtherearenoreportednoncolligativemechanismsof coldhardinessinherenttothisaminoacid,leucinealsoaccumulatesinresponseto coldinboththegrainbeetle, Sitophilus granarius (Fieldsetal.1998)andinthe plant, Arabidopsis thaliana (Kaplanetal.2004).Leucineissynthesizedfrom glycolyticintermediates,thusfurthersupportingthehypothesisthatglycolysisis activeduringdiapauseinthefleshfly.Anumberofotheraminoacids(aspartate, glycine,phenylalanine,proline,andtyrosine)arereducedasaresultofdiapausein thefleshfly,butitisunclearwhatbenefitthepupamaygainfromareductionin theseaminoacids.Proline,awellknownenergysourceandcryoprotectantin someinsects(OkazakiandYamashita1981,Storey1997),doesnotappeartobe importantinthediapauseoffleshflies.Prolinelevelswerealsoreducedduring diapauseintheembryoof Bombyx mori (OsanaiandYonezawa1986)andin chilled,diapausinglarvaeofthegrassstemborer, Chilo suppressalis (Gotoetal.

1998).Coldinducedreductionsofaminoacids,asseeninthisstudy(except

83 phenylalanine),havebeenreportedforsnails(ChurchillandStorey1996),frogs

(StoreyandStorey1986),andthegrainbeetles, Sitophilus granaries and

Cryptolestes ferrugeneus (Fieldsetal.1998).

Themetabolitechangeswehavenotedindicatethatbothdiapauseand rapidcoldhardeninginducetheglycolyticpathway,generatingglucosetoproduce pyruvate,glycerol,andalanine(Fig.6).Whererapidcoldhardeninganddiapause differisintheaerobicportionofcellularrespiration(Krebscycle),which,by inferencefrommetaboliteconcentration,isunalteredforrapidcoldhardeningbut slowedfordiapause.Thisobservationissupportedbypreviousresearchshowing thatoxygenconsumptionisgreatlyreducedforfleshfliesduringdiapause

(Denlingeretal.1972,SlamaandDenlinger1992)andbythereducedKrebscycle enzymeactivitynotedduringdiapauseinotherinsects(KageyamaandOhnishi

1971).Diapausealsodifferedfromrapidcoldhardeninginthatglutaminewas elevatedbyrapidcoldhardening,butnotbydiapause.However,ifglutamine productionisrelatedtothemodulationofheatshockproteinsafteracoldshock

(Phanvijhitsirietal.2005),thensuchupregulationwouldnotbenecessaryduring diapausebecauseheatshockproteintranscriptsarealreadypresentduring diapause(Haywardetal.2005)butnotduringrapidcoldhardening(unpublished data).Whilerapidcoldhardening(inducedbylowtemperature)anddiapause

(inducedbyshortdaylength)inthefleshflyshareanumberofmetabolic similarities,thereareenoughdifferences,especiallyindownregulatedmetabolites, toindicatethatcontrolofthesetwomechanismsofcoldhardeningaredistinct.

84

References

BinoRJ,HallRD,FiehnO,KopkaJ,SaitoK,DraperJ,MikolauBJ,MendesP, RoessnerTunaliU,BealeMH,TretheweyRN,LangeBM,WurteleES,Sumner LW(2004)Potentialofmetabolomicsasafunctionalgenomicstool.Trends PlantSci9,418425 BuchholzA,HurlebausJ,WandreyC,TakorsR(2002)Metabolomics: quantificationofintracellularmetabolitedynamics.BiomolEng19:515 ChenCP,DenlingerDL,andLeeREJr(1987)Coldshockinjuryandrapidcold hardeninginthefleshfly Sarcophaga crassipalpis .PhysiolZool60:297304 ChenCP,Denlinger,DL(1990)Activationofphosphorylase:responsetocoldand heatstressinthefleshfly, Sarcophaga crassipalpis .JInsectPhysiol36:549554 ChinnasamyG,BalAK(2003)Seasonalchangesincarbohydratesofperennial rootnodulesofbeachpea.JPlantPhysiol160:11851192 Chino,H(1958).Cabohydratemetabolisminthediapauseeggofthesilkworm, Bombyx mori II.Conversionofglycogenintosorbitolandglycerolduring diapause.JInsectPhysiol2:112 ChattopadhyayMK,KernR,MistouMY,DandekarAM,UratsuSL,Richarme G,(2004)Thechemicalchaperoneprolinerelievesthethermosensitivityofa dnaK deletionmutantat42°C.JBacteriol186 : 81498152 ChurchillTA,StoreyKB(1989)Metabolicconsequencesofrapidcyclesof temperaturechangeforfreezeavoidngvs.freezetolerantinsects.JInsectPhysiol 35:579586 ChurchillTA,StoreyKB(1996)metabolismandcryoprotectantssynthesis duringfreezinginspringpeepers Pseudacris crucifer .Copeia1996:517525 ConstanzoJP,LeeREJr(2005)Cryoprotectionbyureainaterrestrially hibernatingfrog.JExpBiol,208:40794089 DenlingerDL(1972)Inductionandterminationofpupaldiapausein Sarcophaga (Diptera:Sarcophagidae).BiolBull142:1124

85 DenlingerDL,WillisJH,FraenkelG(1972)Ratesandcyclesofoxygen consumptionduringpupaldiapausein Sarcophaga fleshflies.JInsectPhysiol18: 871882 DiamantS,EliahuN,RosenthalD,GoloubinoffP(2001)Chemicalchaperones regulatemolecularchaperones in vitro andincellsundercombinedsaltandheat stresses.JBiolChem276 : 3958639591 DordeaM,FlocaL,PersecaT(1987)Variationofthecontentoffreeaminoacids inerisilkworm Philosamia ricini pupaeduringdiapauseasinfluencedbythe treatmentoflarvaewithkeratrof.StudiaUniversitatisBabesBolyaiBiologia32: 5659 DouglasAE(2000)Reproductivediapauseandthebacterialsymbiosisinthe sycamoreaphid Drepanosiphum platanoidis .EcologicalEntomology25:256261 DunnWB,EllisDI(2005)Metabolomics:Currentanalyticalplatformsand methodologies.TrendsAnalytChem24:285294 FlannaganRD,TammarielloSP,JoplinKH,CikraIrelandRA,YocumGD, DenlingerDL(1998)Diapausespecificgeneexpressioninpupaeofthefleshfly Sarcophaga crassipalpis .ProcNatlAcadSciUSA95:56165620 FieldsPG,FleuratLessardF,LavenseauL,FebvayG,PeypelutL,BonnotG (1998)Theeffectofcoldacclimationanddeacclimationoncoldtolerance, trehaloseandfreeaminoacidlevelsin Sitophilus granarius and Cryptolestes ferrugeneus (Coleoptera).JInsectPhysiol44:955965 FuchsBC,BodeBP(2006)Stressingoutoversurvival:Glutamineasanapoptotic modulator.JSurgRes131:2640 GotoM,LiYP,KayabaS,OutaniS,SuzukiK(2001)Coldhardinessinsummer andwinterdiapauseandpostdiapausepupaeofthecabbagearmyworm, Mamestra brassicae L.undertemperatureacclimation.JInsectPhysiol47:709 714 GotoM,FujiiM,SuzukiK,SakaiM(1998)Factorsaffectingcarbohydrateand freeaminoacidcontentinoverwinteringlarvaeofEnosima leucotaeniella .J InsectPhysiol44:8794 HaywardSAL,PavlidesSC,TammarielloSP,RinehartJP,DenlingerDL(2005) Temporalexpressionpatternsofdiapauseassociatedgenesinfleshflypupaefrom theonsetofdiapausethroughpostdiapausequiescence.JInsectPhysiol51:631 640 86 HensgensHESJ,MeijerAJ(1980)Inhibitionofureacycleactivitybyhigh concentrationsofalanine.BiochemJ186:14 HorieY,KandaT,MochidaY(2000)Sorbitolasanarresterofembryonic developmentindiapausingeggsofthesilkworm, Bombyx mori .JInsectPhysiol 46:10091016 JoanisseDR,StoreyKB(1995)Temperatureacclimationandseasonalresponses byenzymesincoldhardygallinsects.ArchInsectBiochemPhysiol28:339349 KageyamaT,OhnishiE(1971)Carbohydratemetabolismintheeggsofthe silkworm Bombyx mori II:Anaerobiosisandpolyolformation.Growth, Development,andDifferentiation15:4755 KaplanF,KopkaJ,HaskellDW,ZhaoW,SchillerKC,GatzkeN,SungDY,Guy CL(2004)Exploringthetemperaturestressmetabolomeof Arabidopsis.Plant Physiol136:41594168 KopkaJ(2006)CurrentchallengesanddevelopmentsinGCMSbased metaboliteprofilingtechnology.JBiotechnol124:312322

KruuvJ,GlofcheskiDJ,LepockJR(1988)Protectiveeffectofglutamineagainst freezethawdamageinmammaliancells.Cryobiology25:121130

KukalO,DenlingerDL,LeeREJr.(1991)Developmentalandmetabolicchanges inducedbyanoxiaindiapausingandnondiapausingfleshflypupae.JComp Physiol[B]160:683689 LeeRE,DenlingerDL(1985)Coldtoleranceindiapausingandnondiapausing stagesofthefleshfly, Sarcophaga crassipalpis .PhysiolEntomology10:309315 LeeRE,ChenCP,DenlingerDL(1987a)Arapidcoldhardeningprocessin insects.Science238:14151417 LeeRE,ChenCP,MeachamMH,DenlingerDL(1987b)Ontogenicpatternsof coldhardinessandglycerolproductionin Sarcophaga crassipalpis .JInsect Physiol33:587592 LeeREJr(1991)PrinciplesofInsectLowTemperatureTolerance.In:LeeRE, DenlingerDL(eds)InsectsatLowTemperatures.ChapmanandHall,NewYork andLondon,pp1746 LeeRE,DamodaranK,YiSX,LoriganGA(2006)Rapidcoldhardening increasesmembranefluidityandcoldtoleranceofinsectcells.Cryobiology52: 459463 87 LefevereKS,KoopmanschapAB,DeKortCAD(1989)Changesinthe concentrationsofmetabolitesinhemolymphduringandafterdiapauseinfemale Coloradopotatobeetle Leptinotarsa decemlineata .JInsectPhysiol35:121128 LiYP,GotoM,ItoS,SatoY,SasakiK,GotoN(2001)Physiologyofdiapause andcoldhardinessintheoverwinteringpupaeofthefallwebworm Hyphantria cunea (Lepidoptera:Arctiidae)inJapan.JInsectPhysiol47:11811187 MalmendalA,OvergaardJ,BundyJG,SørensenJG,NielsenNC,LoeschckeV, HolmstrupM(2006)Metabolomicprofilingofheatstress:hardeningand recoveryofhomeostasisin Drosophila .AmJPhysiolRegulIntegrCompPhysiol 291:R205R212 MichaudMR,DenlingerDL(2006)Oleicacidiselevatedincellmembranes duringrapidcoldhardeningandpupaldiapauseinthefleshfly, Sarcophaga crassipalpis .JInsectPhysiol52,10731082 MorganTD,ChippendaleGM(1983)Freeaminoacidsofthehemolymphofthe southwesterncornborer Diatraea grandiosella andtheEuropeancornborer Ostrinia nubilalis inrelationtotheirdiapause.JInsectPhysiol29:735740 OkasakiT,YamashitaO(1981)Changesinglucoseandfructosecontentsduring embryonicdevelopmentofthesilkworm Bombyx mori .JournalofSericultural ScienceofJapan50:190196 OsanaiM,YonezawaY(1986)Changesinaminoacidpoolsinthesilkworm Bombyx mori duringembryoniclife:alanineaccumulationanditsconversionto prolineduringdiapause.InsectBiochem16:373380 OvergaardJ,SorensenJG,PetersenSO,LoeschckeV,HolmstrupM(2005) Changesinmembranelipidcompositionfollowingrapidcoldhardeningin Drosphila melanogaster .JInsectPhysiol51:11731182 PhanvijhitsiriK,MuschMW,RopeleskiMJ,ChangEB(2005)Molecular mechanismsofLglutaminemodulationofheatstimulatedHsp25production. FASEBJ19:A1496A1497 PullinAS,WoldaH(1993)Glycerolandglucoseaccumulationduringdiapause inatropicalbeetle.PhysiologicalEntomology18:7578 RinehartJP,YocumGD,DenlingerDL(2000)Developmentalupregulationof induciblehsp70transcripts,butnotthecognateform,duringpupaldiapauseinthe fleshfly, Sarcophaga crassipalpis .InsectBiochemMolBiol:515521 88 RiversDB,LeeREJr,DenlingerDL(2000)Coldhardinessoftheflypupal parasitoid Nasonia vitripennis isenhancedbyitshost, Sarcophaga crassipalpis .J InsectPhysiol46:99106 SalvucciME(2000)Sorbitolaccumulationinwhiteflies:Evidenceforarolein protectingproteinsduringheatstress.JThermBiol25:353361 SchauerN,SteinhauserD,StrelkovS,SchomburgD,AllisonG,MoritzT, LundgreanK,RoessnerTunali,U,ForbesM,WillmitzerL,FernieAR,KopkaJ (2005)GCMSlibrariesfortherapididentificationofmetabolitesincomplex biologicalsamples.FEBSLett579:13321337 SlamaK,DenlingerDL(1992)Infradiancyclesofoxygenconsumptionin diapausingpupaeofthefleshfly, Sarcohaga crassipalpis ,monitoredbya scanningmicrorespirographicmethod.ArchInsectBiochemPhysiol20:135143 SoPW,FullerBJ(2003)Enhancedenergymetabolismduringcoldhypoxic organpreservation:Studiesonratliverafterpyruvatesupplementation. Cryobiology46:295300 StanicB,JovanovicGalovicA,BlagojevicDP,GruborLajsicG,WorlandR, SpasicMB(2004)Coldhardinessin Ostrinia nubilalis (Lepidoptera:Pyralidae): Glycerolcontent,hexosemonophosphateshuntactivity,andantioxidativedefense system.EuroJEntomol101:459466 StoreyJM,StoreyKB(1983)Regulationofcryoprotectantmetabolisminthe overwinteringgallflylarva Eurosta solidaginis :temperaturecontrolofglycerol andsorbitollevels.JCompPhysiol[B]149:495502 StoreyKB,StoreyJM(1986)Freezetolerantfrogscryoprotectantsandtissue metabolismduringfreezethawcycles.CanJZool64:4956 TangX,PikalMJ(2005)Theeffectsofstabilizersanddenaturantsonthecold denaturationtemperaturesofproteinsandimplicationsforfreezedrying.Pharm Res22:11671175 TomebaH,OshikiriK,SuzukiK(1988)Changesinthefreeaminoacidpoolin theeggsoftheemmafieldcricket Teleogryllus emma (:Gryllidae). ApplEntomolZool23:228233 TouchetteBW,BurkholderJM(2000)Overviewofthephysiologicalecologyof carbonmetabolisminseagrasses.JExpMarBiolEcol250:169205

89 TsumukiH,KanehisaK(1980)Changesinenzymeactivitiesrelatedtoglycerol synthesisinhibernatinglarvaeofthericestemborer Chilo suppressalis .Appl EntomolZool15:285292 TsvetkovaNM,QuinnPJ(1994)Compatiblesolutesmodulatemembranelipid phasebehaviour.In:CossinsAR(ed)Temperatureadaptationofbiological membranes.PortlandPress,London.pp4962 WangHS,KangL(2005)Effectofcoolingratesonthecoldhardinessand cryoprotectantprofilesoflocusteggs.Cryobiology51:220229 WangG,JiangX,WuL,LiS(2005)Differencesinthedensity,sinkingrateand biochemicalcompositionof Centropages tenuiremis (Copepoda:Calanoida) subitaneousanddiapauseeggs.MarEcolProgSer288:165171 WeckworthW,MorganthalK(2005)Metabolomics:frompatternrecognitionto biologicalinterpretation.DrugDiscovToday:Targets10:15511558 YiSX,BaiC(1991)Astudyinchillinducedglycerolproductionby Ostrinia furnacalis larvae.ActaEntomologicaSinica34:129134 YiSX,AdamsTS(2000)Effectofpyriproxyfenandphotoperiodonfreeamino acidconcentrationsandproteinsinthehemolymphoftheColoradopotatobeetle, Leptinotarsa decemlineata (Say).JInsectPhysiol46:13411353 ZytkoviczTH,FitzgeraldEF,MarsdenD,LarsonCA,ShihVE,JohnsonDM, StraussAW,ComeauAM,EatonRB,GradyGF(2001)Tandemmass spectrometricanalysisforamino,organic,andfattyaciddisordersinnewborn driedbloodspots:atwoyearsummaryfromtheNewEnglandNewborn ScreeningProgram.ClinChem47:19371938

90 Table3.1.Metabolitesidentifiedin Sarcophaga crassipalpis metabolomicsamples. Amino acids Sugars and polyols Other metabolites Asparagine (cont’d) 2butanoicacid Glutamate Glucoson 2methylpropanoic Glutamine Glycerol acid Glycine Inositol 2propenoicacid Leucine Mannitol 5aminopentanoic Nglycylalanine Myoinositol1 acid Ornithine phosphate Citrulline Phenylalanine Sorbitol Dihydrouracil Proline Trehalose Galactouronicacid Serine Gammaamino Threonine Metabolic isobutyricacid Tyrosine intermediates Glucopyranoside Valine Aceticacid Glutaricacid βalanine Cystathionine Hydroxybutane Fumaricacid Lactonepentonicacid Sugars and polyols Isocitricacid Metanephrine 3ketoglucose Malicacid Mhydroxymandelic 5ketoglucose Pyruvate acid Erythritol Succinicacid Nbutylamine Erythrose Urea Nonadecanoicacid Fructose Norvaline Galactose Small molecules Oxalicacid Glucose Freeamine Putrescine Freephosphate Trihydroxybutyric Phosphonicacid acid Freesulfate Xylopyranose αglycerophosphoric acid 91

Figure 3.1. Representative GC-MS chromatograph depicting the metabolic profile of S. crassipalpis during pupal diapause (day 30). Identitiesofsomeofthe peaksareprovided,butthisrepresentsonlyasmallportionofthetotalidentified metabolites.Inmostsamples,~62metabolitesoutof159areidentifiableby comparisonwithmassspectrallibrariesaswellasauthenticexternalstandards.

91

25 oC 0.4 1.75 4oC8H4oC8h 1.5 0.3 1.25

1 0.2 0.75 Responseratio 0.5 0.1

0.25

0 0 urea alanine alanine sorbitol glycerol glucose pyruvate ornithine mannose trehalose glutamine betaalanine

Metabolite cystathionine Figure 3.2. Metabolites altered by rapid cold-hardening in Sarcophaga crassipalpis .GCMSpeaksofderivatizedmetabolitesfromwholebodyextractsof S. crassipalpis heldat25 oC(blackbars)werecomparedwithpeaksfrom S. crassipalpis heldfor8hat4 oC(whitebars),atreatmentthatgeneratesmaximumcoldhardening throughtherapidcoldhardeningmechanism.Twoaminoacidsand5other metabolitesaccumulatedinresponsetorapidcoldhardening,while2aminoacidsand 2othermetaboliteswerereducedinabundance.Substanceslistedherewere significantbeyondthep=0.01interval(ttest,p≤0.01,n=6).

92 25 oC PC2 4oC8h

PC1

Figure 3.3. Principal component analysis (PCA) of metabolomic samples from Sarcophaga crassipalpis during maximum rapid cold-hardening. Rawpeakareas fromsampleswerenormalized,analyzedbyPCA,andplottedonanxygraphin accordancewiththeirfirsttwoprincipalcomponents(PC1andPC2).Fromthegraph, itisclearthatsamplestakenfromrapidcoldhardenedpharateadultsheldat4 oCfor 8harephysiologicallydistinctfromsamplestakenfromfliesheldat25 oCas evidencedbyclusteringalongthePC1axis.

93

0.6 nondiapause 1.5 diapause 1.25

0.4 1

0.75

0.5 0.2 Responseratio

0.25

0 0 proline alanine glycine leucine sorbitol glucose glucose glycerol pyruvate pyruvate tyrosine fumarate isocitrate isocitrate aspartate

Metabolite phenylalanine

Figure 3.4. Metabolites altered by diapause in Sarcophaga crassipalpis .GCMS peaksofderivatizedmetabolitesfromwholebodyextractsofnondiapausingpupaeof S. crassipalpis at20 oC(blackbars)werecomparedwithmetabolitepeaksfrompupae thathadbeenindiapauseat20 oCfor30days(openbars).Twoaminoacidsand3 othermetaboliteswereelevatedinresponsetothephotoperiodinduceddiapause, whilelevelsof5aminoacidsand3othermetaboliteswerereduced.Differencesin thelevelsofsubstanceslistedhereweresignificantbeyondthep=0.01interval(ttest, p≤0.01,n=6).

94

nondiapause PC2 diapause

PC1

Figure 3.5. Principal component analysis (PCA) of metabolomic samples from diapausing and non-diapausing pupae of Sarcophaga crassipalpis .Rawpeakareas fromsampleswerenormalized,analyzedbyPCA,andplottedonanxygraphin accordancewiththeirfirsttwoprincipalcomponents(PC1andPC2).Fromthegraph, itisclearthatsamplestakenfromdiapausingpupaearephysiologicallydistinctfrom theirnondiapausingcounterpartsasevidencedbyclusteringalongthePC1axis.

95 Rapid Cold-hardening Diapause

GLN ALA cysta glycerol thionine UP glucose LEU sorbitol pyruvate urea

ASP GLY βALA PHE PRO ORN TYR DOWN mannose fumarate trehalose isocitrate sorbitol Figure 3.6. Venn diagram representation of metabolites that are altered in abundance by rapid cold-hardening (left) and diapause (right) in Sarcophaga crassipalpis .Metabolomicanalysis(GC/MS)revealsthatbothcoldhardyphenotypes ofthefleshflyshare4differentidentifiableupregulatedmetabolites(topcircles),but sharenocommondownregulatedmetabolites(bottomcircles).Severalmetabolites aredistincttooneortheotherformofcoldhardening.

96 CHAPTER4 Metabolomicsrevealsuniqueandsharedmetabolicchangesinresponsetoheatshock, freezing,anddesiccationintheAntarcticmidge, Belgica antarctica . M.RobertMichaud* a,JoshuaB.Benoit a,GiancarloLopezMartinez a,MichaelA.Elnitsky b, RichardE.Lee,Jr. b ,andDavid.L.Denlinger a aDepartmentofEntomology,OhioStateUniversity,318West12 th Avenue,Columbus,OH 432101242,USA. bDepartmentofZoology,MiamiUniversity,212PearsonHall,Oxford,OH45056,USA *correspondingauthor Emailaddress: [email protected] Telephone:6142924477 Fax:6142922180

97

Abstract

Themidge, Belgica antarctica issubjectedtonumerousenvironmentalstressorsduringits twoyearlifecycleontheAntarcticPeninsula,andinresponseithasevolvedasuiteof behavioral,physiological,andlifecyclechangestocounterthesestressors,butthusfaronly alimitednumberofbiochemicaladaptationshavebeenidentified.Inthisstudy,weusea metabolomicsapproachtoobtainabroadoverviewofchangesinenergymetabolism,amino acids,andpolyolsinresponsetothreeofthemidge’smajorstresses:heat,freezing,and desiccation.UsingGCMSanalysis,atotalof75compoundswereidentified.Freezing(

10 oCfor6h)anddesiccation(50%waterloss)elicitedsimilarincreasesinsuccinate,isocitric acid,andglycerol.Freezingincreasedmultiplepolyols,butglycerolwastheonlypolyol elevatedbydesiccation.Heatshock(30 oCfor1h)increasedthepoolsofgammaamino butyricacid(GABA)andαketoglutarate.Anumberofmetabolicchanges,especiallythose inthesugarandpolyolpools,areadaptationsthathavepotentialtoenhancesurvivalduring bothcoldanddesiccation.Thepoolsoffreefattyacidsandhydrocarbonswereaffectedmost bydesiccationandheat;manyofthesealterationsresultedinshiftstowardlipidmetabolism, possiblygeneratingdesiccationresistance.Anincreaseinnonanoicacid(9:0)wascommon toallthreestresses,butthefunctionofthismoleculeremainsunknown.

Keywords :cold,metabolism,polar,insect

98 4.1 Introduction

TheAntarcticmidge, Belgica antarctica ,isthemostsoutherlydistributedfreeliving insectandisspatiallydispersedthroughouttheAntarcticPeninsulaanditsoffshoreislands

(Suggetal.1983).Thisremarkableinsectisactiveduringtheaustralsummeramong pocketsofprimitivevegetationgrowinginrichsubstratenearsealwallowsand penguinrookeries(UsherandEdwards,1984).Thechironomidhasatwoyearlifecycleand overwintersaslarvae(allfourrepresented)inthefrozensubstrate(Suggetal.1983).

Theadultseclose,mate,layeggs,anddiewithina710dperiodduringthesummer.

ThoughairtemperaturesontheAntarcticPeninsularoutinelydropbelow15 oC,the temperatureinitshibernaculum,beneaththecoveroficeandsnow,remainsfairlystable,in therangeof0 oCto7oC(BaustandLee1981).Desiccationisanadditionalabioticstress duringthewinterbecausealloftheavailablewateristiedupasbiologicallyinactiveice,and duringthesummerhighwindsandperiodsofdroughtgenerateahighlydesiccative environment.Furthermore,larvaeareroutinelyexposedtoheatstressduringthesummer; solarradiationgeneratessubstratetemperaturesthatfarexceedtheprevailingair temperatures(>20 oC).TheAntarcticmidge,notsurprisingly,isquiteintolerantofhigh temperature;larvaediewithinaweekat10 oC(Suggetal.1983,BaustandLee1987,Leeet al.2006)andsurviveonlyafewhoursat30 oC(Rinehartetal.2006).

Afewstudiesof B. antarctica haveelucidatedsomeofthephysiologicalmechanisms involvedinstresstolerance.Inresponsetolowtemperature,thisspeciesaccumulatesthree cryoprotectivecompounds:erythritol,glucose,andtrehalose,inamannerdependenton temperatureandgeographiclocation(BaustandEdwards1979,BaustandLee1983).Since thisinsectisfreezetolerant,itisassumedthatthesethreecryprotectivesubstancescontribute 99 tolowtemperaturesurvivalbycolligativelydecreasingtheamountoficethatforms internally(BaustandEdwards1979)andbyhydrogenbondingtoproteinsandmembranes, renderingthemlessvulnerabletodenaturation.Inadditiontotheseknowncryoprotectants, larvaeof B. antarctica constitutivelyproduceasuiteofheatshockproteins(Hsps)knownto enhancebothhighandlowtemperaturetolerancebypreventingorrepairingthermaldamage toproteins(Rinehartetal.2006).Thispotentcombinationoflowmolecularweight cryoprotectantsandconstitutiveHspexpressionpresumablyenables B. antarctica tosurvive therapidtemperaturefluctuationsthatcharacterizethefringesoftheaustralsummerandto toleratefreezingand/orcryoprotectivedehydrationduringthelongpolarwinter.

IncontrasttowhatisknownaboutlowtemperaturestressintheAntarcticmidge, thereislittleinformationavailableonthephysiologicalmechanismsusedbythisspeciesto surviveheatanddesiccation.Eventhoughdesiccationtoleranceisquitepronouncedinthis species(cansurvive70%waterloss,Haywardetal.,2007),fewofthephysiological adjustmentsthataccompanysuchalossinbodywaterhavebeenidentified.Using enzymaticassays,wepreviouslydeterminedthatglycerolandtrehaloseaccumulatein B. antarctica inresponsetodesiccation,andaGCMSanalysisofsurfacehydrocarbonsfrom desiccatedlarvaeindicatedthatthehydrocarbonpoolontheofthisorganismshiftsto longerchainhydrocarbonsasitdehydrates(Benoitetal.2007).

Metabolomics,anemergingfieldconcernedwiththestudyofanorganism’s physiologicalstateatthesubstratelevel,offersameanstoobtainacomprehensiveviewof thechangesintheabundanceofnumerouscompoundssimultaneously(DunnandEllis2005,

WeckworthandMorgantal2005).Samplingisaccomplishedbyextractingsmallmolecules

(a.k.a.metabolites)withgeneralsolventsandderivatizingthemtoimprovechromatographic 100 behavior.Chromatographicanalysisisaccomplishedeitherthoughgaschromatography/mass spectrophotometryorbynuclearmagneticresonance(DunnandEllis2005).Lastly,data analysisformetabolomicsisaccomplishedthroughnormalpeakbypeakanalysisbetween treatments,followedbyamultivariateprinciplecomponentanalysis(PCA)todetermine whetherthetreatmentsdidindeedproducedifferentphysiologicalstatesandtodetermine whichmetabolitescontributethemosttothatchangeinstate(WeckworthandMorganthal

2005).Thedisadvantagesofmetabolomicsarethesemiquantitativenatureofthedataand thelimitationsofchromatographicpeakidentification,butthesedisadvantagesare outweighedbytheunbiasednatureofthedatagatheringandstatistics,theabilitytoeasily comparethesedatawithother–omicsdata,andthevastamountofdataandhypotheses generatedfromthisavenueofresearch(Kopka2006).Metabolomicshasbeenusedfor physiologicalstudiesofplants(Weckworthetal.2004),clinicalscreeningofhumans

(Zytkoviczetal.2001),andthedetailedstudyofmetabolisminbacteria(Buchholzetal.

2002),butthusfarthetechniquehasnotbeenappliedextensivelytoinsectstudies( c.f.

Malmendaletal.2006,MichaudandDenlinger2007).Inthisstudyweusethisapproachto monitorchangesin B. antarctica elicitedbyheatshock,freezing,anddesiccation.

4.2 Materials and Methods

4.2.1 Insect collection and storage Larvaeof Belgica antarctica werecollectedinJanuary2006fromislandsnearPalmer

Station,Antarctica(64 o46’S,64 o43’W)andmaintainedinthelaboratoryat4 oCand100% relativehumidityintheirnaturalsubstrate.InearlyFebruary,thelarvaewereshippedtoour researchlaboratory(TheOhioStateUniversity)wheretheywereheldfortwoweekspriorto 101 experimentation.Larvaewereofmixedstages,butthemajoritywasfourth(final)larval instarandtheotherswerethirdinstars.Larvaemaintainedinthismannerreadilysurvived

>6moinourhomelaboratory.

4.2.2. Stress exposure

Allstressexposures(plustheuntreatedcontrols)wereperformedusing5groupsof

25larvaeheldinEppendorf1.7mlmicrocentrifugetubes(VWRScientific,WestChester,

PA).Tapwater(500l)wasaddedtoeachtube,withtheexceptionofthoseusedinthe desiccationexperiment.Untreatedcontrolswerehomogenizedat4 oC,1hafterremoval fromthesubstrate.Fortheheatshocktreatment,tubescontainingthelarvaewere submergedfor1hina30 oCbath(BrinkmannInstruments,Westbury,NY)containing50% ethyleneglycol,andthelarvaewerehomogenizedimmediatelythereafter.Forthefreezing treatment,tubeswereplacedfor6hat10 oCina50%ethyleneglycolbath,andthelarvae werehomogenizedafterremoval.Forthedesiccationtreatment,larvaewerewashedand placedfor6dat4 oCinaventilatedtubewithinaplasticdesiccatorcontainingan environmentof98.5%RHthatresultedina50%lossoftotalbodywater(Benoitetal.2007).

Followingdesiccation,thelarvaewereimmediatelyhomogenizedat4 oC.

4.2.3. Separation and derivatization

OnemlofdH 2Ocontaining25gheptadecanoicacid(internalstandardnotnormally detectedinpolarsamplesof B. antarctica )and1mlchloroformwereaddedtoeachsample, andthesamplewasvortexedfor30sec.Theresultanttwophasemixturewasallowedtosit for30minandthenvacuumfilteredthroughaglassfiltertoremoveparticulatematterand precipitates.Thefilterwaswashedwith1mlchloroform:methanol:water(2:1:0.8)to removesolubletracemetabolitesfromthefiltermatrix.Afterfiltration,thetwophase 102 mixturewasseparatedintoanaqueousphasecontainingpolarmetabolites(sugars,polyols, aminoacids)andanorganicphasecontainingnonpolarmetabolites(lipids).Theorganic phasewasusedinadifferentexperiment.Theaqueousphasewasplacedunderagentle streamofnitrogenandevaporatedtodrynessatroomtemperature.Thedriedsamplewas immediatelymethoxyaminatedbyadding1.0mlmethoxyaminehydrochlorideinpyridine, incubatedfor1hrat60 oC(turnsclearasmetabolitesdissolve),followedbya16hincubation atroomtemperature.Thesamplewasthentrimethylsilyatedbytheadditionof300l

MSTFAandincubatedat50 oCfor30min.150lofthetrimethylsilyatedsamplewasadded toaglassinsertwithinanautosamplervialandanalyzedwithGCMS.Aqueoussamples processedinthismannerproduceddistinctiveandrepeatablechromatographicpeaksthat differedacrosssamplesby5to60%,withintheexpectedrangeforthistypeofexperiment.

4.2.4. Chromatographic analysis

OnemicroliterofeachsamplewasautoinjectedintoaFinniganTraceGCMSand subjectedtochromatographicanalysis(50450m/z).Theinjectortemperaturewasheldat

280 oC.Theoventemperaturewasrampedfrom50to300 oC,andthetemperatureincrement was5 oCmin 1,whichproducedachromatographofsufficientresolutiontoseparate~175 chromatographicpeakspersample.ThecolumnwasaRestek30mfusedsilicacolumn(I.D.

25mm,95%dimethylsiloxane,5%diphenyl)withheliumgasusedasacarrieratarateof

50ml/min.Sampleswererunusingthesplitlessmode.Aftereachsamplewasrun,theoven remainedat300 oCfor10mintocleanimpuritiesfromthecolumn.

4.2.5. Quantification and data analysis

Individualintegratedpeakareaswereconvertedtoresponseratiosinrelationtothe internalstandard(heptadecanoicacid)bydividingthepeakareaofthemetabolitebythepeak 103 areaoftheinternalstandard.OnewayANOVAwithanacceptablesignificancelevelofp≤

0.05wasperformedoneachmetabolitetodeterminewhichindividualmetaboliteswere alteredwithrespecttothecontrols.Peakidentitiesweredeterminedwherepossibleby comparisonofretentiontimeswithaminoacid,sugar,andpolyolstandardspreparedinthe samemannerasthesamples.MatchesofspectralpeakswiththeNationalInstituteof

StandardsandTechnologies(NIST)andWileyChemicalStructuralLibrariesfurther confirmedorestablishedmetaboliteidentities,providedthematchcarriedanRSIvalue≥700.

Forprincipalcomponentanalysis(PCA),peakareasofmetaboliteswerenormalizedby dividingeachpeakareavaluebythemeanpeakareaforthatcompound,andtheresultant normalizeddatawereenteredintoMetaGeneAlyse1.7(MaxPlanckInstituteofMolecular

PlantPhysiology,Berlin,Germany)andseparatedbytheirprincipalcomponents.Inaddition toPCA,hierarchalclusteringwasperformedusingthesamestatisticalsoftwaretodetermine overallrelatednessbetweenthephysiologicalresponsesof B. antarctica toheat,freezing, anddesiccation.

4.3. Results

4.3.1. General observations

Extractedandderivatizedsamplesisolatedfrom B. antarctica produced chromatographicpeakswithfairlyconsistentretentiontimes(withinafewhundredsofa minute)andexcellentresolution(92%ofpeaksweresingular).Thefirsthalfofeach chromatographcontainedmostlyaminoacids,smallfattyacids,andsmallmolecules(e.g. freephosphate),andthelatterhalfofthechromatographfeaturedsugars,polyols,andlonger fattyacidsandhydrocarbons,althoughsomeoverlapoccurred(e.g.glycerolwasfoundon 104 thefirsthalfofthechromatograph).MetabolitesfromtheglycolyticpathwayandtheKrebs cyclewerefoundthroughoutthechromatographs.Eachpeakwithinatreatmentgroup varied5%to60%inareawhencomparedtopeakareaoftheinternalstandard

(heptadecanoicacid),indicatingamoderateleveloftotalvariationforthisexperiment.The treatmentthatproducedthemostvariationwastheheatshocktreatmentof1hat30 oC.

Atotalof75metabolitesoutof141totalpeakscouldbeidentifiedacrossallsamples inthisexperiment;thisisahighproportionofidentifiedpeaksforametabolomics experiment(Shaueretal.2005).Some(~30)ofthepeaksinthe“unidentified”categoryhad highRSIvalues(>700)butcouldnotbeassignedabiologicalfunctionbasedontheavailable literature,thusthesecompoundswillnotreceivefurthercommentatthistime,butmaybe revisitedasthedatabaseofspectrallibrariesincreases.The75identifiedcompounds included14aminoacids,13sugarsandpolyols,8metabolicintermediates,4small molecules,8fattyacidsandhydrocarbons,and28metabolitesthatdidnotfallintotheabove categories(Table1).

4.3.2. Response to heat-shock

Theresponseratiosofanumberofmetabolitesfrom B. antarctica larvaewere significantlyaltered(ANOVA,df=8,p≤0.05)byheatshock(30 oCfor1h)relativetolarvae continuouslymaintainedat4 oC(Fig.1). Concentrationsoffourtotalmetaboliteswere elevatedbyheatshock(Fig.1A),andsixwerereduced(Fig.1B).Theaminoacidsaspartate

(p=0.019),glycine(p<0.001),andserine(p<1x10 7)allwerereduced(3090%)inresponse toheatshock,butsomederivativesofaminoacids,gammaaminobutyricacid(GABA, p<0.01),norvaline(p=0.019),andputrescine(p=0.031)wereelevated23fold.Twofatty acids,nonanoicacid(9:0,p<0.001)andtetradecanoicacid(14:0,p=0.049)increased23fold 105 intheheatshockedmidges.Threeknowncryoprotectivesugarsandpolyols,sorbitol, glucose,andglycerol(p<0.001forall)weredramaticallydecreasedto30%orlessoftheir levelsinresponsetoheatshockwhencomparedtountreatedmidges.Twointermediatesof cellularrespiration,glycerol3phosphate(p=0.017)andαketoglutarate(p=0.031)increased inresponsetoheatshock,buttheresponseofαketoglutarate,thoughsignificant,wassubject toconsiderablevariation(standarddeviationis>40%ofthemeanforheatshockedmidges).

Inadditiontotheaformentionedmetabolites,freephosphatewasreducedinresponsetoheat shock(p<0.0001).Atotalof24“unknown”metabolitesalsowerealteredinheatshocked larvae;19ofthesewereelevated,and5werereduced(datanotshown).

4.3.3. Response to freezing

Acomparisonbetweentheresponseratiosofchromatographicpeaksfrommidges thathadbeenfrozen6hat10 oCandmidgesheldcontinuouslyat4 oC(ANOVA,df=8, p≤0.05)revealedatotalof16metabolitesthatchangedinconcentrationinresponseto freezing.Twelveofthesemetabolitesincreased(Fig.2A)andfourdecreased(Fig.2B).

Threeconstituentsoftheaminoacidpool(alanine[p<1x10 6],asparagine[p<0.01],and glycine[p<1x10 5])wereelevated23foldbyfreezing,butserinedecreasedtolessthan10% ofitsconcentrationinuntreatedlarvae.Twoaminoacidderivatives,norvaline(p<0.01)and putrescine(p<0.01),increasedinpeakintensitywithrespecttotheiruntreatedcontrols.

Amongthecryoprotectivepolyolsandsugars,sorbitollevelswerereducedtoapproximately

40%ofthelevelsseeninuntreatedmidges,butthisreductionwascounteredbya25fold elevationofthreeotherpolyols:erythritol(p=0.005),glycerol(p<1x10 7),andmannitol

(p<1x10 5).Amongthefattyacids,oleicacid(18:1,p<0.01)decreasedinresponseto freezing,butthevolatilefattyacid,nonanoicacid(9:0,p<10 5),increasedthreefold.Peaks 106 ofdodecane,ashorthydrocarbonfoundonthecuticularsurfaceofthemidge(Benoitetal.,

2007),declinedthreefoldinresponsetofreezing(p=0.0044).TwoKrebscycle intermediates,isocitrate(p<0.01)andsuccinate(p<0.001),doubledinpeakintensity.An additional24“unknown”metaboliteschangedinresponsetothistreatment;21increasedand

3decreased(datanotshown).

4.3.4. Response to desiccation

ANOVAanalysis(df=8,p≤0.05)appliedtotheresponseratiosofpeaksisolatedfrom midgesheldat98.5%RHfor6d(50%lossofbodywater)andmidgesheldcontinuouslyat

4oC,100%RHrevealedatotalof14metabolitepeakalterations.Sevenmetaboliteswere elevated(Fig.3A),andsixwerereduced(Fig.3B).Withintheaminoacidpool,threeamino acids(aspartate[p<0.005],glycine[p=0.03],serine[p<1x10 8])declinedandoneamino acid,asparagine(p=0.018),increased.Amongthesugarsandpolyols,glycerol concentrationsdoubledinresponsetodesiccation(p=0.023),andtwomolecules,sorbitol

(p<0.0005)andglucose(p=0.019),decreasedtoslightlylessthanhalfthelevelsseenin fullyhydratedmidges.Octadecanoicacid(18:0,p=0.028)andnonanoicacid(9:0,p<1x10

5),twofreefattyacids,increased2foldand4fold,respectively.Amongintermediatesof cellularrespiration,desiccationresultedintheaccumulationofglycerol3phosphate

(p=0.04),isocitrate(p<0.005),andsuccinate(p=0.03),allofwhichwereelevated23fold.

Freesulfatelevelswerereducedbydesiccation,butthisreductionwasmodest(p=0.05).A totalof26“unknown”metabolicpeakswerealteredinintensityinresponsetodesiccation.

Ofthese,15wereelevatedand11werereduced.

107 4.3.5. Principle component analysis and clustering

MultivariatePCAstatisticsofnormalizedpeakareasfromallsamplesinthis metabolomicexperimentgivesameasureofthedegreeofseparationofeachtreatmentgroup

(ormetabolicstate)basedonthecontributionofsetsofmetabolites,orprincipalcomponents, totheoverallvariancewithinthedataset.Plottingtheprinciplecomponentsofeachsample withinatreatmentgroupyieldsaclusterofpointsthatcanbecircumscribedspatially,andthe resultantareacanbecomparedwithareasgeneratedbyothertreatmentgroupstodetermine ifthesetreatmentsarephysiologicallydistinctfromoneanother(iftheydonotoverlap).For thisexperiment,noneoftheareasgeneratedbythefourtreatmentclusters(untreated,heat shock,freezing,desiccation)overlapped(Fig.4A).Also,anorthogonalaxismaybedrawn throughallofthesampleclusterswitheachclusteroccupyingadistinctspacealongthataxis, indicatingexcellentseparation.Ofcourse,thisorthogonalcanonlybemathematically describedintermsofbothprinciplecomponents,PC1andPC2.Twoofthefivesamples producedbyheatshock(1hat30 oC)deviatedconsiderablyfromthebulkoftheircluster,but thisvariationdidnotprecludephysiologicaldistinctivenessforthisstressor.Deviationin thesetwosamplesislikelyduetosomeinabilityof B. antarctica tosurviveasevereheat shockat30 oC(Rinehartetal.2006).

Themetabolitescomprisingthefirstprinciplecomponent,PC1,containedα ketoglutarate,glycerol3phosphate,serine,proline,aspartate,glycerol,andsorbitol, accountingfor38%ofthetotalvariationinthisexperiment.Metabolitesthatcomprisedthe secondprinciplecomponentPC2(52%oftotalvariation)includedαketoglutarate,proline, andhydroxyhexadecane.Hierarchalclusteringusingnormalizedresponseratiosofpeak areasacrossallsamples(Fig.4B)demonstratedthatthemetabolicresponseof B. antarctica 108 tofreezinganddesiccationwasthemostsimilar.Themidgesrespondedtoheatshockina mannerthatisconsideredtobeanoutgroupwithrespecttotheuntreatedcontrolandthe responsestofreezinganddessication.

4.4. Discussion

4.4.1. Metabolic response to heat shock

B. antarctica constitutivelyexpressesasuiteofheatshockproteinsthroughoutits larvallife(Rinehartetal.2006).Theheatshockregimeusedinourcurrentstudy(1hat

30 oC)doesnotaffectheatshockexpressionnorisitlethal,buta2hexposuretothis temperatureshutsdownheatshockproteintranscriptexpression,anda3hexposuretothis temperaturekills>50%ofthelarvae(Rinehartetal.2006).Althoughweanticipatedthatour

1hheatshockat30 oCwouldberelativelymild,thevariedresponseweobservedinthis metabolomicexperimentsuggeststhatthistreatmentcausedamajorphysiological disruption.

Inresponsetoheatshock, B. antarctica increasedconcentrationsofαketoglutarate morethan5fold.Inaddition,GABAlevelsmorethandoubled.Thesetwometabolitesare linkedinthatαketoglutarateservesasbothaKrebscycleintermediateandaprecursortothe aminoacidbiosynthesisofglutamineandglutamate.Glutamatemaythenbeconvertedinto

GABA,which,inturn,canbeconvertedintoanotherdownstreamKrebsintermediate

(succinate)tocompletelybypassasectionoftheKrebscyclethatmaybesloweddueto stress(BownandShelp1997).Alternatively,ininsectsGABAservesasanexcitatoryor inhibitory,dependingonthecelltypeinquestion(Gisselmannetal.2004).

Thus,theincreaseinαketoglutarateandGABAmaybeanindicatorthattheKrebscycleis 109 disruptedandmustbebypassedtoallowthemidgetocontinuecellularrespirationduringa heatshock,orGABAsynthesismayberelatedtotheelevationofsomeessentialneural activity(e.g.avoidancebehavior).AlthoughtheGABAbypasshasnotbeenreportedin insects,ithasbeenidentifiedinbacteria(Greenetal.2000),plants(BownandShelp1997), andmammals(Gonzalesetal.1987).GABAisalsoknowntobeelevatedinheatstressed plants(KinnersleyandTurano2000)andtobeinvolvedinneuralprotectionofanoxia exposedturtles(LutzandMilton2004).Inaddition,addingαketoglutaratetoglucose starvedmousecellsleadstoincreasedthermotolerance(Gomesetal.1985).

Anothernotablemetaboliteelevatedbyheatshockin B. antarctica wasa3fold increaseinputrescine,apolyaminederivedfromtheaminoacidarginine.Anelevationof putrescineduetostressisalsoseeninplants(Renautetal.2005)andworms(Hamanaetal.

1995).Putrescineisusedasamarkerforstressinplants(Renautetal.2005)because stressedplantsactivatetheenzyme,argininedecarboxylase,leadingtoputrescineconversion fromarginine(GalstonandSawnhey1990,Borrelletal.1996).Inanimals,theconversion ofargininetoputrescineisinitiallyaccomplishedthroughtheactionofarginase.Arginase showsactivationplasticityinresponsetostressforhumans(Langeetal.2004)andcrabs

(ReddyandBhagyalakshmi1994).Putrescinealsocanregulatetheresponseofheatshock proteins(Basraetal.1997,KoenigshoferandLechneretal.2002)andchangethetopology ofDNAinamannerthatpromotessurvival(Tkachenkoetal.1998).

Glycerol3phosphate,anintermediateofgycolysis,waselevated3foldinthe

Antarcticmidgeinresponsetoheatshock.Thismoleculemayaccumulateduetoareduction intheactivityofadownstreamenzyme(e.g.phosphoglyceratemutase,enolase)oritmaybe presentinhighamountstoreflectextensivemembranerestructuring(AvelangeMacherelet 110 al.2006).Theconcomitant3foldincreaseintetradecanoicacid(14:0)andnonanoicacid

(9:0)lendsfurtherevidenceformembranealterationsinresponsetoheatshockin B. antarctica, asiswellknownfornumerousorganisms(Cossins1983).

Norvaline,anaminoacidderivativeofleucine,increasedmorethan2foldin responsetoheatshock.Thefunctionofthismoleculeforthermalstressisunclear,butitis knownthatnorvalinecanthermostabilizeenzymes(Kachenkoetal.1998)andcan antagonizearginaseactivity(Wheatleyetal.2004).

B. antarctica exhibitedanoverallpatternofmetabolitereductioninresponsetoheat shock.Weobservedareductioninnumerousaminoacids(glycine,serine,aspartate)and polyols(glycerolandsorbitol).Glycineandserinearebiochemicallyrelatedaminoacids thatarebothproductsofapyruvateprecursor,indicatingthattheactivityofserinepyruvate aminotransferasemaybereducedduringheatshock.Thereductionofglycerolandsorbitol pointstotemperaturedependentinhibitionofthealdosereductaseenzyme.Glucose reductionseeninthisstudycouldbedrivingalloftheseglycolysisrelatedchangesinamino acidsandpolyolsbyreducingtheabundanceofsubstratesavailableforglycolysis,thus reducingtherateofalldownstreamprocesses.

4.4.2. Metabolic response to freezing

Seasonalstudiestrackingwholebodyconcentrationsofcryoprotectantsin B. antarctica previouslyreportedthatglycerol,erythritol,sorbitol,glucose,andtrehalose concentrationsincreasedinthespringandfall,whencomparedtothesummer(Baust1980,

LeeandBaust1981).Theseconcentrationsarethoughttobereliantupondietand temperature,butnotphotoperiod(BaustandEdwards1979,BaustandLee1983).

111 Inthepresentstudy,metabolomicsidentifiedanumberofknownandpreviously unknownmetabolicchangesinresponsetofreezingat10 oC.Confirmingpreviousresults, erythritolandglycerolincreasedinresponsetofreezing.Toourknowledge, B. antarctica is theonlyinsectknowntoaccumulateerythritolasacryoprotectant.Anotherpolyol previouslyfoundin B. antarctica ,mannitol(Block1982),increasedinresponsetofreezing, butthisisthefirsttimethatthispolyolhasbeenfoundtochangeinresponsetoastressorin thisspecies.Sorbitoldeclinedinresponsetofreezing,aresultthatrunscountertoprevious studies(Baust1980);however,thesorbitollossdetectedinthisstudyisonashorttimescale

(hours)incomparisontopreviousstudies(days).Overall,threepolyolsincreasedandone decreasedinresponsetofreezing.Allofthepolyolincreasesinthisexperimentlikely contributetocoldsurvivalbydecreasingtheamountoficethatformsinthelarvae.In addition,polyolscancontributenoncolligativelytosurvivalbyhydrogenbindingtoproteins topreventlowtemperaturedenaturation(TangandPikal2005)andbypreventionof membranedamage(TsvetkovaandQuinn1994).Glucoseandtrehalosedidnotchangein responsetoourfreezingregime,althoughbothwerepreviouslyreportedtochangein responsetoseasonalacclimation(LeeandBaust1981,BaustandLee1983).

Thefreeaminoacidpoolwasconsiderablyalteredbyfreezing.Alanine,glycine,and asparagineincreasedwhileserinelevelsdecreased.Glycineandserinearelinkedinthesame gluconeogenicpathway,thusanincreaseofglycineattheexpenseofserineindicatesthatthe enzymeintheinterconversionofglycineandserine,serinetranshydroxymethylase,is affectedbyfreezingtofavorglycineproduction.Glycinelevelsarealsoelevatedina numberofinsectsinresponsetocold(HanzalandJegorov1991,Storeyetal.1993),while serinelevelswerereducedinoverwintering Ostrinia furnacalis (Gotoetal.2001).Glycine 112 servesasaprecursortoglycinebetaine,animportantcryoprotectantinplants(Weibingand

Rajashekar2001),andglutathione,amoleculeessentialformitigatingdamagetooxidative stress(Senthilkumaretal.2004).Glycinealsohasacryopreservativeeffectonproteins in vitro (CarpenterandCrowe1988).Injectionofglycineintomammals(Senthilkumaretal.

2004),aswellastheadditionofthisaminoacidtomammaliancellcultures(Marshetal.

1993),aidscoldsurvival.

Anotherfreeaminoacid,alanine,increasedduetofreezinginthemidge.Alanine upregulationhasbeencorrelatedwithanumberofinsectcoldhardystates(e.g.Fieldsetal.

1998,Riversetal.2000,Gotoetal.2001),includingdiapauseinthefleshfly(Kukaletal.

1991).Thisaminoacidalsoprotectsproteinsfromcoldinactivation(CarpenterandCrowe

1988)andmaycontributetocoldsurvivalbyprovidingalesstoxicendproductthanlactic acidinanenvironmentwheretheKreb’scycleisslowedduetocoldinactivation(as indicatedbytheaccumulationofKrebsintermediatesinthisexperiment).Studiesinplants suggestthatashifttoalaninesynthesisfrompyruvateispreferabletoitsalternative,lactic acid(foranimals),becausealanineislesstoxictocells(TouchetteandBurkholder2000).

Indeed,lacticaciddidnotaccumulateduetofreezinginthisstudy.Thefinalfreeaminoacid elevatedbyfreezingintheAntarcticmidge,asparagine,isalsoelevatedinresponsetocold acclimationintwobeetles(Fieldsetal.1998)andduetodesiccationintheblisterbeetle,

Cysteodemus armatus (Cohenetal.1986).Asparaginemayserveasastoragemoleculefor nitrogenouswaste,whileconcurrentlyservingasanosmolyteduringosmoticstress(Cohen etal.1986).SinceGCMSmetabolomicsalsodeterminedthaturealevelsincreaseddueto freezinginthemidge,anoverallnitrogencycleperturbationislikely.Perturbationofthe nitrogencyclewasalsoobservedwhenthefleshfly, Sarcophaga crassipalpis ,wassubjected 113 tolowtemperaturesfortheinductionofrapidcoldhardening(MichaudandDenlinger2007).

However,ureaapparentlyalsofunctionsasanosmoprotectantandcryoprotectantinfreeze tolerantectotherms(CostanzoandLee2005).Thesimilarityinresponseswenotedto freezinganddesiccationinthisstudy(Fig.4A,B)furtherunderscoresthepointthatosmotic stressisacomponentoffreezinginthisspecies.

Subjectinglarvaeof B. antarcticatofreezingtemperaturesalsocausedsuccinicand isocitricacid,bothKrebscycleintermediates,toaccumulate.Elevationofbothofthese compoundssuggeststhattheenzymesimmediatelydownstreamtothesemetabolites

(succinateandisocitratedehydrogenase)havebeencoldinactivatedasseeningoldfish(Van

DelThillartandSmit1984,Lahnsteineretal.1996).Previousresearchshowedthat B. antarctica doesnothaveanaerobiccompensatorymechanismforlowtemperatures(Leeand

Baust1982),asseeninsomeotherspecies(SommerandPoertner2004,Siddiquietal.

2006),thereforealossofKrebscycleactivityisnotsurprising.Underthesephysiological circumstances,thefrozenmidgeeitherhasgreatlyreducedcellularenergyrequirementsoris derivingitsenergyfromasourceotherthanaerobicrespiration,mostlikelythrough glycolysisorgluconeogenesis.Consideringthefactthatthisinsectdoesnotdevelop appreciablyduringtheAntarcticwinter(Suggetal.1983),theformerexplanationismore likely.

OleicacidanddodecanewerereducedduringfreezingintheAntarcticmidge.

Althoughitmaybesurmisedthatmembranerestructuringandhydrocarbondepositiononthe cuticlewouldresultinalterationsinthelevelsofthesemetabolites,theabsenceofany furtherchangesinthefattyacidorhydrocarbonpoolrenderstheseconclusionsuncertain.

114 Putrescine,norvaline,andnonanoicacidwerealsoelevatedinthemidgeinresponseto6h freezingat10 oCandpresumablyservethesamefunctionsasnotedduringheatstress(see previoussection).

4.4.3. Metabolic response to desiccation

Thelossof50%ofthetotalbodywaterinlarvaechangedtheconcentrationsofa numberofmetabolites,butmostofthesechangeswereseenineithertheheatorthefreezing treatments,aswell(Fig.5).Similartoheatstress,desiccationcausedtheaccumulationof glycerol3phosphateandnonanoicacid,butunlikeheatstressthisaccumulationwascoupled withanincreaseintetradecaneandoctadecanoicacid.Bothoftheseoverallchangesfrom heatanddesiccationpointtowardsshiftsinlipidmetabolism(membranes,surface hydrocarbons),althoughthespeciesoflongchainlipidutilizedisdifferentforthesetwo stresses.Whiletetradecanoicacid(14:0)waselevatedbyheat,octadecanoicacid(18:0)was elevatedbydesiccation.Accumulationoffreefattyacidsiscorrelatedwithdesiccation survivalin Aedes egyptii (SawabeandMogi1999)butmayalsobeamarkerforcellsthat haveenduredmembranestress(Hoekstraetal.2001).Furthermetabolicanalysisusing purifiednonpolarextractswouldpresentaclearerpictureofthechangesinlipidmetabolism oftheAntarcticmidgeduringdesiccation.

Theonlyaminoacidthatincreasedinresponsetodesiccationwasasparagine.The sameresponsewasobservedintheblisterbeetle, Cysteodemus armatus whensubjectedto desiccation(Cohenetal.1986).Because B. antarctica didnotalterlevelsofanyother nitrogenstorageorwastemolecule,itisassumedthatasparaginefunctionsasanosmolyte duringdesiccation.Inaddition,asparticaciddecreasedinresponsetodesiccation,indicating thatasparaginesynthetase,theenzymethatregulatesconversionfromaspartateto 115 asparagine,favorsasparaginesynthesisduringdesiccation.Osmoticstressalsoregulates asparaginelevelsinplants(BraunandFluckiger1984,Kusakaetal.2005)andcrustaceans

(Marangosetal.1989).

Glycineandserinewerereducedinresponsetodesiccation.Thesetwoaminoacids aresynthesizedinacomplexenzymaticreactionthatbranchesfromtheglycolytic intermediate,glycerol3phosphate.Asdeterminedinthisstudy,desiccationincreased glycerol3phosphateconcentrationin B. antarctica ,thereforeoneormoreoftheenzymesin thepathwayofserinebiosynthesiswasinhibitedduringdesiccation.Toourknowledge,a reductioninserineorglycinehasnotbeencorrelatedpreviouslywithcellularsurvivalto desiccation.

Unlikethemultiplepolyolupregulationseeninresponsetothefreezingregime,the onlydetectablepolyolthatincreasedduetodesiccationin B. antarctica wasglycerol.

Glycerolprotectsmembranesandproteinsduringdesiccationinthesamemannerasduring lowtemperaturestress(seeprevioussection).Thisimportantpolyolprotectscellsagainst desiccationinplants(Eastmond2004)andaccumulatesinresponsetodesiccationintheflesh fly, Sarcophaga crassipalpis (Yoderetal.2005).Anincreaseinglycerolcontentdueto desiccationin B. antarctica alsohasnowbeenconfirmedusinganenzymaticassay(Benoit etal.2007).

Desiccationin B. antarctica larvae ledtoareductioninfreesulfatelevels.Free sulfateparticipatesinanumberofbiologicalfunctions,butthemostnotableisthe involvementwiththeglutathioneStransferasedetoxificationsystem.Reductionoffree

116 sulfateinanenvironmentofosmoticstressmayalsohelptopreservemembrane integrityifcoupledwithincreasesinotheranions(Santarius1986),butincreasesinother anionswerenotdetected.

Desiccation,likefreezing,elicitedanaccumulationofisocitricandsuccinicacid, indicatingageneralinhibitionofaerobicmetabolism.Inaddition,glucoselevelsdropped andtheglycolyticintermediate,glycerol3phosphate,increased.Basedonthesetwo metabolitechanges,itislikelythattheglycolyticpathwayisinhibitedduringdesiccation,as well.Theincreaseinglycerollevelsmayindicatethatthegluconeogenicpathwayremains activeduringdesiccation.Becauseoftheseverityofthewaterloss(50%isenoughto producesomemortalityin B. antarctica larvae),itisdifficulttodeterminewhetherthe inhibitionofcentralcellularmetabolismisanadaptiveresponseorindicativeofadamaged physiologicalstate.

4.4.4. Summary

GCMSbasedmetabolomicssuccessfullyidentifiedanumberofpolyols,sugars, aminoacids,andintermediatesofcellularmetabolismthatwerealteredinresponsetoheat shock,freezing,anddesiccationinlarvaeoftheAntarcticmidge, B. antarctica .AVenn diagramsummarizingallmetabolicchanges(Fig5)showsthatdesiccationandfreezingshare thegreatestnumberofelevatedmetabolites,butdesiccationandheatshocksharethegreatest numberofreducedmetabolites.PrincipleComponentAnalysisandHeirarchalClustering determinedfreezinganddesiccationtobethemostsimilar,mostlikelybecauseboth introduceosmoticstress.Nonanoicacidwastheonlymetaboliteelevatedinresponsetoall threestressors(Fig5A),but,atthistime,nofunctionforthismoleculecanbesurmised

117 beyondapotentialbuildingblockforsynthesisoflongerchainfattyacids.Thesame perplexityliesintheubiquitousreductionofserineinresponsetoallthreestressesexamined inthisstudy.

HeatshockinducedmetabolitesconsistentwiththeGABAbypass(GABA,α ketoglutarate).Freezinginducedtheproductionofmultiplepolyols(glycerol,erythritol, mannitol)andaninhibitionoftheKrebscycle(isocitricacid,succinicacid).Frozenlarvae alsodisplayevidenceofshiftingnitrogenequivalents(arparagine,urea)andactivedefense fromoxidativestress(glycine).DesiccatingthelarvaereducedtheactivityofboththeKrebs cycle(isocitricacid,succinicacid)andglycolysis(glycerol3phosphate,glycerol,glucose).

Allthreestressescausedmetabolitesinvolvedwithlipidmetabolism(glycerol3phosphate, tetradecanoicacid(14:0),oleicacid(18:1),octadecanoicacid(18:1),dodecane)tochange, indicatingthatlipidsplayanimportantroleinrespondingtotheseabioticchallenges.There appearstobenogeneralizedresponsetoabioticstressintheAntarcticmidge,butrather,the midge’smetabolicreactiontothesestressorsishighlycontrolledandspecificallytailored.

Acknowledgements :WearegratefultothestaffatPalmerstationforfacilitatingourwork inAntarcticaandtoRichardSessleroftheCampusChemicalInstrumentCenteratTheOhio

StateUniversityforguidanceintheanalysisofsamples.Thisworkwassupportedinpartby grantsOPP0337656andOPP0413786fromthePolarProgramoftheNationalScience

Foundation.

118 References

AvelangeMacherel,M.H.,LyVu,B.,Delauna,J.,Richomme,P.,Leprince,O.,2006.NMR metaboliteprofilinganalysisrevealschangesinphospholipidmetabolismassociatedwiththe reestablishmentofdesiccationtoleranceuponosmoticstressingerminatedradiclesof cucumber.Plant,Cell,andtheEnvironment29,471482. Basra,R.K.,Basra,A.S.,Malik,C.P.,Grover,I.S.,1997.Arepolyaminesinvolvedinthe heatshockprotectionofmungbeanseedlings?BotanicalBulletinofAcademiaSinica38, 165169. Baust,J.G.,Edwards,J.S.,1979.MechanismsoffreezingtoleranceinanAntarcticmidge, Belgica antarctica .PhysiologicalEntomology4,15. Baust,J.G.,Lee,R.E.,Jr.,1981.Environmental“homeothermy”inanAntarcticinsect. AntarcticJournaloftheUnitedStates15,170172. Baust,J.G.,LeeR.E.,Jr.,1983.Populationdifferencesinantifreeze/cryprotectant accumulationpatternsinanAntarcticinsect.OIKOS40,120124. Baust,J.G.,Lee,R.E.,Jr.,1987.MultiplestresstoleranceinanAntarcticterrestrial : Belgica antarctica .Cryobiology24,140147. Benoit,J.B.,LopezMartinez,G.,Michaud,M.R.,Elnitsky,M.A.,Lee,R.E.,Denlinger, D.L.,2007.MechanismstoreducedehydrationstressutilizedbylarvaeoftheAntarctic midge, Belgica antarctica .Submittedforpublication(Jan.2007). Borrell,A.,Besford,R.T.,Altabella,T.,Masgrau,C.,Tiburcio,A.F.,1996.Regulationof argininedecarboxylasebyspermineinosmoticallystressedoatleaves.PhysiologyofPlants 98,105110. Bown,A.R.,B.J.Shelp,1997.Themetabolismandfunctionsofγaminobutyricacid.Plant Physiology115,15. Braun,S.,Fluckiger,W.,1984.IncreasedpopulationoftheaphidAphis pomi atthe motorway2:theeffectofdroughtanddeicingsalt.EnvironmentalPollutionSeriesA. EcologicalandBiolgical36,261270. Buchholz,A.,Hurlebaus,J.,Wandrey,C.,Takors,R.2002.Metabolomics:quantificationof intracellularmetabolitedynamics.BiomolecularEngineering19,515. Carpenter,J.F.andCrowe,J.H.,1988.Themechanismofcryoprotectionofproteinsby solutes.Cryobiology25,244255.

119 Cossins,A.R.,1983.Theadaptationofmembranestructureandfunctiontochangesin temperature.In:Cossins,A.R.,Sheterline,P.(eds)Cellularacclimitisationtoenvironmental change.CambridgeUniversityPress,Cambridge,pps.331. Costanzo,J.P.andLee,R.E.,Jr.,2005.Cryoprotectionbyureainaterrestriallyhibernating frog.JournalofExperimentalBiology208,40794089. Dunn,W.B.,Ellis,D.I.(2005).Metabolomics:Currentanalyticalplatformsand methodologies.TrendsinAnalyticalChemistry24:285294. FieldsP.G.,FleuratLessard,F.,Lavenseau,L.,Febvay,G.,Peypelut,L.,Bonnot,G(1998) Theeffectofcoldacclimationanddeacclimationoncoldtolerance,trehaloseandfreeamino acidlevelsin Sitophilus granarius and Cryptolestes ferrugeneus (Coleoptera).Journalof InsectPhysiology44,955965. Galston,A.W.,Sawhney,R.K.,1990.Polyaminesinplantphysiology.PlantPhysiology94, 406410. Gisselmann,G.,J.Plonka,H.Pusch,H.Hatt. Drosophila melanogaster GRDandLCCH3 subunitsformmultimericGABAgatedionchannels.BritishJournalofPharmacology142, 409413. Gomes,M.I.,Kim,W.J.,Lively,M.K.,Amos,H.,1985.Heatshocktreatmentlethalfor mammaliancellsdeprivedofglucoseandglutamineprotectionbyalphaketoacids. BiochemicalandBiophysicalResearchCommunications131,10131019. Gonzalez,M.P.,OsetGasque,M.J.,Solves,A.G.,Canadas,S.,1987.Succinicsemialdehyde dehydrogenaseactivityinbovineadrenalmedullaandbloodplatelets:acomparativestudy withthebrainenzyme.ComparativeBiochemistryandPhysiologyB86,489492. Goto,M.,Li,Y.P.,Kayaba,S.,Outani,S.,Suzuki,K.,(2001)Coldhardinessinsummerand winterdiapauseandpostdiapausepupaeofthecabbagearmyworm, Mamestra brassicae L. undertemperatureacclimation.JournalofInsectPhysiology47:709714 Green,L.S.,Li,Y.,Emerich,D.W.,Bergersen,F.J.,Day,D.A.,2000.ofα ketoglutaratebya sucA mutantof Bradyrhizobium japonicum :evidenceforanalternative tricarboxylicacidcycle.JournalofBacteriology182,28382844. GruborLajsic,G.,Block,W.,Jovanovic,A.,Worland,R.,1996.Antioxidantenzymesin larvaeoftheAntarcticfly, Belgica antarctica .CryoLetters17,3942. Hamana,K.,Hamana,H.,Shinozawa,T.,1995.Alterationsinpolyaminelevelsof nematode,earthworm,leech,andplanarianduringregeneration,temperatureandosmotic stress.ComparativeBiochemistryandBiophysiology111B,9197. 120 Hanzal,R.andJegorov,A.(1991).Changesinfreeaminoacidcompositioninhaemolymph oflarvaeofthewaxmoth, Galleria mellonella L.,duringcoldacclimation.Comparative BiochemistryandPhysiology100,957962. Hayward,S.A.L.,Pavlides,S.C.,Tammariello,S.P.,Rinehart,J.P.,Denlinger,D.L (2005).Temporalexpressionpatternsofdiapauseassociatedgenesinfleshflypupaefrom theonsetofdiapausethroughpostdiapausequiescence.JournalofInsectPhysiology51, 631640. Hoekstra,F.A.,Golovina,E.A.,Tetteroo,F.A.A.,Wolkers,W.F.,2001.Inductionof desiccationtoleranceinplantsomaticembryos:howexclusiveistheprotectiveroleof sugars?Cryobiology43,140150. Kinnersely,A.M.,Turano,F.J.,2000.Gammaaminobutyricacid(GABA)andplant responsestostress.CriticalReviewsinPlantSciences19,479510. Koenigshofer,H.,Lechner,S.,2002.Arepolyaminesinvolvedinthesynthesisofheatshock proteinsincellsuspensionculturesoftobaccoandalfalfainresponsetohightemperature stress?PlantPhysiologyandBiochemistry40,5159. Kopka,J.(2006).CurrentchallengesanddevelopmentsinGCMSbasedmetabolite profilingtechnology.JournalofBiotechnology124:312322. Kukal,O.,Denlinger,D.L.,Lee,R.E.,Jr.,1991.Developmentalandmetabolicchanges inducedbyanoxiaindiapausingandnondiapausingfleshflypupae.JournalofComparative PhysiologyB160:683689 Kusaka,M.,Ohta,M.,Fujimura,T.,2005.Contributionofinorganiccomponentstoosmotic adjustmentandleaffoldingfordroughttoleranceinpearlmillet.PhysiologiaPlantarum125, 474489. Lahnsteiner,F.,Berger,B.,Weisman,T.,Patzner,R.,1996.Changesinmorphology, physiology,metabolism,andfertilizationcapacityofrainbowtroutsemenfollowing cryopreservation.ProgressiveFishCulturist58,149159. Lange,P.S.,Langley,B.,Lu,P.,Ratan,R.R.,2004.Novelrolesforarginaseincellsurvival, regeneration,andtranslationinthecentralnervoussystem.JournalofNutrition134,2812S 2817S. Lee,R.E.,Jr.,Baust,J.G.,1982.Absenceofmetaboliccoldadaptationandcompensatory acclimationintheAntarcticfly, Belgica antarctica .JournalofInsectPhysiology28,725 729. Lee,R.E.,Jr.,Baust,J.G.,1981.SeasonalpatternsofcoldhardinessinAntarcticterrestrial arthropods.ComparativeBiochemicalPhysiology70,579582. 121 Lee,R.E.,Jr.,Denlinger,D.L.1985.Coldtoleranceindiapausingandnondiapausingstages ofthefleshfly, Sarcophaga crassipalpis .PhysiologicalEntomology10,309315. Lee,R.E.,Jr.,Chen,C.P.,Denlinger,D.L.1987a.Arapidcoldhardeningprocessininsects. Science238:14151417. Lee,R.E.,Jr.Chen,C.P.,Meacham,M.H.,Denlinger,D.L.1987b.Ontogenicpatternsof coldhardinessandglycerolproductionin Sarcophaga crassipalpis .JournalofInsect Physiology33,587592. Lee,R.E.,Jr.,1991.Principlesofinsectlowtemperaturetolerance.In:Lee,R.E.,Jr., Denlinger,D.L.,(Eds.),InsectsatLowTemperatures.ChapmanandHall,NewYorkand London,pp.1746. Lee,R.E.,Jr.,Elnitsky,M.A.,Rinehart,J.P.,Hayward,S.A.L.,Sandro,L.H.,Denlinger, D.L.,2006.RapidcoldhardeningincreasesthefreezingtoleranceoftheAntarcticmidge Belgica antarctica .TheJournalofExperimentalBiology209,399406. Lutz,P.L.,Milton,S.L.,2004.Negotiatingbrainanoxiasurvivalintheturtle.TheJournalof ExperimentalBiology207,31413147. Malmendal,A.,Overgaard,J.,Bundy,J.G.,Sørensen,J.G.,Nielsen,N.C.,Loeschcke,V., Holmstrup,M.2006.Metabolomicprofilingofheatstress:hardeningandrecoveryof homeostasisin Drosophila .AmericanJournalofPhysiologyRegulatoryIntegrativeand ComparativePhysiology291,R205R212. Marangos,C.,Guissi,A.,Ceccaldi,H.J.,1989.Variationsoffreeaminoacidleveland ammoniainthepostlarvaeof Penaeus japonicus asafunctionofsalinityand osmoticstress.BiochemicalSystematicsandEcology17,5968. Marsh,D.C.,Vreugdenhil,P.K.,Mack,V.E.,Belser,F.O.,Southard,J.H.,1993.Glycine protectshepatocytesfrominjurycausedbyanoxia,coldischemiaandmitochondrial inhibitors,butnotinjurycausedbycalciumionophoresoroxidativestress.Hepatology17, 9198. Michaud,M.R.,Denlinger,D.L.,2007.Shiftsinthecarbohydrate,polyol,andamino acidpoolsduringrapidcoldhardeninganddiapauseassociatedcoldhardeninginflesh flies( Sarcophaga crassipalpis ):ametabolomiccomparison.Submittedforpublication (Dec.2006). Reddy,P.S.,Bhagyalakshmi,A.,1994.Changesintheoxidativemetabolisminselected tissuesofthecrab( Scylla serrata )inresponsetocadmiumtoxicity.Ecotoxicologyand EnvironmentalSafety29,255264. 122 Renaut,J.,Hoffmann,L.,Hausman,J.F.,2005.Biochemicalandphysiologicalmechanisms relatedtocoldacclimationandenhancedfreezingtoleranceinpoplarplantlets.Physiologia Plantarum125,8294. Rinehart,J.P.,Hayward,S.A.L.,Elnitsky,M.A.,Sandro,L.H.,Lee,R.E.,Jr.,Denlinger, D.L.,2006.Continuousupregulationofheatshockproteinsinlarvae,butnotadults,ofa polarinsect.ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesof America103,1422314227. Rivers,D.B.,Lee,R.E.,Jr.,Denlinger,D.L.,2000.Coldhardinessoftheflypupalparasitoid Nasonia vitripennis isenhancedbyitshost, Sarcophaga crassipalpis .JournalofInsect Physiology46:99106. Sawabe,K.,Mogi,M.,1999.Differencesinenergymetabolismandadultdesiccation resistanceamongthree Aedes ( Stegomyia )species(Diptera:Culicidae)fromSouthSulawesi, Indonesia.JournalofMedicalEntomology36,101107. Schauer,N.,Steinhauser,D.,Strelkov,S.,Schomburg,D.,Allison,G.,Moritz,T., Lundgrean,K.,RoessnerTunali,U.,Forbes,M.,Willmitzer,L.,Fernie,A.R.,Kopka,J., 2005.GCMSlibrariesfortherapididentificationofmetabolitesincomplexbiological samples.FEBSLetters579,13321337. Santarius,K.A.1986.FreezingofisolatedthykaloidmembranesincomplexmediaI:the effectsofpotassiumandsodiumchloridenitrateandsulfate.Cryobiology23,168176. Senthilkumar,R.,Viswanathan,P.,Nalini,N.2004.Effectofglycineonoxidativestressin ratswithalcoholinducedliverinjury.Pharmazie59,5560. SiddiquiK.S.,Cavicchioli,R.,2006.Coldadaptedenzymes.AnnualReviewof Biochemistry75,304433. Sommer,A.M.,Poertner,H.O.,2002.Metaboliccoldadaptationinthelugworm Arenicola marina :comparisonofaNorthSeaandaWhiteSeapopulation.MarineEcologyProgress Series240,171182. Storey,K.B.,Churchill,T.A.andJoanisse,D.R.(1993).Freezetoleranceinhermitflower beetle( Osmoderma eremicola )larvae.JournalofInsectPhysiology39,737742. Sugg,P.,Edwards,J.S.,Baust,J.,1983.Phenologyandlifehistoryof Belgica antarctica ,an Antarcticmidge(Diptera:Chironomidae).EcologicalEntomology8,105113. Tang,X.,PikalM.J.,2005.Theeffectsofstabilizersanddenaturantsonthecolddenaturation temperaturesofproteinsandimplicationsforfreezedrying.PharmacologicalResearch22, 11671175 123 Tkachenko,A.G.,Pshenichnov,M.R.,Salakhetdnova,O.Y.,Nesterova,L.Y.,1998.Therole ofputrescineandpotassiumtransportintheregulationofDNAtopologyduring Escherichia coli adaptationtoheatstress.Mikrobiologiya67,601606. Tsvetkova,N.M.,Quinn,P.J.,1994.Compatiblesolutesmodulatemembranelipidphase behaviour.In:Cossins,A.R.,(Ed.),Temperatureadaptationofbiologicalmembranes. PortlandPress,London.pp.4962. Touchette,B.W.,Burkholder,J.M.,2000.Overviewofthephysiologicalecologyofcarbon metabolisminseagrasses.JournalofExperimentalMarineBiologyandEcology250:169 205. Usher,M.B.,Edwards,M.,1984.AdipteranfromsouthoftheAntarcticcircle: Belgica antarctica (Chironomidae),withadescriptionofitslarva.BiologicalJournaloftheLinnean Society23,1931. vandenThillart,G.,Smit,H.,1984.Carbohydratemetabolismofgoldfish Carassius auratus :Effectsoflongtermhypoxiaacclimationonenzymepatternsofredmuscleand whitemuscleandliver.JournalofComparativePhysiologyB154,477486. Weckworth,W.,Morganthal,K.2005.Metabolomics:frompatternrecognitiontobiological interpretation.DrugDiscoveryToday:Targets10,15511558. Weibing,X.,Rajashekar,C.B.2001.Glycinebetaineinvolvementinfreezingtoleranceand waterstressinArabidopsis thaliana .EnvironmentalandExperimentalBotany46,2128. Wheatley,D.N.,Phillip,R.,Campbell,E.,2003.Argininedeprivationandtumourcelldeath: arginaseanditsinhibition.MolecularandCellularBiochemistry244,177185. Zytkovicz,T.H.,Fitzgerald,E.F.,Marsden,D.,Larson,C.A.,Shih,V.E.,Johnson,D.M., Strauss,A.W.,Comeau,A.M.,Eaton,R.B.,Grady,G.F.2001.Tandemmassspectrometric analysisforamino,organic,andfattyaciddisordersinnewborndriedbloodspots:atwoyear summaryfromtheNewEnglandNewbornScreeningProgram.ClinicalChemistry47,1937 1938. 124 Table 4.1. SelectedmetabolitesidentifiedinmetabolomicsamplesfromtheAntarcticmidge, Belgica antarctica . Amino acids Metabolic intermediates Other metabolites βalanine Aceticacid 2butanoicacid Asparagine Cystathionine 2methylpropanoicacid Glutamate Fumaricacid 2propenoicacid Glutamine Isocitricacid 4aminobutanoicacid Glycine Malicacid 5aminopentanoicacid Leucine Pyruvate 8hydroxysclerodin Nglycylalanine Succinicacid αglycerophosphoricacid Ornithine Urea Citrulline Phenylalanine Dihydrouracil Proline Small molecules Galactouronicacid Serine Freeamine δaminolevulinicacid Threonine Freephosphate δaminobutyricacid(GABA) Tyrosine Phosphonicacid Glucopyranoside Valine Freesulfate Glutaricacid Hydroxybutane Sugars and polyols Fatty acids and Isovalericacid 3ketoglucose hydrocarbons Lactonepentonicacid 5ketoglucose Dodecane Metanephrine Erythritol Hexanoicacid(6:0) Myoinositol1phosphate Erythrose Linoleicacid(18:2) Mhydroxymandelicacid Fructose Nonanoicacid(9:0) Nbutylamine Galactose Octadecanoicacid(18:0) Nonadecanoicacid Glucose Oleicacid(18:1) Norvaline Glucoson Tetradecane Oxalicacid Glycerol Tetradecanoicacid(14:0) Putrescine Inositol ProstaglandinF2 Mannitol Trihydroxybutyricacid Myoinositol1phosphate Xylopyranose Sorbitol 125 2 A 25oC4oC 30oC1hr30 oC1h

1.5

1

0.5

0 α (9:0) acid(14:0) butyricacid ketoglutarate tetradecanoic nonanoicacid gammaamino Responseratio

18 B

12

6

0 serine glycine sorbitol glucose glycerol aspartate Metabolite

Figure 4.1. Metabolites elevated (A) or reduced (B) in larvae of the Antarctic midge, Belgica antarctica by 1 h heat shock at 30 oC.GCMSpeaksofderivatized metabolitesfromwholebodyextractsoflarvaeheldat4 oC(whitebars,untreated)were comparedwithpeaksobservedfollowingheatshock(blackbars).Fourmetabolites accumulatedinresponsetoheatshockwhile3aminoacidsand3othermetaboliteswere reducedinabundance.Allbarsaremeans±SDoffivedeterminations.Substanceslisted hereweresignificantlydifferentbeyondp=0.05(ANOVA,p≤0.05,df=8).

126 o A 25oC4 C o 4 10oC6hr10 C6h

3

2

1

0 urea alanine glycine glycerol mannitol erythritol norvaline Responseratio isocitrate succinate putrescine 20 asparagine B nonanoicacid(9:0) 15

10

5

0 serine sorbitol (18:1) oleicacid Metabolite dodecane

Figure 4.2. Metabolites elevated (A) or reduced (B) in larvae of the Antarctic midge, Belgica antarctica by a 6 h freezing at -10 oC.GCMSpeaksofderivatized metabolitesfromwholebodyextractsoflarvaeheldat4 oC(whitebars,untreated)were comparedwithpeaksobservedfollowingfreezing(blackbars).Twelvemetabolites accumulatedinresponsetofreezing,including3aminoacids,3polyols,2Krebscycle intermediates,and4othermetabolites.Fourmetabolitesdecreased.Substanceslisted hereweresignificantlydifferentbeyondp=0.05(ANOVA,p≤0.05,df=8).Allbarsare means±SDoffivedeterminations.

127 A controlhydrated 50%waterloss50%waterloss 2

1.5

1

0.5

0 glycerol Responseratio isocitrate (9:0) succinate glycerol3 phosphate asparagine acid(18:0) octadecanoic nonanoicacid 18 B

12

6

0 serine glycine sorbitol glucose aspartate

Metabolite freesulfate Figure 4.3. Metabolites elevated (A) or reduced (B) by desiccation (5 d at 98% RH, resulting in a 50% water loss).GCMSpeaksofderivatizedmetabolitesfromwhole bodyextractsoflarvaeheldat4 oC(whitebars,untreated)werecomparedwithpeaks fromlarvaeheldfor5daysat98%RH(blackbars).Eightmetabolitesincreasedin abundance,including1aminoacid,1polyol,3Krebscycleintermediates,2fattyacids, and1othermetabolite.Sixmetabolitesdecreased(B).Substanceslistedherewere significantlydifferentbeyondp=0.05(ANOVA,p≤0.05,df=8).Allbarsaremeans±SD offivedeterminations. 128 8 A untreated 6

4

2 30 oC1h

PC2 0

o 2 10 C6h

4

50%waterloss 6 10 5 0 5 10 15 PC1

B heat

control

cold

desiccation Figure 4.4. Multivariate analysis of metabolomic data derived from larvae of the Antarctic midge Belgica antarctica subjected to heat shock, freezing, and desiccation. PanelAillustratesthatplottingthefirsttwoprinciplecomponentsofall samplesofthestressedmidgesresultsindistincttreatmentdependentclusteringalongan orthogonalaxisthatincludesbothprinciplecomponents(MetGenAlysev.1.7). Hierarchalclusteringanalysis(PanelB)demonstratesthattheresponsesofthemidgeto coldanddesiccationsharethegreatestsimilaritywhencomparedtoallothertreatment types,andthecladecontainingthesetwostressorsismoredissimilartoheatshocked midgesthanitistotheuntreatedmidgesheldcontinuouslyat4 oC.

129 A. Elevated metabolites

Heat (1 h 30 oC) Cold (6 h -10 oC)

alanine tetradecanoic acid urea αketoglutarate putrescine mannitol GABA norvaline glycine erythritol nonanoic acid succinate isocitric acid glycerol3P glycerol asparagine

tetradecane octadecanoic acid

Desiccation (50% water loss) B. Reduced metabolites

Heat (1 h 30 oC) Cold (6 h -10 oC)

glycerol oleicacid

freephosphate dodecane

serine glycine sorbitol

glucose aspartate

freesulfate

Desiccation (50% water loss) Figure 4.5. Venn diagrams illustrating the overlap of elevated (above) and reduced (below) metabolites in response to three abiotic stressors in the Antarctic midge, Belgica antarctica . 130 APPENDICES AppendixA

Figure A.1. Survival of Sarcophaga crassipalpis injected with heat shock protein 23 (A) or heat shock protein 70 (B) double-stranded RNA. Fliesduringthewandering phaseoflarvaldevelopmentwereinjectedwitheither1ldistilledwater(dottedbars)or 1lofdsRNAderivedfromthesequenceoftheheatshockprotein(blackbars).The flieswereallowedtodevelopinto7dayadults(25oC)andthenexposedtoexperimental lowtemperaturetreatments(CNT=notreatment[25 oC],RCH=2hat0 oC,CS=20min at10 oC,RCH+CS=2hat0 oCfollowedby20minat10 oC).Survivalwasrecorded after24hoursofrecoveryat25 oC.Theonlytreatmentthatshowedsignificant differencefromthewaterinjectedsamplewereRCH+CSfliesthathadbeeninjected withdsRNAfromheatshockprotein23.Numberabovebarsrepresentthetotalnumber offliestestedforeachgroupinthreeseparatetrials.Barsrepresentthemean±standard deviationforthreeseparatetrials.Asterisksrepresentsignificancebeyondp<0.05(ttest, df=4). (Figureonfollowingpage) 131

125% A 27 36 27 33 * 100% 30

75% 30 39 50% * 41 PercentSurvival 25%

0% CNT RCH CS RCH+CS 125% B 24 33 33 36 100% 30* 39 *

75% 36 48

50% PercentSurvival

25%

0% CNT RCH CS RCH+CS

Figure A.1. Survival of Sarcophaga crassipalpis injected with heat shock protein 23 (A) or heat shock protein 70 (B) double-stranded RNA.

132 AppendixB Gene Name Upregulated Treatment Sarcophaga NorthernResult probe CG1167 ras64B 6.10 8hat0 oC yes Nohybridization CG1520 2.27 8hat0 oC no Nohybridization CG1987 Rbp1like 3.46 8hat0 oC no Nohybridization CG2961 unknown 4.93 8hat0 oC no Nohybridization CG3301 oxidoreductase 1.84 2hat0 oC no Nohybridization CG4038 snRNPprotein 4.12 8hat0 oC no >5bands CG4636 SCAR 2.16 8hat0 oC no Nohybridization CG6180 kinase 1.81 2hat0 oC no Nohybridization inhibitor CG6702 calbindin 3.44 8hat0 oC no Nohybridization CG6987 SF2 2.98 8hat0 oC no Nohybridization CG8597 lark 1.80,3.50 CS,8hat no Nohybridization 0oC CG8756 tachycitin 1.60,2.00 CS,8hat no Nohybridization 0oC CG8954 smaug 3.34 8hat0 oC no Nohybridization CG9359 βtubulin85D 1.60,2.40 CS,8hat yes Variedresults 0oC CG9538 Ag5r 1.71 2hat0 oC no Nohybridization CG10021 bowl 4.59 8hat0 oC no Nohybridization CG10287 GASP 1.72,1.75 CS,2hat no Nohybridization 0oC CG11512 GST 1.70,2.11 CS,8hat no Nohybridization 0oC CG12523 cupredoxin 3.47 8hat0 oC no Nohybridization CG15520 capability 1.73 8hat0 oC no Nohybridization CG15731 unknown 3.47 8hat0 oC no Nohybridization CG16884 unknown 1.75,3.22 CS,8hat no Nohybridization 0oC CG30101 unknown 2.40,1.95, CS,2hat no Nohybridization 3.37 0oC,8hat 0oC TableB.1.Selectgenesdetectedasupregulatedinmicroarraysofcoldshockedand rapidcoldhardened Sarcophaga crassipalpis andtheresultsofNorthernblot. 133 AppendixC

A 100

75

50

PercentSurvival 25

0 Control CSselect RCHselect

B 75

50

25 Percent Survival Percent

0 Control CSselect RCHselect

Figure C.1. Survival of cold-selected strains of Sarcopahaga crassipalpis to cold shock (A) and rapid cold-hardening followed by a cold shock (B). Threecoloniesof fliesthathadbeenselectedagainsta1hcoldshockat10 oC(CSselect)andthree coloniesoffliesthathadbeenselectedagainsta2hcoldshockat10 oCafterrapidcold hardeninginductionfor2hat4 oC(RCHselect)werecomparedtothreecoloniesofflies thathadnotbeenselected(control)intheirabilitytosurviveacoldshockof70minat 10 oC(A)ora160mincoldshockafterrapidcoldhardeninginductionfor2hat4 oC(B). After10roundsofselection(over20generations),bothformsofselection(CSselectand RCHselect)producedflieswithsignificantly(ttest,p<0.05,df=4)improvedcoldshock survivalonlyifrapidcoldhardeningisinducedfirst.Selectedcoloniesweretestedfor differencesinweight,development,longevity,andsexratiowithnodifferencesfrom unselectedfliesdetected(datanotshowninthistext).

134 AppendixD

Figure D.1. Changes in fatty acid composition of phospholipids in Belgica antarctica following freezing (top panel) and desiccation/heat (bottom panel). Fattyacidmethyl esters(FAMEs)isolatedfromlarvaeof B. antarctica heldat4 oCwerecomparedwith FAMEsisolatedfromlarvaefrozenat10 oCfor6h(frozen),frozenat10 oCfor6hafter beingpretreatedat5oCfor2htoinducerapidcoldhardening(RCH+frozen), desiccatedat98.5%RHfor6d(desiccation),orheatedto30 oC.Alllarvaewere homogenizedinatwophasesolventandthephospholipidswereisolatedbysolidphase extractionandderivatizedintofattyacidmethylesterasesbeforemeasurementbygas chromatographymassspectrometry.Peakareasofindividualfattyacids(designatedX:Y whereXisthelengthofthehydrocarbonchainandYarethenumberofdoublebonds) foralltreatmentswerecomparedbyANOVAwithaTukey’spostANOVAttests(n=5, df=8,p<0.05).LettersabovebarsrepresentTukey’sstatisticalgroupingsforeach individualfattyacid.Barsrepresentmean±standarddeviationof5individualsamples. Fromthedata,itmaybesurmisedthatthedelta9desaturaseisinvolvedinthe restructuringofmembranesduetomanyofthesestresstreatments,asevidencedby significantchangeinoleicacid(18:1[8])levelsandpalmitoleicacid(16:1)levels.Only freezingaffectedlinoleicacid(18:2),themostprominentfattyacidinthisspecies. (Figureonthefollowingpage)

135

50 aba 4oC frozen RCH+frozen

40

30

abc 20 aba

percentageoffattyacidsignal abc abc 10 aaa abb

0 16:0 16:1(9) 17:0 18:0 18:1(8) 18:1(10) 18:2 fattyacid

50 o 4 C desiccation heat aaa

40

30

aaa 20 abb percentageoffattyacidsignal aaa abb 10 abb aaa

0 16:0 16:1(9) 17:0 18:0 18:1(8) 18:1(10) 18:2 fattyacid Figure D.1. Changes in fatty acid composition of phospholipids in Belgica antarctica following freezing (top panel) and desiccation/heat (bottom panel).

136 BIBLIOGRAPHY

Altner, H., Loftus, R., 1985. Ultrastructure and function of insect thermo and hygroreceptors.AnnualReviewofEntomology30,273295.

AvelangeMacherel, M.H., LyVu, B., Delauna, J., Richomme, P., Leprince, O., 2006. NMR metabolite profiling analysis reveals changes in phospholipid metabolism associated with the reestablishment of desiccation tolerance upon osmoticstressingerminatedradiclesofcucumber.Plant,Cell,andtheEnvironment 29,471482.

Bale, J.S., 2002. Insects and low temperatures: from molecular biology to distributions and abundance. Philosophical Transactions of the Royal Society LondonB357,849862.

Bale,J.S.,1996.Insectcoldhardiness:amatteroflifeanddeath.EuropeanJournal ofEntomology93,369382.

Barroso, C., Chan, J., Allan, V., Doonan, J., Hussey, P., Lloyd, C., 2000. Two kinesinrelatedproteinsassociatedwiththecoldstablecytoskeletonofcarrotcells: characterizationofanovelkinesin,DcKRP1202.ThePlantJournal24,859868.

Barton,P.G.,Gunstone,F.D.,1975.Hydrocarbonchainpackingandmolecular motioninphospholipidbilayersformedfromunsaturatedlecithins.Synthesisand propertiesofsixteenpositionalisomersof1,2dioctadecenoylsnglycero3 phosphorylcholine.JournalofBiologicalChemistry250,44704476.

Bashan,M.,Cakmak,O.,2005.Changesincompositionofphospholipidand tracylglycerolfattyacidspreparedfromprediapausinganddiapausingindividualsof Dolycoris baccarum and Pezodorus lituatus (Heteroptera:Pentatomidae).Annals oftheEntomologicalSocietyofAmerica95,575579.

Basra,R.K.,Basra,A.S.,Malik,C.P.,Grover,I.S.,1997.Arepolyaminesinvolvedinthe heatshockprotectionofmungbeanseedlings?BotanicalBulletinofAcademiaSinica 38,165169.

137 Batcabe,J.P.,Howell,J.D.,Blomquist,G.J.,Borgeson,C.E.,2000.Effectsof developmentalage,ambienttemperature,anddietaryalterationson 12 desaturase activityinthehousecricket, Acheta domesticus .ArchivesofInsectBiochemistry andPhysiology44,112119.

Baust,J.G.,Edwards,J.S.,1979.MechanismsoffreezingtoleranceinanAntarctic midge, Belgica antarctica .PhysiologicalEntomology4,15.

Baust,J.G.,Lee,R.E.,Jr.,1981.Environmental“homeothermy”inanAntarcticinsect. AntarcticJournaloftheUnitedStates15,170172.

Baust,J.G.,LeeR.E.,Jr.,1983.Populationdifferencesinantifreeze/cryprotectant accumulationpatternsinanAntarcticinsect.OIKOS40,120124.

Baust,J.G.,Lee,R.E.,Jr.,1987.MultiplestresstoleranceinanAntarcticterrestrial arthropod: Belgica antarctica .Cryobiology24,140147.

Bennett,V.A.,Pruitt,N.L.,Lee,R.E,Jr.,1997.Seasonalchangesinfattyacid compositionassociatedwithcoldhardeninginthirdinstarlarvaeof Eurosta solidaginis .JournalofComparativePhysiologyB167,249255.

Bino,R.J.,Hall,R.D.,Fiehn,O.,Kopka,J.,Saito,K.,Draper,J.,Mikolau,B.J., Mendes,P.,RoessnerTunali,U.,Beal,eM.H.,Trethewey,R.N.,Lange,B.M., Wurtele,E.S.,Sumner,L.W.,2004.Potentialofmetabolomicsasafunctional genomicstool.TrendsinPlantScience9,418425.

Bligh,E.G.,Dyer,W.J.,1959.Arapidmethodfortotallipidextractionand purification.CanadianJournalofBiochemistryandPhysiology37:911917.

Bluhm,W.F.,Martin,J.L.,Mestril,R.,Dillmann,W.H.,1998.Specificheatshock proteins protect microtubules during simulated ischemia in cardiac myocytes. AmericanJournalofPhysiology275,H2243H2249.

Borrell,A.,Besford,R.T.,Altabella,T.,Masgrau,C.,Tiburcio,A.F.,1996.Regulation ofargininedecarboxylasebyspermineinosmoticallystressedoatleaves.Physiologyof Plants98,105110.

Bown,A.R.,B.J.Shelp,1997.Themetabolismandfunctionsofγaminobutyricacid. PlantPhysiology115,15.

Braun,S.,Fluckiger,W.,1984.Increasedpopulationoftheaphid Aphis pomi atthe motorway2:theeffectofdroughtanddeicingsalt.EnvironmentalPollutionSeriesA. EcologicalandBiolgical36,261270.

138 Buchholz,A.,Hurlebaus,J.,Wandrey,C.,Takors,R.2002.Metabolomics: quantificationofintracellularmetabolitedynamics.BiomolecularEngineering19,515.

Carpenter,J.F.andCrowe,J.H.,1988.Themechanismofcryoprotectionofproteinsby solutes.Cryobiology25,244255.

Carratu,L.,Franceschelli,S.,Pardini,C.L.,Kobayashi,I.H.,Vigh,L.,Maresca,B., 1996.Membranelipidperturbationmodifiesthesetpointofthetemperatureofheat shockresponseinyeast.ProceedingsoftheNationalAcademyofScienceUSA93, 38703875.

Caterina,M.J.,Schumacher,M.A.,Tominaga,M.,Rosen,T.A.,Levine,J.D.,Julius, D.,1997.Thecapsaicinreceptor:aheatactivatedionchannelinthepainpathway. Nature389,816824.

Chattopadhyay,M.K.,Kern,R.,Mistou,MY.,Dandekar,A.M.,Uratsu,S.L., Richarme,G.,2004.Thechemicalchaperoneprolinerelievesthethermosensitivity ofa dnaK deletionmutantat42°C.TheJournalofBacteriology186, 81498152.

Chen,C.P.,Denlinger,D.L.,andLee,R.E.,Jr.,1987b.Coldshockinjuryandrapid coldhardeninginthefleshfly Sarcophaga crassipalpis .PhysiologicalZoology60, 297304.

Chen,C.P.,Denlinger,D.L.,1990.Activationofphosphorylaseinresponsetocold and heat stress in the flesh fly, Sarcophaga crassipalpis . Journal of Insect Physiology36,549553.

Chen,C.P.,Denlinger,D.L.,1992.Reductionofcoldshockinjuryinfliesusingand intermittentpulseofhightemperature.Cryobiology29,138143.

Chen, C.P., Denlinger, D.L., Lee, R.E., Jr., 1987a. Responses of nondiapausing flesh flies (Diptera: Sarcophagidae) to low rearing temperatures: developmental rate, cold tolerance, and glycerol concentrations. Annals of the Entomological SocietyofAmerica80,790796.

Chen, C.P., Lee, R.E., Denlinger, D.L., 1991. Cold shock and heat shock: a comparison of the protection generated by brief pretreatment at less severe temperatures.PhysiologicalEntomology16,1926.

Cheng,C.C.,Brown,C.J.,Sonnichsen,F.D.,2002.Thestructureoffishantifreeze proteins.In:EwartKV,HewCL,editors.FishAntifreezeProteins.London:World Scientific,109138.

Chinnasamy,G.,Bal,A.K.,2003.Seasonalchangesincarbohydratesofperennial rootnodulesofbeachpea.JournalofPlantPhysiology160,11851192.

139 Chino,H.,1958.Cabohydratemetabolisminthediapauseeggofthesilkworm, Bombyx mori II.Conversionofglycogenintosorbitolandglycerolduringdiapause. JournalofInsectPhysiology2,112.

Churchill,T.A.,Storey,K.B.,1989.Metabolicconsequencesofrapidcyclesof temperaturechangeforfreezeavoidngvs.freezetolerantinsects.JournalofInsect Physiology35,579586

Churchill,T.A.,Storey,K.B.,1996.Organmetabolismandcryoprotectants synthesisduringfreezinginspringpeepers Pseudacris crucifer .Copeia1996,517 525

Collins, S.D., Allenspach, A.L., Lee, R.E., 1997. Ultrastructural effects of lethal freezingonbrain,muscle,andMalpighiantubulesfromfreezetolerantlarvaeofthe gallfly, Eurosta solidaginis. JournalofInsectPhysiology43,3945.

Constanzo,J.P.,Lee,R.E.Jr.,2005.Cryoprotectionbyureainaterrestrially hibernatingfrog.TheJournalofExperimentalBiology208,40794089.

Cossins,A.R.,1983.Theadaptationofmembranestructureandfunctiontochanges intemperature.In:Cossins,A.R.,Sheterline,P.(eds)Cellularacclimitisationto environmentalchange.CambridgeUniversityPress,Cambridge331.

Coulson,S.C.,Bale,J.S.,1992.Effectofrapidcoldhardeningonreproductionand survivalofoffspringinthehousefly Musca domestica .JournalofInsectPhysiology 38,421424.

Cripps,C.,Blomquist,G.,deRenobales,M.,1986.Denovobiosynthesisoflinoleic acidininsects.BiochimicaetBiophysicaActa876,572–580.

Cymborowski, B., 1996. Expression of Cfoslike protein in the brain and prothoracic glands of Galleria mellonella larvae during chilling stress. Journal of InsectPhysiology42,367371.

Davis,D.J.,Lee,R.E.,2001.Intracellularfreezing,viability,andcompositionoffat body cells from freezeintolerant larvae of Sarcophaga crassipalpis . Archives of InsectBiochemistryandPhysiology48,199205.

Denlinger,D.L.,1971.Embryonicdeterminationofpupaldiapauseinthefleshfly, Sarcophaga crassipalpis .JournalofInsectPhysiology17,18151822.

Denlinger,D.L.,1972.Inductionandterminationofpupaldiapausein Sarcophaga (Diptera:Sarcophagidae).TheBiologicalBulletin142,1124.

140 Denlinger,D.L.,Joplin,K.H.,Chen,C.P.,Lee,R.E.,1991.Coldshockandheat shock.In:Lee,R.E.,Denlinger,D.L.,editors.Insectsatlowtemperature.New York:ChapmanandHall131147.

Denlinger,D.L.,Rinehart,J.P.,Yocum,G.D.,2001.Stressproteins:aroleininsect diapause?In:DenlingerDL,GiebultowiczJM,SaundersDS,editors.InsectTiming: CircadianRhythmicitytoSeasonality.Amsterdam:ElsevierScience155171.

Denlinger,D.L.,Willis,J.H.,Fraenkel,G.,1972.Ratesandcyclesofoxygen consumptionduringpupaldiapausein Sarcophaga fleshflies.JournalofInsect Physiology18,871882.

Detrich,H.W.,Parker,S.W.,Williams,R.C.Jr.,Nogale,E.,Downing,K.H.,2000.Cold adaptationofmicrotubuleassemblyanddynamics.Structuralinterpretationofprimary sequencechangespresentintheαandβtubulinofAntarcticfishes.Journalof BiologicalChemistry275,3703837047.

Diamant,S.,Eliahu,N.,Rosenthal,D.,Goloubinoff,P.,2001.Chemicalchaperones regulatemolecularchaperones in vitro andincellsundercombinedsaltandheat stresses.JournalofBiologicalChemistry276 , 3958639591.

Dordea,M.,Floca,L.,Perseca,T.,1987.Variationofthecontentoffreeamino acidsinerisilkworm Philosamia ricini pupaeduringdiapauseasinfluencedbythe treatmentoflarvaewithkeratrof.StudiaUniversitatisBabesBolyaiBiologia32, 5659.

Douglas,A.E.,2000.Reproductivediapauseandthebacterialsymbiosisinthe sycamoreaphid Drepanosiphum platanoidis .EcologicalEntomology25,256261.

Downer,R.G.H.,1985.Lipidmetabolism.In:Kerkut,G.A.,Gilbert,L.I.(eds) Comprehensiveinsectphysiology,biochemistry,andpharmacology.Pergamon Press,Oxford77113.

Duman,J.G.,2002.Theinhibitionoficenucleatorsbyinsectantifreezeproteinsis enhancedby glycerolandcitrate.JournalofComparativePhysiology B 172,163 168.

Duman, J.G., Bennett, V., Sformo, T., Hochstrasser, R., Barnes, B.M., 2004. AntifreezeproteinsinAlaskaninsectsandspiders.JournalofInsectPhysiology50, 259266.

Duman,J.G.,Serianni,A.S.,2002.Theroleofendogenousantifreezeproteinsenhancers inthehemolymphthermalhysteresisactivityofthebeetle Dendriodes canadensis . JournalofInsectPhysiology48,103111.

141 Dunn,W.B.,Ellis,D.I.,2005.Metabolomics:Currentanalyticalplatformsand methodologies.TrendsinAnalyticalChemistry24,285294.

Feder,M.E.,Hofmann,G.E.,1999.Heatshockproteins,molecularchaperones,and the stress response: evolutionary and ecological physiology. Annual Review of Physiology61,243282.

Fields,P.G.,FleuratLessard,F.,Lavenseau,L.,Febvay,G.,Peypelut,L.,Bonnot,G., 1998.Theeffectofcoldacclimationanddeacclimationoncoldtolerance,trehaloseand freeaminoacidlevelsin Sitophilus granarius and Cryptolestes ferrugeneus (Coleoptera). JournalofInsectPhysiology44,955965.

Flannagan,R.D.,Tammariello,S.P.,Joplin,K.H.,CikraIreland,R.A.,Yocum, G.D.,Denlinger,D.L.,1998.Diapausespecificgeneexpressioninpupaeofthe fleshfly Sarcophaga crassipalpis .ProceedingsoftheNationalAcademyof SciencesU.S.A.95,56165620.

Fuchs,B.C.,Bode,B.P.,2006.Stressingoutoversurvival:Glutamineasan apoptoticmodulator.JournalofSurgicalResearch131,2640.

Fujita, J., 1999. Cold shock response in mammalian cells. Journal of Molecular MicrobiologyandBiotechnology1,243255.

Furusawa,T.,Nishida,M.,Narutaki,A.,1994.Changesinfattyacidcomposition ofphosphoglyceridesduringthediapauseandembryonicdevelopmentofthe Japaneseoaksilkworm, Antheraea yamamai .JournalofSericulturalScienceof Japan63,5763.

Galston,A.W.,Sawhney,R.K.,1990.Polyaminesinplantphysiology.PlantPhysiology 94,406410.

Garcia, S.L., Garcia, N.L., Rodrigues, V.L.C.C., Mello, M.L.S., 2001. Effect of sequentialcoldshocksonsurvivalandmoltingincidencein Panstrongylus megistus (Burmeister)(Hemiptera,Reduviidae).Cryobiology41,7477.

Garcia,S.L.,Pachera,R.M.,Rodrigues,V.L.C.C.,Mello,M.L.S.,2002.Effectof sequentialheatandcoldshocksonnuclearphenotypesofthebloodsuckinginsect, Panstrongylus megistus (Burmeister)(Hemiptera,Reduviidae).MemóriasdoInstituto OswaldoCruz97,11111116.

Gisselmann,G.,Plonka,J.,Pusch,H.,Hatt,H.,2004. Drosophila melanogaster GRD andLCCH3subunitsformmultimericGABAgatedionchannels.BritishJournalof Pharmacology142,409413.

142 Gomes,M.I.,Kim,W.J.,Lively,M.K.,Amos,H.,1985.Heatshocktreatmentlethalfor mammaliancellsdeprivedofglucoseandglutamineprotectionbyalphaketoacids. BiochemicalandBiophysicalResearchCommunications131,10131019.

Gonzalez,M.P.,OsetGasque,M.J.,Solves,A.G.,Canadas,S.,1987.Succinic semialdehydedehydrogenaseactivityinbovineadrenalmedullaandbloodplatelets:a comparativestudywiththebrainenzyme.ComparativeBiochemistryandPhysiologyB 86,489492.

Goto,M.,Fujii,M.,Suzuki,K.,Sakai,M.,1998.Factorsaffectingcarbohydrate andfreeaminoacidcontentinoverwinteringlarvaeof Enosima leucotaeniella . JournalofInsectPhysiology44,8794.

Goto,M.,Li,YP.,Kayaba,S.,Outani,S.,Suzuki,K.,2001.Coldhardinessinsummer andwinterdiapauseandpostdiapausepupaeofthecabbagearmyworm, Mamestra brassicae L.undertemperatureacclimation.JournalofInsectPhysiology47,709714.

Goto, S.G., 1998. Expression of Drosophila homologue of senescence marker protein30duringcoldacclimation.JournalofInsectPhysiology46,11111120.

Goto, S.G., 2001. A novel gene that is upregulated during recovery from cold shockin Drosophila melanogaster .Gene270,259264.

Goto,S.G.,Kimura,M.T.,1998.Heatandcoldshockresponsesandtemperature adaptationsinsubtropicalandtemperaturespeciesof Drosophila .JournalofInsect Physiology44(12),12331239.

Green,L.S.,Li,Y.,Emerich,D.W.,Bergersen,F.J.,Day,D.A.,2000.Catabolismofα ketoglutaratebya sucA mutantof Bradyrhizobium japonicum :evidenceforanalternative tricarboxylicacidcycle.JournalofBacteriology182,28382844.

GruborLajsic,G.,Block,W.,Jovanovic,A.,Worland,R.,1996.Antioxidantenzymesin larvaeoftheAntarcticfly, Belgica antarctica .Cryoletters17,3942.

Hamana,K.,Hamana,H.,Shinozawa,T.,1995.Alterationsinpolyaminelevelsof nematode,earthworm,leech,andplanarianduringregeneration,temperatureandosmotic stress.ComparativeBiochemistryandBiophysiology111B,9197.

Hanzal,R.andJegorov,A.,1991.Changesinfreeaminoacidcompositionin haemolymphoflarvaeofthewaxmoth, Galleria mellon ella L.,duringcoldacclimation. ComparativeBiochemistryandPhysiology100,957962.

Hayward,S.A.L.,Pavlides,S.C.,Tammariello,S.P.,Rinehart,J.P.,Denlinger,D.L 2005.Temporalexpressionpatternsofdiapauseassociatedgenesinfleshflypupaefrom theonsetofdiapausethroughpostdiapausequiescence.JournalofInsectPhysiology51, 631640.

143

Hazel,J.R.1995.Thermaladaptationinbiologicalmembranes:ishomeoviscous adaptationtheexplanation?AnnualReviewofPhysiology57,1942.

Hensgens,H.E.S.J.,Meijer,A.J.,1980.Inhibitionofureacycleactivitybyhigh concentrationsofalanine.BiochemicalJournal186,14

Hodkova,M.,Berkova,P.,Zahradnickova,H.,2002.Photoperiodicregulationof thephospholipidmolecularspeciescompositioninthoracicmusclesandfatbodyof Pyrrhocoris apterus (Heteroptera)viaanendocrinegland,corpusallatum.Journalof InsectPhysiology48,10091019.

Hodkova,M.,Simek,P.,Zahradnickova,H.,Novakova,O.,1999.Seasonal changesinthephospholipidcompositioninthoracicmusclesofthehemipteran, Pyrrhocoris apterus .InsectBiochemistryandMolecularbiology29,367376.

Hoekstra,F.A.,Golovina,E.A.,Tetteroo,F.A.A.,Wolkers,W.F.,2001.Inductionof desiccationtoleranceinplantsomaticembryos:howexclusiveistheprotectiveroleof sugars?Cryobiology43,140150.

Hoffmann,A.A.,Sorensen,J.G.,Loeschcke,V.,2003.Adaptationof Drosophila to temperature extremes:bringing together quantitative and molecular approaches. JournalofThermalBiology28,175216.

Holmstrup, M., Hedlund, K., Boriss, H., 2002. Drought acclimation and lipid compositionin Folsomia candida :implicationsforcoldshock,heatshockandacute desiccationstress.JournalofInsectPhysiology48,961970.

Horie,Y.,Kanda,T.,Mochida,Y.,2000.Sorbitolasanarresterofembryonic developmentindiapausingeggsofthesilkworm, Bombyx mori .JournalofInsect Physiology46,10091016.

Hsieh,S.L.,Kuo,C.M.,2005.StearolyCoAdesaturaseexpressionandfattyacid compositioninmilkfish( Chanos chanos )andgrasscarp( Ctenopharyngodon idella ) duringcoldacclimation.ComparativeBiochemistryandPhysiologyB141,95101.

Inaba,M.,Suzuki,I.,Szalonti,B.,Kanesaki,Y.,Los,D.A.,Hayashi,H.,Murata,N., 2003. Geneengineered rigidification of membrane lipids enhances the cold inducibility of gene expression in Synechocystis . Journal of Biological Chemistry 278,1219112198.

Jensen,M.O.,Tajkhorshid,E.,Schulten,K.,2001.Themechanismofglycerol conductioninaquaglyceroporins.Structure9,10831093.

144 Joanisse,D.R.,Storey,K.B.1995.Temperatureacclimationandseasonalresponses byenzymesincoldhardygallinsects.ArchivesofInsectBiochemistryand Physiology28,339349.

Job,D.,Rauch,C.T.,Fischer,E.H.,Margolis,R.L.,1982.Recyclingofcoldstable microtubules: Evidence that cold stability is due to substoichiometric polymer blocks.Biochemistry21,509515.

Joplin,K.H.,Yocum,G.D.,Denlinger,D.L.,1990.Coldshockelicitsexpressionof theheatshockproteinsinthefleshfly Sarcophaga crassipalpis. JournalofInsect Physiology36,825834.

Ju,A.,Dunham,R.A.,Liu,Z.,2002.Differentialgene expression in the brain of channel catfish ( Ictalurus punctatus ) in response to cold acclimation. MGG MolecularGeneticsandGenomics268,8795.

Kageyama, T., 1976. Pathways of carbohydrate metabolism in the eggs of the silkwormmoth, Bombyx mori .InsectBiochemistry6,507511.

Kageyama,T.,Ohnishi,E.,1971.Carbohydratemetabolismintheeggsofthe silkwormBombyx mori II:Anaerobiosisandpolyolformation.Growth, Development,andDifferentiation15,4755.

Kaplan,F.,Kopka,J.,Haskell,D.W.,Zhao,W.,Schiller,K.C.,Gatzke,N.,Sung, D.Y.,Guy,C.L.,2004.Exploringthetemperaturestressmetabolomeof Arabidopsis.PlantPhysiology136,41594168.

Katoh,H.,Niimi,T.,Yamashita,O.,Yaginuma,T.,2002.Enhancedexpressionof Bombyx sevenup, an insect homolog of chicken ovalbumin upstream promoter transcription factor, in diapause eggs exposed to 5oC. Journal of Insect BiotechnologySericol71,1724.

Kelty,J.D.,Killian,K.A.,Lee,R.E.,1996.Coldshockandrapidcoldhardeningof pharate adult flesh flies ( Sarcophaga crassipalpis ): Effects on behaviour and neuromuscular function following eclosion. Physiological Entomology 21, 283 288.

Kelty,J.D.andR.E.Lee,Jr.,2001.Rapidcoldhardeningof Drosophila melanogaster (Diptera:Drosophilidae)duringecologicallybasedthermoperiodic cycles.JournalofExperimental Biology 204.16591666.

Kim, Y., Kim, N., 1997. Cold hardiness in Spodoptera exigua (Lepidoptera: Noctuidae).EnvironmentalEntomology26,11171123.

Kinnersely,A.M.,Turano,F.J.,2000.Gammaaminobutyricacid(GABA)andplant responsestostress.CriticalReviewsinPlantSciences19,479510.

145

Knight, H., Trehavas, A.J., Knight, M.R., 1996. Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation.PlantCell8,489503.

Knipple, D.C., Rosenfield, C.L., Nielsen, R., You, K.M., Jeong S.E., 2002. Evolution of the integral membrane desaturase gene family in moths and flies. GeneticsSocietyofAmerica162,17371752.

Koenigshofer,H.,Lechner,S.,2002.Arepolyaminesinvolvedinthesynthesisofheat shockproteinsincellsuspensionculturesoftobaccoandalfalfainresponsetohigh temperaturestress?PlantPhysiologyandBiochemistry40,5159.

Kopka,J.2006.CurrentchallengesanddevelopmentsinGCMSbasedmetabolite profilingtechnology.JournalofBiotechnology124,312322.

Kostal,V.,Simek,P.,1998.Changesinfattyacidcompositionofphospholipidsand triacylglycerols after coldacclimation of an aestivatinginsectprepupa.Journalof ComparativePhysiologyB168,453460.

Kruuv,J.,Glofcheski,D.J.,Lepock,J.R.,1988Protectiveeffectofglutamine againstfreezethawdamageinmammaliancells.Cryobiology25,121130.

Kukal,O.,Denlinger,D.L.,Lee,R.E.Jr.,1991.Developmentalandmetabolic changesinducedbyanoxiaindiapausingandnondiapausingfleshflypupae. JournalComparativePhysiology[B]160,683689.

Kusaka,M.,Ohta,M.,Fujimura,T.,2005.Contributionofinorganiccomponentsto osmoticadjustmentandleaffoldingfordroughttoleranceinpearlmillet.Physiologia Plantarum125,474489.

Lahnsteiner,F.,Berger,B.,Weisman,T.,Patzner,R.,1996.Changesinmorphology, physiology,metabolism,andfertilizationcapacityofrainbowtroutsemenfollowing cryopreservation.ProgressiveFishCulturist58,149159.

Lange,P.S.,Langley,B.,Lu,P.,Ratan,R.R.,2004.Novelrolesforarginaseincell survival,regeneration,andtranslationinthecentralnervoussystem.JournalofNutrition 134,2812S2817S.

Lee,R.E.,Jr.,1991.Principlesofinsectlowtemperaturetolerance.In:Lee,R.E., Denlinger,D.L.,(Eds.),InsectsatLowTemperatures.ChapmanandHall,NewYorkand London1746.

146 Lee,R.E.,Jr.,Baust,J.G.,1981.SeasonalpatternsofcoldhardinessinAntarctic terrestrialarthropods.ComparativeBiochemicalPhysiology70,579582.

Lee,R.E.,Jr.,Baust,J.G.,1982.Absenceofmetaboliccoldadaptationand compensatoryacclimationintheAntarcticfly, Belgica antarctica .JournalofInsect Physiology28,725729.

Lee,R.E.,Chen,C.P.,Denlinger,D.L.1987a.Arapidcoldhardeningprocessininsects. Science238:14151417.

Lee,R.E.,Chen,C.P.,Meacham,M.H.,Denlinger,D.L.1987b.Ontogenicpatternsof coldhardinessandglycerolproductionin Sarcophaga crassipalpis .JournalofInsect Physiology33,587592.

Lee,R.E.,Damodaran,K.,Yi,SX.,Lorigan,G.A.,2006,Rapidcoldhardening increasesmembranefluidityandcoldtoleranceofinsectcells.Cryobiology52,459 463.

Lee,R.E.,Denlinger,D.L.1985.Coldtoleranceindiapausingandnondiapausingstages ofthefleshfly, Sarcophaga crassipalpis .PhysiologicalEntomology10,309315.

Lee,R.E.,Jr.,Elnitsky,M.A.,Rinehart,J.P.,Hayward,S.A.L.,Sandro,L.H.,Denlinger, D.L.,2006.RapidcoldhardeningincreasesthefreezingtoleranceoftheAntarcticmidge Belgica antarctica .TheJournalofExperimentalBiology209,399406.

Lefevere,K.S.,Koopmanschap,A.B.,DeKort,C.A.D.,1989.Changesinthe concentrationsofmetabolitesinhemolymphduringandafterdiapauseinfemale Coloradopotatobeetle Leptinotarsa decemlineata .JournalofInsectPhysiology35, 121128

Leicht,B.G.,Beissmann,H.,Palter,K.B.,Bonner,J.J.,1986.Smallheatshockproteins of Drosophila associatewiththecytoskeleton.ProceedingsoftheNationalAcademyof ScienceUSA83,9094.

LeRay,C., Pelletier,X.,Hemmendinger,S.,Cazenave,JP.,1987.Thinlayer chromatographyofhumanplateletphospholipidswithfattyacidanalysis.Journalof Chromatography BiomedicalApplications420,411416.

Lerman, D.N., Feder, M.E., 2001. Laboratory selection at different temperatures modifies heat shock transcription factor (HSF) activation in Drosophila melanogaster .JournalofExperimentalBiology204,315323.

Li,N.,Andorfer,C.A.,Duman,J.G.,1998.Enhancementofinsectantifreezeprotein activitybysolutesoflowmolecularmass.Journal of Experimental Biology 201, 22432251.

147 Li, Y.P., Ding, L., Goto, M., 2002. Seasonal changes in glycerol content and enzyme activities in overwintering larvae of the Shonai ecotype of the rice stem borer, Chilo suppressalis Walker.ArchivesofInsectBiochemistryandPhysiology 50,5361.

Li,YP.,Goto,M.,Ito,S.,Sato,Y.,Sasaki,K.,Goto,N.,2001.Physiologyof diapauseandcoldhardinessintheoverwinteringpupaeofthefallwebworm Hyphantria cunea (Lepidoptera:Arctiidae)inJapan.JournalofInsectPhysiology 47,11811187.

Liang,P.,MacRae,T.H.,1997.Molecularchaperonesandthecytoskeleton.Journalof CellScience110,14311440.

Lindquist,S.,1986.Theheatshockresponse.AnnualReviewofBiochemistry55, 11511191.

Liu, L., Yermolaieva, O., Johnson, W.A., Abboud, F.M., Welsh, M.J., 2003. Identificationandfunctionofthermosensoryneuronsin Drosophila larvae.Nature Neuroscience6,267273.

Loftus,R.,CorbiereTichane,G.,1987.Responseofantennalcoldreceptorsofthe catopid beetles Speophyes lucidulus Delar. and Choleva angustata Far. to very slowlychangingtemperature.JournalofComparativePhysiologyA161,399406.

Lutz,P.L.,Milton,S.L.,2004.Negotiatingbrainanoxiasurvivalintheturtle.The JournalofExperimentalBiology207,31413147.

Macartney,A.,Maresca,B.,Cossins,A.R.,1994.AcylCoAdesaturasesandthe adaptiveregulationofmembranelipidcomposition.In:Cossins,A.R.,(Eds.), Temperatureadaptationofbiologicalmembranes.PortlandPress,London.pp.129 139.

Malmendal,A.,Overgaard,J.,Bundy,J.G.,Sørensen,J.G.,Nielsen,N.C.,Loeschcke,V., Holmstrup,M.2006.Metabolomicprofilingofheatstress:hardeningandrecoveryof homeostasisin Drosophila .AmericanJournalofPhysiologyRegulatoryIntegrativeand ComparativePhysiology291,R205R212.

Marangos,C.,Guissi,A.,Ceccaldi,H.J.,1989.Variationsoffreeaminoacidleveland ammoniaexcretioninthepostlarvaeof Penaeus japonicus asafunctionofsalinityand osmoticstress.BiochemicalSystematicsandEcology17,5968.

Marchler, G., Wu, C., 2001. Modulation of Drosophila heat shock transcription factor activity by the molecular chaperone DROJ1. European Molecular Biology OrganizationJournal20,499509.

Marsh,D.C.,Vreugdenhil,P.K.,Mack,V.E.,Belser,F.O.,Southard,J.H.,1993.Glycine protectshepatocytesfrominjurycausedbyanoxia,coldischemiaandmitochondrial 148 inhibitors,butnotinjurycausedbycalciumionophoresoroxidativestress.Hepatology 17,9198.

Marshall,C.B.,Tomczak,M.M.,Gauthier,S.Y.,Kuiper,M.J.,Lankin,C.,Walker, V.K.,Davies,P.L.,2004.Partitioningoffishandinsectantifreezeproteinsintoice suggeststheybindwithcomparableaffinity.Biochemistry43,148154 .

McCoy,T.,2003.Changesinphospholipidclasscompositionwiththeonsetof freezetoleranceinthegoldenrodgallfly,Eurostasolidaginis.ColgateUniversity JournalofSciences1,18.

McElhaney,R.N.,1974.Theeffectofalterationsinthephysicalstateofthe membranelipidsontheabilityof Acholeplasma laidlawii Btogrowatvarious temperatures.JournalofMolecularBiology84,145157.

Meng,F.G.,Park,Y.D.,Zhou,H.M.,2001.Roleofproline,glycerol,andheparinas proteinfoldingaidsduringrefoldingofrabbitmusclecreatinekinase.International JournalofBiochemistryandCellBiology33,701709.

Michaud,M.R.,Denlinger,D.L.,2006.Oleicacidiselevatedincellmembranes duringrapidcoldhardeningandpupaldiapauseinthefleshfly, Sarcophaga crassipalpis .JournalofInsectPhysiology52,10731082.

Mikami,K.,Kanesaki,Y.,Suzuki,I.,Murata,N.,2002.ThehistidinekinaseHik33 perceivesosmoticstressandcoldstressin Synechocystis sp.PCC6803.Molecular Microbiology46,905915.

Misener,S.R.,Chen,C.P.,Walker,V.K.,2001.Coldtoleranceandprolinemetabolic geneexpressionin Drosophila melanogaster .JournalofInsectPhysiology47,393400.

Morgan,T.D.,Chippendale,G.M.,1983.Freeaminoacidsofthehemolymphof thesouthwesterncornborer Diatraea grandiosella andtheEuropeancornborer Ostrinia nubilalis inrelationtotheirdiapause.JournalofInsectPhysiology29, 735740.

Moribe,Y.,Niimi,T., Yamashita,O.,Yaginuma,T., 2001. Samui ,anovelcold induciblegene,encodingaproteinwithaBAGdomainsimilartosilencerofdeath domains(SODD/BAG4),isolatedfrom Bombyx diapauseeggs.EuropeanJournalof Biochemistry268,34323442.

Moribe,Y.,Shirota,T.,Kamba,M.,Niimi,T.,Yamashita,O.,Yaginuma,T.,2002. Differential expression of the two coldinducible genes, Samui and sorbitol dehydrogenase, in Bombyx diapauseeggsexposedtolowtemperature.Journal of InsectBiotechnologySericol71,167171.

149 Muise, A.M., Storey, K.B., 2001. Regulation of hexokinase in a freeze avoiding insect:roleinthewinterproductionofglycerol. Archives of Insect Biochemistry andPhysiology47,2934.

Nyporko, A.Y., Demchuk, O.N., Blume, Y.A., 2003. Cold adaptation of plant microtubules: structural interpretation of primary sequence changes in a highly conservedregionofαtubulin.CellBiologyInternational27,241243.

Odani, O., Komatsu, Y., Oka, S., Iwahashi, H., 2003. Screening of genes that respond to cryopreservation stress using yeast DNA microarray. Cryobiology 47, 155164.

Ogg,C.L.,StanleySamuelson,D.W.,1992.Phospholipidandtriacylglycerolfatty acid compositions of the major life stages and selected tissues of the tobacco hornworm Manduca sexta . Comparative Biochemistry and Physiology 101, 345 351.

Ohtsu,T.,Kimura,M.T.,Katagiri,C.,1998.How Drosophila speciesacquirecold tolerance:qualitativechangesofphospholipids.EuropeanJournalofBiochemistry 252,608611.

Okasaki,T.,Yamashita,O.,1981.Changesinglucoseandfructosecontentsduring embryonicdevelopmentofthesilkworm Bombyx mori .JournalofSericultural ScienceofJapan50,190196.

Orvar,B.L.,Sangwan,V.,Omann,F.,Dhindsa,R.S.,2000.Earlystepsincold sensingbyplantcells:theroleofactincytoskeletonandmembranefluidity.Plant Journal23,78794.

Osanai,M.,Yonezawa,Y.,1986.Changesinaminoacidpoolsinthesilkworm Bombyx mori duringembryoniclife:alanineaccumulationanditsconversionto prolineduringdiapause.InsectBiochemistry16,373380.

Overgaard,J.,Sorensen,J.G.,Petersen,S.O.,Loeschcke,V.,Holmstrup,M.,2005. Changesinmembranelipidcompositionfollowingrapidcoldhardeningin Drosphila melanogaster .JournalofInsectPhysiology51,11731182.

Parsell, D.A., Lindquist, S., 1993. The function of heat shock proteins in stress tolerancedegradation and reactivation of damaged proteins. Annual Review of Genetics27,437496.

Peier,A.M.,Mogrich, A.,Hergarden,A.C.,Reeve,A.J., Andersson, D.A., Story, G.M.,Earley,T.J.,Dragoni,I.,McIntyre,P.,Bevan,S.,Patapoutian,A.,2002.A TRPchannelthatsensescoldstimuliandmenthol.Cell108,705715.

150 Pfister, T.D., Storey, K.B., 2002. Purification and characterization of protein phosphatase1 from two coldhardy goldenrod gall insects. Archives of Insect BiochemistryandPhysiology49,5664.

Phanvijhitsiri,K.,Musch,M.W.,Ropeleski,M.J.,Chang,E.B.,2005.Molecular mechanismsofLglutaminemodulationofheatstimulatedHsp25production.The FederationofAmericanSocietiesforExperimentalBiologyJournal19,A1496 A1497.

Pullin,A.S.,Wolda,H.,1993.Glycerolandglucoseaccumulationduringdiapause inatropicalbeetle.PhysiologicalEntomology18,7578.

Quinn, P.J., 1985. A lipidphase separation model of lowtemperature damage to biologicalmembranes.Cryobiology22,128146.

Rabbani, M.A., Maruyama, K., Hiroshi, A., Khan, M.A., Katsura, K., Ito, Y., Yoshiwara, K., Seki, M., Shinozaki, K., YamaguchiShinozaki, K., 2003. Monitoringexpressionprofilesofricegenesundercold,drought,andhighsalinity stresses and abscisic acid application using cDNA microarray and RNA gelblot analyses.PlantPhysiology133,17551767.

Reddy,P.S.,Bhagyalakshmi,A.,1994.Changesintheoxidativemetabolisminselected tissuesofthecrab( Scylla serrata )inresponsetocadmiumtoxicity.Ecotoxicologyand EnvironmentalSafety29,255264.

Renaut,J.,Hoffmann,L.,Hausman,J.F.,2005.Biochemicalandphysiological mechanismsrelatedtocoldacclimationandenhancedfreezingtoleranceinpoplar plantlets.PhysiologiaPlantarum125,8294.

Rinehart, J.P., Denlinger, D.L., 2000. Heatshock protein 90 is downregulated during pupal diapause in the flesh fly, Sarcophaga crassipalpis, but remains responsivetothermalstress.InsectMolecularBiology9,641645.

Rinehart,J.P.,Hayward,S.A.L.,Elnitsky,M.A.,Sandro,L.H.,Lee,R.E.,Jr.,Denlinger, D.L.,2006.Continuousupregulationofheatshockproteinsinlarvae,butnotadults,of apolarinsect.ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesof America103,1422314227.

Rinehart,J.P.,Yocum,G.D.,Denlinger,D.L.,2000.Developmentalupregulationof induciblehsp70transcripts,butnotthecognateform,duringpupaldiapauseinthe fleshfly, Sarcophaga crassipalpis .InsectBiochemistryandMolecularBiology515 521.

Rinehart,J.P.,Yocum,G.D.,Denlinger,D.L.,2000.Thermotoleranceandrapid coldhardeningamelioratethenegativeeffectsofbriefexposurestohighorlow

151 temperaturesonthefecundityofthefleshfly, Sarcophaga crassipalpis . PhysiologicalEntomology25,330336.

Rivers,D.B.,Lee,R.E.Jr,,Denlinger,D.L.,2000.Coldhardinessoftheflypupal parasitoid Nasonia vitripennis isenhancedbyitshost, Sarcophaga crassipalpis . JournalofInsectPhysiology46,99106.

Russotti,G.,Campbell,J.,Toner,M.,Yarmush,M.L.,1997.StudiesofheatandPGA 1 inducedcoldtoleranceshowthatHSP27mayhelppreserveactinmorphologyduring hypothermia.TissueEngineering3,135147

Salt, R.W., 1961. Principles of insect cold hardiness. Annual Review of Entomology6,5574.

Salvucci,M.E.,2000.Sorbitolaccumulationinwhiteflies:Evidenceforarolein protectingproteinsduringheatstress.JournalofThermalBiology25,353361.

Santarius,K.A.1986.FreezingofisolatedthykaloidmembranesincomplexmediaI:the effectsofpotassiumandsodiumchloridenitrateandsulfate.Cryobiology23,168176.

Sawabe,K.,Mogi,M.,1999.Differencesinenergymetabolismandadultdesiccation resistanceamongthree Aedes ( Stegomyia )species(Diptera:Culicidae)fromSouth Sulawesi,Indonesia.JournalofMedicalEntomology36,101107.

Schauer,N.,Steinhauser,D.,Strelkov,S.,Schomburg,D.,Allison,G.,Moritz,T., Lundgrean,K.,RoessnerTunali,U.,Forbes,M.,Willmitzer,L.,Fernie,A.R.,Kopka,J., 2005.GCMSlibrariesfortherapididentificationofmetabolitesincomplexbiological samples.FEBSLetters579,13321337.

Seki, M., Narusaka, M., Ishida, J., Nanjo, T., Fujita, M., Oono, Y., Kamiya, A., Nakajima,M.,Enju,A.,Sakurai,T.,Satou,M.,Akiyama,K.,Taji,T.,Yamaguchi Shinozaki, K., Carninci, P., Kawai, J., Hayashizaki, Y., Shinozaki, K., 2002. Monitoringtheexpressionprofilesof7000 Arabidopsis genesunderdrought,cold andhighsalinity stressesusing afulllengthcDNA microarray. Plant Journal 31, 279292.

Senthilkumar,R.,Viswanathan,P.,Nalini,N.2004.Effectofglycineonoxidativestress inratswithalcoholinducedliverinjury.Pharmazie59,5560.

SiddiquiK.S.,Cavicchioli,R.,2006.Coldadaptedenzymes.AnnualReviewof Biochemistry75,304433.

Sinclair, B.J., 2003. Climatic variability and the evolution of insect freezing tolerance.BiologicalReviews78,181195.

152 Sinclair, B.J., Chown, S.L., 2003. Rapid responses to high temperature and desiccationbutnottolowtemperatureinthefreezetolerantsubAntarcticcaterpillar Pringleophaga marioni (Lepidoptera, Tineidae). Journal of Insect Physiology 49, 4552.

Sinensky,M.,1974.Homeoviscousadaptation–Ahomeostaticprocessthat regulatestheviscosityofmembranelipidsin Escherichia coli .Proceedingsofthe NationalAcademyofSciences,U.S.A.71,522525.

Singh,A.K.,Lakhotia,S.C.,1984.Lackofeffects ofmicrotubulepoisonsonthe 93D and the 93D like heat shock puffs in Drosophila . Indian Journal of ExperimentalBiology20,569576.

Slama,K.,Denlinger,D.L.,1992.Infradiancyclesofoxygenconsumptionin diapausingpupaeofthefleshfly, Sarcohaga crassipalpis ,monitoredbyascanning microrespirographicmethod.ArchivesofInsectBiochemistryandPhysiology20, 135143.

So,PW.,Fuller,B.J.,2003.Enhancedenergymetabolismduringcoldhypoxic organpreservation:Studiesonratliverafterpyruvatesupplementation.Cryobiology 46,295300.

Sommer,A.M.,Poertner,H.O.,2002.Metaboliccoldadaptationinthelugworm Arenicola marina :comparisonofaNorthSeaandaWhiteSeapopulation.Marine EcologyProgressSeries240,171182.

Stanic,B.,JovanovicGalovic,A.,Blagojevic,D.P.,GruborLajsic,G.,Worland,R., Spasic,M.B.,2004.Coldhardinessin Ostrinia nubilalis (Lepidoptera:Pyralidae): Glycerolcontent,hexosemonophosphateshuntactivity,andantioxidativedefense system.EuropeanJournalofEntomology101,459466.

Starling,A.P.,East,J.M.,Lee,A.G.,1993.Effectsofphosphatidylcholinefattyacyl chainlengthoncalciumbindingandotherfunctionsofthe(Ca 2+ Mg 2+ )ATPase. Biochemistry32,15931600.

Storey,J.M.,Storey,K.B.,1983.Regulationofcryoprotectantmetabolisminthe overwinteringgallflylarva Eurosta solidaginis :temperaturecontrolofglycerol andsorbitollevels.JournalofComparativePhysiology[B]149,495502.

Storey,K.B.,1997.Organicsolutesinfreezingtolerance. Journal of Comparative BiochemistryandPhysiology117A(3),319326.

Storey,K.B.,Churchill,T.A.andJoanisse,D.R.,1993..Freezetoleranceinhermit flowerbeetle( Osmoderma eremicola )larvae.JournalofInsectPhysiology39,737742.

153 Storey,K.B.,Storey,J.M.,1986.Freezetolerantfrogscryoprotectantsandtissue metabolismduringfreezethawcycles.CanadianJournalofZoology64,4956.

Sugg,P.,Edwards,J.S.,Baust,J.,1983.Phenologyandlifehistoryof Belgica antartica , anAntarcticmidge(Diptera:Chironomidae).EcologicalEntomology8,105113.

SuzukiI,LosA,MurataN.,2000.Perceptionandtransductionoflowtemperature signalstoinducedesaturationoffattyacids.BiochemicalSocietyTransactions28, 628630.

Suzuki,I.,Los,D.A.,Kanesaki,Y.,Mikami,K.,Murata,N.,2000.Thepathwayfor perceptionandtransductionoflowtemperaturesignalsin Synechocystis .European MolecularBiologyOrganizationJournal19,13271334.

Tang,X.,Pikal,M.J.,2005.Theeffectsofstabilizersanddenaturantsonthecold denaturationtemperaturesofproteinsandimplicationsforfreezedrying. PharmaceuticalResearch(Dordrecht)22,11671175.

Terlecky, S.R., Chiang, H.L., Olson, T.S., Dice, J.F., 1992. Protein and peptide bindingandsimulationofinvitrolysomalproteolysis by the 73KDa heatshock protein.JournalofBiologicalChemistry267,92029209.

Tezze, A.A., Botto, E.N., 2004. Effect of cold storage on the quality of Trichogramma nerudai (Hymenoptera:Trichogrammatidae).BiologicalControl30, 1116.

Thompson,G.A.,Jr.,1983.Mechanismsofhomeoviscousadaptationin membranes.In:Cossins,A.R.,Sheterline,P.(eds.)Cellularacclimatisationto environmentalchange.CambridgeUniversityPress,Cambridge3354.

Timofeeva, O.A., Khokhlova, L.P., Chulkova, Y.Y., Grareva, L.D., 2003. Microtubulesregulateactivityofcellwalllectinsincellsof Triticum aestivum L. plantsduringcoldhardening.CellBiologyInternational27,281282.

Tkachenko,A.G.,Pshenichnov,M.R.,Salakhetdnova,O.Y.,Nesterova,L.Y.,1998.The roleofputrescineandpotassiumtransportintheregulationofDNAtopologyduring Escherichia coli adaptationtoheatstress.Mikrobiologiya67,601606.

Tomeba,H.,Oshikiri,K.,Suzuki,K.,1988.Changesinthefreeaminoacidpoolin theeggsoftheemmafieldcricket Teleogryllus emma (Orthoptera:Gryllidae). JournalofAppliedEntomologyandZoology23,228233.

Touchette,B.W.,Burkholder,J.M.,2000.Overviewofthephysiologicalecologyof carbonmetabolisminseagrasses.JournalofExperimentalMarineBiologyandEcology 250,169205.

154 Tracey,W,D,,Wilson,R.L.,Laurent,G.,Benzer,S.,2003.painless,aDrosophilagene essentialfornociception.Cell113,261273.

Tsimuki,H.,Rojas,R.R.,Storey,K.B.,Baust,J.G.,1987.Thefateof[ 14 C]glucose duringcoldhardeningin Eurosta soildiaginis (Fitch).InsectBiochemistry17,347 352.

Tsumuki,H.,Kanehisa,K.,1980.Changesinenzymeactivitiesrelatedtoglycerol synthesisinhibernatinglarvaeofthericestemborer Chilo suppressalis .Journalof AppliedEntomologyandZoology15,285292.

Tsvetkova,N.M.,Quinn,P.J.1994.Compatiblesolutesmodulatemembranelipid phasebehaviour.In:CossinsAR(ed)Temperatureadaptationofbiological membranes.PortlandPress,London4962.

Usher,M.B.,Edwards,M.,1984.AdipteranfromsouthoftheAntarcticcircle: Belgica antarctica (Chironomidae),withadescriptionofitslarva.BiologicalJournalofthe LinneanSociety23,1931.

VanDenThillartG.,Smit,H.,1984.Carbohydratemetabolismofgoldfish Carassius auratus :Effectsoflongtermhypoxiaacclimationonenzymepatternsofredmuscleand whitemuscleandliver.JournalofComparativePhysiologyB154,477486.

Vernon, P., Vannier, G., 2002. Evolution of freezing susceptibility and freezing toleranceinterrestrialarthropods.CompetsRendusBiologies325,11851190.

Vigh, L., Los, D.A., Horvath, I., Murata, N., 1993. The primary signal in the biological perception of temperature: Pdcatalyzed hydrogenation of membrane lipids stimulated the expression of the desA gene in Synechocystis PCC6803. ProceedingsoftheNationalAcademyofScienceUSA90,90909094.

Vigh, L.,Maresca, B., Harwood,J.L.,1998.Doesthe membrane’s physical state control the expression of heat shock and other genes? Trends in Biochemical Sciences23,369374.

Wang,G.,Jiang,X.,Wu,L.,Li,S.,2005.Differencesinthedensity,sinkingrate andbiochemicalcompositionof Centropages tenuiremis (Copepoda:Calanoida) subitaneousanddiapauseeggs.MarineEcologyProgressSeries288,165171.

Wang,HS.,Kang,L.,2005.Effectofcoolingratesonthecoldhardinessand cryoprotectantprofilesoflocusteggs.Cryobiology51,220229.

Weckworth,W.,Morganthal,K.,2005.Metabolomics:frompatternrecognitionto biologicalinterpretation.DrugDiscovToday:Targets10,15511558.

155 Weibing,X.,Rajashekar,C.B.2001.Glycinebetaineinvolvementinfreezingtolerance andwaterstressin Arabidopsis thaliana .EnvironmentalandExperimentalBotany46, 2128.

Wheatley,D.N.,Phillip,R.,Campbell,E.,2003.Argininedeprivationandtumourcell death:arginaseanditsinhibition.MolecularandCellularBiochemistry244,177185.

Wieslander,A.,Christiansson,A.,Rilfors,L.,Lindblom,G.,1980.Lipidbilayer stabilityinmembranes.Regulationoflipidcompositionin Acholeplasma laidlawii asgovernedbymolecularshape.Biochemistry19,36503655.

Wodtke,E.,Cossins,A.R.,1991.Rapidcoldinducedchangesofmembraneorder and 9–desaturaseactivityinendoplasmicreticulumofcarpliver:atimecourse studyofthermalacclimation.BiochimicaetBiophysicaActa1064,343350.

Wood,F.E.Jr.,Nordin,J.H.,1980.Activationofthehexosemonophosphateshunt during coldinduced glycerol accumulation by Protophormia terranovae . Insect Biochemistry10,8793.

Yi,SX.,Adams,T.S.,2000.Effectofpyriproxyfenandphotoperiodonfreeamino acidconcentrationsandproteinsinthehemolymphoftheColoradopotatobeetle, Leptinotarsa decemlineata (Say).JournalofInsectPhysiology46,13411353.

Yi,SX.,Bai,C.,1991.Astudyinchillinducedglycerolproductionby Ostrinia furnacalis larvae.ActaEntomologicaSinica34,129134.

Yi,S.X.,Lee,R.E.,2003.Detectingfreezeinjury and seasonal coldhardening of cells and tissues in the gall fly larvae, Eurosta solidaginis (Diptera: Tephritidae) usingfluorescentvitaldyes.JournalofInsectPhysiology49,9991004.

Yi,S.X.,Lee,R.E.,Jr.,2004.Invivoandinvitrorapidcoldhardeningprotects cellsfromcoldshockinjuryinthefleshfly.JournalofComparativePhysiologyB 174,611615.

Yocum,G.D.,2001.DifferentialexpressionoftwoHSP70transcriptsinresponseto coldshock,thermoperiod,andadultdiapauseintheColoradopotatobeetle.Journal ofInsectPhysiology47,11391145.

Yocum,G.D.,Joplin,K.H.,Denlinger,D.L.,1998.Upregulationofa23kDasmall heat shock protein transcript during pupal diapause in the flesh fly, Sarcophaga crassipalpis .InsectBiochemistryandMolecularBiology28,677682.

Yocum,G.D.,Zdarek,J.,Joplin,K.H.,Lee,R.E.,Jr.,Smith,D.C.,Manter,K.D., Denlinger,D.L.1994.Alterationintheeclosionrhythmandeclosionbehaviorin thefleshfly, Sarcophaga crassipalpis ,bylowandhightemperaturestress.Journal ofInsectPhysiology40,1321.

156

Young,J.C.,Moarefi,Hard,F.U.,2001.Hsp90:aspecializedbutessentialprotein foldingtool.JournalofCellBiology154,267273.

Zacchariassen, K.E., 1985. Physiology of cold tolerance in insects. Physiology Review65,799832.

Zars,T.,2003.Hotandcoldin Drosophila larvae.TrendsinNeuroscience26,575 577.

Zytkovicz,T.H.,Fitzgerald,E.F.,Marsden,D.,Larson,C.A.,Shih,V.E.,Johnson,D.M., Strauss,A.W.,Comeau,A.M.,Eaton,R.B.,Grady,G.F.2001.Tandemmass spectrometricanalysisforamino,organic,andfattyaciddisordersinnewborndried bloodspots:atwoyearsummaryfromtheNewEnglandNewbornScreeningProgram. ClinicalChemistry47,19371938.

157