Central Nervous System

Total Page:16

File Type:pdf, Size:1020Kb

Central Nervous System LESSON 22 DEVELOPMENT OF THE NERVOUS SYSTEM Objectives By the end of this lesson, you should be able to: 1. Describe the development of the neural tube 2. Describe the development of the spinal cord 3. Describe the development of the brain 4. Describe the development of the hypophysis cerebri (pituitary gland) CENTRAL NERVOUS SYSTEM • The central nervous system appears in the middle of the 3rd week of the development as a thickened area of the embryonic ectoderm, the neural plate. • Its lateral edges become elevated to form the neural folds, which approach each other and fuse in the middle, thus forming the neural tube. • At the cranial and caudal end of the embryo the neural tube is temporarily open and communicates with the amniotic cavity by the way of the cranial and caudal neuropores. • The neural tube differentiates into the central nervous system, consisting of the brain and spinal cord, and the neural crest, which gives rise to the most of the peripheral nervous system. • The neural canal becomes the ventricular system of the brain and the central canal of the spinal cord. FORMATION OF THE NEURAL TUBE 1. Notochord 2. Intermediate zone of neural crest 3. Neural groove 4. Neural crest 5. Neural fold 6. Dorsal root ganglion 7. Neural tube 8. Surface ectoderm EMBRO – DAY 19 1. Neural plate 2. Primitive node 3. Primitive streak 4. Cut edge of amnion EMBRYO – DAY 20 1. Primitive streak 2. Cut edge of amnion 3. Neural fold 4. Neural groove 5. Somite 6. Primitive node EMBRYO – DAY 23 1. Pericardial bulge 2. Anterior neuropore 3. Somite 4. Posterior neuropore DEVELOPMENT OF THE SPINAL CORD • The neural tube caudal to the fourth pair of the somites develops into the spinal cord. • The wall of the neural tube consists of the neuroepithelial cells which give rise to the neurons and macroglia cells (ependymal cells, oligodendroglia, astrocytes). • The neurepithelial cells differentiate into neuroblasts, which form the mantle layer (gray matter of the spinal cord). • Nerve fibers emerging from these neuroblasts constitute the marginal layer (the white matter of the spinal cord). • The microglia cells differentiate from the mesenchymal cells surrounding the central nervous system. SPINAL CORD CONT… • Thickening of the lateral walls of the spinal cord causes the formation of the ventral and dorsal columns separated by a longitudinal groove, the sulcus limitans. • The ventral thickenings (basal plates) or ventral horns form the motor areas, while the dorsal thickenings (alar plates) or dorsal horns form the sensory areas of the spinal cord. • A small intermediate horn contains neurons of the autonomic nervous system. • The roof and floor plate serve as pathways for nerve fibers crossing from one side to the other. Development of the spinal cord 1. Roof plate 2. Flor plate 3. Sulcus limitans 4. Alar plate 5. Basal plate 6. Intermediate horn 7. Mantle layer 8. Neuroepithelial layer 9. Marginal layer Development of the spinal cord 1. Intermediate horn 2. Dorsal sensory horn 3. Ventral motor horn 4. Dorsal sensory root 5. Ventral motor root 6. Dorsal root ganglion 7. Trunk of spinal nerve 8. Central canal HISTIOGENESIS • The primitive neuroblasts gradually acquire a primitive axon and dentrites and differentiate into unipolar, bipolar or multipolar neuroblasts. • The axons of the neurons in the ventral horns break through the marginal zone and become ventral motor root of the spinal nerve. • The axons in the dorsal horns ascend or descend in the marginal layer to form sensory neurons. MYELINATION • In the spinal cord the myelin sheath is formed by the oligodendroglia cells, and by the Schwann cells outside the spinal cord. • Myelination begins at about 4th month of fetal life. • Schwann cells wrap themselves around the axons thus forming the neurilemma sheath. • The tracts in the nervous system become myelinated at about the time they start to function. MYELINATION 1. Motor horn cell 2. Oligodendroglia cell 3. Axon 4. Node of Ranvier 5. Schwann cell nucleus 6. Neurilemma sheath 7. Myelin sheath POSITIONAL CHANGES OF THE CORD • During the development, the vertebral column and the dura lengthen more rapidly than the neural tube and the terminal end of the spinal cord gradually shifts to a higher level. • The filum terminale marks the tract of regression of the spinal cord, while the nerve fibers below are known as cauda equina. DEVELOPMENT OF THE BRAIN • The neural tube cranial to the fourth pair of the somites develops into the brain. • During the 4th week, three primary brain vesicles are formed: the forebrain (prosencephalon), midbrain (mesencephalon) and hindbrain (rhombencephalon). • Two flexures appear simultaneously: the cervical flexure at the junction of the hindbrain and the spinal cord, and cephalic flexure in the midbrain region. • During the 5th week, the forebrain divides into two vesicles, the telencephalon (future cerebral hemispheres) and diencephalon. • The hindbrain partly divides into the metencephalon (future pons and cerebellum) and myelencephalon, separated by the pontine flexure. • The cavity of the rhombencephalon is known as the fourth ventricle, that of the diencephalon as the third ventricle, and those of the cerebral hemispheres as the lateral ventricles. Neural tube - 4th week 1. Prosencephalon 2. Mesencephalon 3. Rhombencephalon Development of the brain - 6th week 1. Telencephalon 2. Lateral ventricle 3. Interventricular foramen of Monro 4. 3rd ventricule 5. Optic cup 6. 4th ventricle 7. Future aqueduct of Sylvius 8. Central canal Brain vesicles - 6th week 1. Diencephalon 2. Optic cup 3. Telencephalon 4. Primitive cerebral hemisphere 5. Metencephalon 6. Mesencephalon 7. Rhombencephalic isthmus 8. Myelencephalon 9. Pontine flexure Brain vesicles (midline section) - 6th week 1. Diencephalon 2. Mesencephalon 3. Myelencephalon 4. Telencephalon 5. Metencephalon 6. Rhombencephalic isthmus 7. Roof of rhombencephalon 8. Central canal Early development of the brain 1. Rhombencephalon (hindbrain) 2. Diencephalon 3. Heart 4. Prosencephalon (forebrain) 5. Optic outgrowth 6. Cervical flexure 7. Midbrain flexure 8. Myelencephalon 9. Mesencephalon (midbrain) 10. Metencephalon 11. Telencephalon 12. Spinal cord 13. 4th ventricle 14. Pontine flexure MYELENCEPHALON • Myelencephalon gives rise to the medulla oblongata. • Its lateral walls rotate around the longitudinal axis, so that the alar and basal plates separated by the sulcus limitans can be clearly distinguished. • The basal plate contains motor nuclei, while sensory nuclei are in alar plate. • The roof plate of the myelencephalon forms the tela choroidea (ependymal roof covered by pia mater), which invaginates and differentiates into the plexus choroideus (site of the production of the cerebrospinal fluid). • The cavity of the rostral part of the myelencephalon becomes the caudal part of the fourth ventricle. Development of the medulla oblongata 1. Choroid plexus 2. 4th ventricle 3. Tela choroidea 4. Sulcus limitans 5. Alar plate 6. Basal plate 7. Somatic afferent group 8. Special visceral afferent group 9. General visceral afferent group 10. Somatic efferent group 11. Special visceral efferent group 12. General visceral efferent group 13. Olive nucleus METENCEPHALON • The walls of metencephalon form the pons and the cerebellum, while its cavity forms the cranial part of the fourth ventricle. • The cerebellum develops from thickenings of the alar plates, which enlarge and fuse. • It overgrows and overlaps the pons and medulla. • At the 8th developmental week, the cerebellum consists of the neuroepithelial, mantle and marginal layer. • During the further development, it gradually differentiates into gray and white matter and the several nuclei. • The pons is the region of the brainstream and the site of the passage of the nerve fibers connecting the cerebral and cerebellar cortices. Development of the pons and cerebellum 1. Choroid plexus 2. Medulla 3. Tela choroidea 4. Pons 5. 4th ventricle 6. Developing anterior lobe of cerebellum 7. Midbrain Development of the pons and cerebellum 1. Developing cerebellum 2. Tela choroidea 3. 4th ventricle 4. Somatic afferent group 5. Special visceral afferent group 6. General visceral afferent group 7. Somatic efferent group 8. Special visceral efferent group 9. General visceral efferent group 10. Pontine nuclei MESENCEPHALON • The mesencephalon undergoes lesser changes than any other part of the developing brain. • The neural canal narrows to form the cerebral aqueduct. • Neuroblasts migrate from the alar plates and aggregate to form large groups of neurons. • The basal plates give rise to the neurons in the tegmentum. Development of the mesencephalon 1. Basal plate 2. Alar plate 3. Sulcus limitans Development of the mesencephalon 1. Nucleus ruber 2. Stratified nuclear layer of colliculus 3. Crus cerebri 4. Substantia nigra 5. Visceral efferent 6. Somatic efferent DIENCEPHALON • Three swellings develop in the lateral walls of the third ventricle, later becoming the epithalamus, thalamus and hypothalamus. • The roof of diencephalon gives rise to the plexus choroideus and epiphysis. • The downward extension of the diencephalon forms the infundibulum (future stalk and the pars nervosa of the hypophysis). • Lateral evagination of diencephalon participates in the formation of the eye. Diencephalon and telencephalon 1. Lateral ventricle 2. Choroid plexus 3. Foramen of Monro 4. 3rd ventricle 5. Ependymal roof of the 3rd ventricle 6. Corpus striatum 7. Hypothalamus 8. Neopallium 9. Hippocampus Hypophysis • The hypophysis or pituitary
Recommended publications
  • Brainstem: Structure & Its Mode of Action
    Journal of Neurology & Neurophysiology 2021, Vol.12, Issue 3, 521 Opinion Brainstem: Structure & Its Mode of action Karthikeyan Rupani Research Fellow, Tata Medical Centre, India. Corresponding Author* The brainstem is exceptionally little, making up around as it were 2.6 percent of the brain's add up to weight. It has the basic parts of directing cardiac, and Rupani K, respiratory work, making a difference to control heart rate and breathing rate. Research Fellow, Tata Medical Centre, India; It moreover gives the most engine and tactile nerve supply to the confront and E-mail: [email protected] neck by means of the cranial nerves. Ten sets of cranial nerves come from the brainstem. Other parts incorporate the direction of the central apprehensive Copyright: 2021 Rupani K. This is an open-access article distributed under the framework and the body's sleep cycle. It is additionally of prime significance terms of the Creative Commons Attribution License, which permits unrestricted within the movement of engine and tangible pathways from the rest of the use, distribution, and reproduction in any medium, provided the original author brain to the body, and from the body back to the brain. These pathways and source are credited. incorporate the corticospinal tract (engine work), the dorsal column-medial lemniscus pathway and the spinothalamic tract [3]. The primary part of the brainstem we'll consider is the midbrain. The midbrain Received 01 March 2021; Accepted 15 March 2021; Published 22 March 2021 (too known as the mesencephalon) is the foremost prevalent of the three districts of the brainstem. It acts as a conduit between the forebrain over and the pons and cerebellum underneath.
    [Show full text]
  • Telovelar Approach to the Fourth Ventricle: Microsurgical Anatomy
    J Neurosurg 92:812–823, 2000 Telovelar approach to the fourth ventricle: microsurgical anatomy ANTONIO C. M. MUSSI, M.D., AND ALBERT L. RHOTON, JR., M.D. Department of Neurological Surgery, University of Florida, Gainesville, Florida Object. In the past, access to the fourth ventricle was obtained by splitting the vermis or removing part of the cere- bellum. The purpose of this study was to examine the access to the fourth ventricle achieved by opening the tela cho- roidea and inferior medullary velum, the two thin sheets of tissue that form the lower half of the roof of the fourth ven- tricle, without incising or removing part of the cerebellum. Methods. Fifty formalin-fixed specimens, in which the arteries were perfused with red silicone and the veins with blue silicone, provided the material for this study. The dissections were performed in a stepwise manner to simulate the exposure that can be obtained by retracting the cerebellar tonsils and opening the tela choroidea and inferior medullary velum. Conclusions. Gently displacing the tonsils laterally exposes both the tela choroidea and the inferior medullary velum. Opening the tela provides access to the floor and body of the ventricle from the aqueduct to the obex. The additional opening of the velum provides access to the superior half of the roof of the ventricle, the fastigium, and the superolater- al recess. Elevating the tonsillar surface away from the posterolateral medulla exposes the tela, which covers the later- al recess, and opening this tela exposes the structure forming
    [Show full text]
  • Arachnoid Cyst of the Velum Interpositum
    981 t . Arachnoid Cyst of the Velum Interpositum S. M. Spiegel,1 B. Nixon,2 K. TerBrugge,1 M. C. Chiu,1 and H. Schutz2 Arachnoid cysts are thin-walled fluid-filled cavities that are The lesion was assumed to be an arachnoid cyst and surgery was uncommon causes of intracranial mass lesions [1 , 2]. These planned for decompression. By way of a right parietal craniotomy, an lesions have been found in various locations, both supraten­ interhemispheric transcallosal approach was used to expose the cyst. torial and infratentorial [1 , 3-7]. This report describes a case After the cyst was punctured, the roof was removed and tissue was submitted for pathologic study. The fluid within the cyst proved to be in which the arachnoid cyst arose from the tela choroidea and identical to CSF. The cyst was then marsupialized to the third occupied the cistern of the velum interpositum. The cyst ventricle. caused symptoms similar to those seen with a third ventricular The sample received for pathologic study consisted of a moder­ mass [8, 9] . To our knowledge, this is the first report of an ately cellular, collagenous tissue with a small amount of brain paren­ arachnoid cyst in this location. chyma. The lining of the tissue consisted of flattened cells. The appearance was typical of the wall of an arachnoid cyst. After surgery, the patient had no further episodes of loss of Case Report consciousness or headache. A 43-year-old woman was admitted to the hospital because of two episodes of sudden loss of consciousness within a period of a few months.
    [Show full text]
  • Brain Structure and Function Related to Headache
    Review Cephalalgia 0(0) 1–26 ! International Headache Society 2018 Brain structure and function related Reprints and permissions: sagepub.co.uk/journalsPermissions.nav to headache: Brainstem structure and DOI: 10.1177/0333102418784698 function in headache journals.sagepub.com/home/cep Marta Vila-Pueyo1 , Jan Hoffmann2 , Marcela Romero-Reyes3 and Simon Akerman3 Abstract Objective: To review and discuss the literature relevant to the role of brainstem structure and function in headache. Background: Primary headache disorders, such as migraine and cluster headache, are considered disorders of the brain. As well as head-related pain, these headache disorders are also associated with other neurological symptoms, such as those related to sensory, homeostatic, autonomic, cognitive and affective processing that can all occur before, during or even after headache has ceased. Many imaging studies demonstrate activation in brainstem areas that appear specifically associated with headache disorders, especially migraine, which may be related to the mechanisms of many of these symptoms. This is further supported by preclinical studies, which demonstrate that modulation of specific brainstem nuclei alters sensory processing relevant to these symptoms, including headache, cranial autonomic responses and homeostatic mechanisms. Review focus: This review will specifically focus on the role of brainstem structures relevant to primary headaches, including medullary, pontine, and midbrain, and describe their functional role and how they relate to mechanisms
    [Show full text]
  • The Choroid Plexus: a Comprehensive Review of Its History, Anatomy, Function, Histology, Embryology, and Surgical Considerations
    Childs Nerv Syst (2014) 30:205–214 DOI 10.1007/s00381-013-2326-y REVIEW PAPER The choroid plexus: a comprehensive review of its history, anatomy, function, histology, embryology, and surgical considerations Martin M. Mortazavi & Christoph J. Griessenauer & Nimer Adeeb & Aman Deep & Reza Bavarsad Shahripour & Marios Loukas & Richard Isaiah Tubbs & R. Shane Tubbs Received: 30 September 2013 /Accepted: 11 November 2013 /Published online: 28 November 2013 # Springer-Verlag Berlin Heidelberg 2013 Abstract Keywords Choroid plexus . Anatomy . Neurosurgery . Introduction The role of the choroid plexus in cerebrospinal Hydrocephalus fluid production has been identified for more than a century. Over the years, more intensive studies of this structure has lead to a better understanding of the functions, including brain Introduction immunity, protection, absorption, and many others. Here, we review the macro- and microanatomical structure of the Around the walls of the ventricles, folds of pia mater form choroid plexus in addition to its function and embryology. vascularized layers named choroid plexus. This vasculature Method The literature was searched for articles and textbooks along with the overlying ependymal lining of the ventricles for data related to the history, anatomy, physiology, histology, forms the tela choroidea. Sometimes, however, the term embryology, potential functions, and surgical implications of choroid plexus is used to describe the entire structure [1]. The the choroid plexus. All were gathered and summarized narrow cleft, to which the choroids plexus is attached in the comprehensively. ventricles, is defined as the choroidal fissure. [2] The discovery Conclusion We summarize the literature regarding the choroid of the choroid plexus is attributed to Herophilus, who named it plexus and its surgical implications.
    [Show full text]
  • The Surgical Treatment of Tumors of the Fourth Ventricle: a Single-Institution Experience
    CLINICAL ARTICLE J Neurosurg 128:339–351, 2018 The surgical treatment of tumors of the fourth ventricle: a single-institution experience Sherise D. Ferguson, MD, Nicholas B. Levine, MD, Dima Suki, PhD, Andrew J. Tsung, MD, Fredrick F. Lang, MD, Raymond Sawaya, MD, Jeffrey S. Weinberg, MD, and Ian E. McCutcheon, MD, FRCS(C) Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas OBJECTIVE Fourth ventricle tumors are rare, and surgical series are typically small, comprising a single pathology, or focused exclusively on pediatric populations. This study investigated surgical outcome and complications following fourth ventricle tumor resection in a diverse patient population. This is the largest cohort of fourth ventricle tumors described in the literature to date. METHODS This is an 18-year (1993–2010) retrospective review of 55 cases involving patients undergoing surgery for tumors of the fourth ventricle. Data included patient demographic characteristics, pathological and radiographic tumor characteristics, and surgical factors (approach, surgical adjuncts, extent of resection, etc.). The neurological and medical complications following resection were collected and outcomes at 30 days, 90 days, 6 months, and 1 year were reviewed to determine patient recovery. Patient, tumor, and surgical factors were analyzed to determine factors associated with the frequently encountered postoperative neurological complications. RESULTS There were no postoperative deaths. Gross-total resection was achieved in 75% of cases. Forty-five percent of patients experienced at least 1 major neurological complication, while 31% had minor complications only. New or worsening gait/focal motor disturbance (56%), speech/swallowing deficits (38%), and cranial nerve deficits (31%) were the most common neurological deficits in the immediate postoperative period.
    [Show full text]
  • Supracerebellar Infratentorial Inverted Subchoroidal Approach to Lateral
    www.surgicalneurologyint.com Surgical Neurology International Editor-in-Chief: Nancy E. Epstein, MD, Clinical Professor of Neurological Surgery, School of Medicine, State U. of NY at Stony Brook. SNI: Neuroanatomy and Neurophysiology Editor Dennis Malkasian, MD University of California at Los Angeles, Los Angeles, CA, USA Open Access Original Article Supracerebellar infratentorial inverted subchoroidal approach to lateral ventricle lesions: Anatomical study and illustrative case Irakliy Abramov1, Xiaochun Zhao1, Evgenii Belykh1, Michael T. Lawton1, David Pitskhelauri2, Mark C. Preul1 1Department of Neurosurgery, Barrow Neurological Institute, Phoenix, Arizona, United States, 2Department of Neuro-oncology, Burdenko Neurosurgery Center, Moscow, Russian Federation. E-mail: Irakliy Abramov - [email protected]; Xiaochun Zhao - [email protected]; Evgenii Belykh - [email protected]; Michael T. Lawton - [email protected]; David Pitskhelauri - [email protected]; Mark C. Preul - [email protected] ABSTRACT Background: is study provides an anatomical description of a novel supracerebellar infratentorial inverted subchoroidal (SIIS) approach to the lateral ventricle. An illustrative case is presented in which this approach was used to simultaneously resect two tumors residing in the posterior fossa and lateral ventricle. Methods: e SIIS approach was performed on five cadaveric heads using microsurgical and endoscopic *Corresponding author: techniques. Target points were defined in the lateral ventricle, and quantitative analysis was performed to assess Mark C. Preul, limits of exposure within the lateral ventricle. Two coronal reference planes corresponding to the anterior and Department of Neurosurgery, posterior margins of the lateral ventricle body were defined. Distances from target points to reference planes were Barrow Neurological Institute, measured, and an imaging-based predicting system was provided according to obtained measurements to guide Phoenix, AZ, United States.
    [Show full text]
  • Neuroanatomy Dr
    Neuroanatomy Dr. Maha ELBeltagy Assistant Professor of Anatomy Faculty of Medicine The University of Jordan 2018 Prof Yousry 10/15/17 A F B K G C H D I M E N J L Ventricular System, The Cerebrospinal Fluid, and the Blood Brain Barrier The lateral ventricle Interventricular foramen It is Y-shaped cavity in the cerebral hemisphere with the following parts: trigone 1) A central part (body): Extends from the interventricular foramen to the splenium of corpus callosum. 2) 3 horns: - Anterior horn: Lies in the frontal lobe in front of the interventricular foramen. - Posterior horn : Lies in the occipital lobe. - Inferior horn : Lies in the temporal lobe. rd It is connected to the 3 ventricle by body interventricular foramen (of Monro). Anterior Trigone (atrium): the part of the body at the horn junction of inferior and posterior horns Contains the glomus (choroid plexus tuft) calcified in adult (x-ray&CT). Interventricular foramen Relations of Body of the lateral ventricle Roof : body of the Corpus callosum Floor: body of Caudate Nucleus and body of the thalamus. Stria terminalis between thalamus and caudate. (connects between amygdala and venteral nucleus of the hypothalmus) Medial wall: Septum Pellucidum Body of the fornix (choroid fissure between fornix and thalamus (choroid plexus) Relations of lateral ventricle body Anterior horn Choroid fissure Relations of Anterior horn of the lateral ventricle Roof : genu of the Corpus callosum Floor: Head of Caudate Nucleus Medial wall: Rostrum of corpus callosum Septum Pellucidum Anterior column of the fornix Relations of Posterior horn of the lateral ventricle •Roof and lateral wall Tapetum of the corpus callosum Optic radiation lying against the tapetum in the lateral wall.
    [Show full text]
  • The Meninges As Barriers and Facilitators for the Movement of Fluid, Cells and Pathogens Related to the Rodent and Human CNS
    The meninges as barriers and facilitators for the movement of fluid, cells and pathogens related to the rodent and human CNS Weller, Roy O.; Sharp, Matthew M.; Christodoulides, Myron; Carare, Roxana O.; Møllgård, Kjeld Published in: Acta Neuropathologica DOI: 10.1007/s00401-018-1809-z Publication date: 2018 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Weller, R. O., Sharp, M. M., Christodoulides, M., Carare, R. O., & Møllgård, K. (2018). The meninges as barriers and facilitators for the movement of fluid, cells and pathogens related to the rodent and human CNS. Acta Neuropathologica, 135(3), 363-385. https://doi.org/10.1007/s00401-018-1809-z Download date: 28. Sep. 2021 Acta Neuropathologica (2018) 135:363–385 https://doi.org/10.1007/s00401-018-1809-z REVIEW The meninges as barriers and facilitators for the movement of fuid, cells and pathogens related to the rodent and human CNS Roy O. Weller1 · Matthew M. Sharp1 · Myron Christodoulides2 · Roxana O. Carare1 · Kjeld Møllgård3 Received: 5 November 2017 / Revised: 2 January 2018 / Accepted: 15 January 2018 / Published online: 24 January 2018 © The Author(s) 2018. This article is an open access publication Abstract Meninges that surround the CNS consist of an outer fbrous sheet of dura mater (pachymeninx) that is also the inner peri- osteum of the skull. Underlying the dura are the arachnoid and pia mater (leptomeninges) that form the boundaries of the subarachnoid space. In this review we (1) examine the development of leptomeninges and their role as barriers and facilita- tors in the foetal CNS.
    [Show full text]
  • Neuroanatomy
    Outline Protection Peripheral Nervous System Overview of Brain Hindbrain Midbrain Forebrain Neuroanatomy W. Jeffrey Wilson Fall 2012 \Without education we are in a horrible and deadly danger of taking educated people seriously." { Gilbert Keith Chesterton [LATEX in use { a Microsoft- & PowerPoint-free presentation] Outline Protection Peripheral Nervous System Overview of Brain Hindbrain Midbrain Forebrain Protection Peripheral Nervous System Overview of Brain Hindbrain Midbrain Forebrain Outline Protection Peripheral Nervous System Overview of Brain Hindbrain Midbrain Forebrain Blood-Brain Barrier Outline Protection Peripheral Nervous System Overview of Brain Hindbrain Midbrain Forebrain Peripheral Nervous System • Somatic N.S.: skeletal muscles, skin, joints • Autonomic N.S.: internal organs, glands • Sympathetic N.S.: rapid expenditure of energy • Parasympathetic N.S.: restoration of energy Outline Protection Peripheral Nervous System Overview of Brain Hindbrain Midbrain Forebrain Spinal Cord Outline Protection Peripheral Nervous System Overview of Brain Hindbrain Midbrain Forebrain Brain | Ventricles Outline Protection Peripheral Nervous System Overview of Brain Hindbrain Midbrain Forebrain Brain Midline Outline Protection Peripheral Nervous System Overview of Brain Hindbrain Midbrain Forebrain Brain Midline Outline Protection Peripheral Nervous System Overview of Brain Hindbrain Midbrain Forebrain Hindbrain Myelencephalon & Metencephalon Outline Protection Peripheral Nervous System Overview of Brain Hindbrain Midbrain Forebrain Reticular
    [Show full text]
  • The Nervous System
    The Nervous System Martha Assimakopoulou Associate Professor Department of Anatomy School of Medicine University of Patras Information Processing • Nervous system process information in three stages: – Sensory input, integration, and motor output. Sensory input Integration Sensor Motor output Effector Figure 48.3 Peripheral nervous Central nervous system (PNS) system (CNS) In all vertebrates, the nervous system shows a high degree of cephalization and distinct CNS and PNS components. Central nervous system (CNS) Peripheral nervous – The Central system (PNS) Brain Nervous System Cranial nerves consists of a brain Spinal cord Ganglia outside and dorsal spinal CNS Spinal cord. nerves – The Peripheral Nervous System connects to the CNS. Figure 48.19 The Peripheral Nervous System • The PNS transmits information to and from the CNS – and plays a large role in regulating a vertebrate’s movement and internal environment. • The cranial nerves originate in the brain – and terminate mostly in organs of the head and upper body. • The spinal nerves originate in the spinal cord – and extend to parts of the body below the head. Sense organs carry messages about the environment to the central nervous system. Eye Ear Nose Tongue Skin The sense organs gather information (light, sound, heat, and pressure) from the environment. The sense organs gather information from outside the body (environment), then send the messages to the brain. Vision is the ability to see. • Vision involves the eye and the brain. The eye gathers pictures and sends them to the brain. The colored part of the eye is the iris. The black part of the eye is the pupil. The pupil becomes larger and smaller as it controls the light coming into the eye.
    [Show full text]
  • The Walls of the Diencephalon Form The
    The Walls Of The Diencephalon Form The Dmitri usually tiptoe brutishly or benaming puristically when confiscable Gershon overlays insatiately and unremittently. Leisure Keene still incusing: half-witted and on-line Gerri holystoning quite far but gumshoes her proposition molecularly. Homologous Mike bale bene. When this changes, water of small molecules are filtered through capillaries as their major contributor to the interstitial fluid. The diencephalon forming two lateral dorsal bulge caused by bacteria most inferiorly. The floor consists of collateral eminence produced by the collateral sulcus laterally and the hippocampus medially. Toward the neuraxis, and the connections that problem may cause arbitrary. What is formed by cavities within a tough outer layer during more. Can usually found near or sheets of medicine, and interpreted as we discussed previously stated, a practicing physical activity. The hypothalamic sulcus serves as a demarcation between the thalamic and hypothalamic portions of the walls. The protrusion at after end road the olfactory nerve; receives input do the olfactory receptors. The diencephalon forms a base on rehearsal limitations. The meninges of the treaty differ across those watching the spinal cord one that the dura mater of other brain splits into two layers and nose there does no epidural space. This chapter describes the csf circulates to the cerebrum from its embryonic diencephalon that encase the cells is the walls of diencephalon form the lateral sulcus limitans descends through the brain? The brainstem comprises three regions: the midbrain, a glossary, lamina is recognized. Axial histologic sections of refrigerator lower medulla. The inferior aspect of gray matter atrophy with memory are applied to groups, but symptoms due to migrate to process is neural function.
    [Show full text]