Cold Weather Penguin

Total Page:16

File Type:pdf, Size:1020Kb

Cold Weather Penguin Cold Weather Penguin Primary Biologist: Dan Clady Secondary Biologist: Tamara King Equipment used: A. Radio* B. Warehouse Key* C. Handheld mic – On stand in employee area D. Headset Mic* E. Earbuds and pack* -For hearing your audience members when you’re in the exhibit. F. Batteries -Found on charger on the wall. G. SOP* H. Artifacts, if wanted: Feathers, Egg shells, Dummy eggs, Penguin skull, Etc. -Can be found backstage in the penguin’s kitchen cabinet, or in artifact cart. I. IPod*: with videos of feeding, molting and painting. -*Will be found in cubby, or in the office. Feel free to call 205 if you can’t find them. Species: 1. Gentoo Penguins- South America and surrounding Sub Antarctic islands. They are the fastest swimming penguins in the world, between 22-25 MPH. 2. Macaroni Penguin- South America and surrounding Sub Antarctic islands. One of two types of crested birds here at the Newport Aquarium. When they were discovered, having a feather in you cap was a type of style called macaroni. They got this name because of the feathers on their heads. They have the slicked back yellow hair-do compared to the Rockhopper’s angry eyebrows. 3. Rockhopper Penguin- South America and surrounding Sub Antarctic islands. The smallest species we have here at the Newport Aquarium. They stand a foot and a half (18 inches) tall, compared to the smallest penguin in the world, which is the Fairy Blue, which only stands 13 inches tall. They also have the angry yellow eyebrows compared to the Macaroni’s yellow hair-do. 4. Chinstrap Penguin- Antarctica, Some of the oldest penguins we have here at the Aquarium. Average lifespan in the wild: 15-20 years, Under professional care: 30-40 years. A few of our Chinstraps are around 30, including Spike (this is true in 2017, in the future use the current age) . 5. King Penguins- Antarctica, Second largest penguin in the world. They stand 3-3 ½ feet tall. Compared to the Emperor Penguin, the largest penguin in the world, who stands 4- 4 ½ feet tall. 5a.(not found in this exhibit) African Penguins- Africa, like it between 60-100 degrees. This exhibit is too cold for them. At 40 degrees in the air and 50 in the water they could get hypothermia in this exhibit. Tank Facts: Air temperature 40 degrees, water temperature 50 degrees, this varies slightly depending on the penguins’ season. They are on their natural light and temperature cycle for breeding and molting health. Snow machine is used for enrichment Igloos are meant to give the birds a space of their own, and to encourage breeding. Second story is meant for the smaller species, but the Kings usually lay eggs up there. The tank is 8,000 gallons of fresh water Rules for guests: N/A- encourage them to ask questions. Try not to let anyone block or enter the blue gate, as it is an employee area only. Rules for Employees: You must be trained by a 205, 202, or Dan Clady before you can enter the house. Check with 205s or Dan to make sure there are no eggs or injuries in the house, and that we are clear to enter. Rules for going into the house Make sure you have a radio and a warehouse key Let guests know what’s happening, unless you want it to be a surprise, and enter through the blue door to the right of the exhibit. Make sure the door is closed behind you. Remove your shoes and put on rubber boots located on the back left side of the backstage area. Enter the cold hallway behind the exhibit. The door will be to the left of the rubber boots. Make sure the door closes behind you. Walk through the footbath on the floor in the hallway. If there is no footbath, call Dan Clady. Do not continue to enter the cold weather penguin house without using the footbath. Enter the cold room connected to the hallway. Make sure the door is closed behind you. Enter the penguin area. Be sure the door closes behind you. Make sure to watch your feet for penguin toes while coming into the exhibit. Check your mic and make sure the guest can hear you by asking them to wave or nod. When leaving, follow the same process as above in reverse. You do not have to walk through the footbath on the way out. Common Issues: Penguins fall off the second story sometimes, and guests worry: Let them know they have a lot of padding so they are usually cushioned well and uninjured. Guest is looking for a penguin encounter: direct them upstairs to the additional experience area, in the lobby on the wooden benches next to the whale. Guest is trying to fit a stroller on the escalator, or can’t find the elevator: stop them and direct them to the elevator to the left of the penguin exhibit. Guests are looking for a penguin show, or want to see the penguins do tricks: Tell them that we support animal choice programing here at Newport Aquarium and we don’t want to force animals to do things they don’t want to do. Sometimes watching the penguins swim and porpoise feels like enough of a show. Also direct them to the Penguin Feed, Shark Ray Feed, Penguin Sunrise, Animal Encounters, etc. If Guests say “show” figure out what they mean, if they are looking for a feed etc. Also see what animals they are interested in seeing and see if you can direct them appropriately. If feed is early, late, or hasn’t started yet: Still do the talk as best you can. Explain that the Biologists at the aquarium work very hard and have a lot on their plate, and sometimes their schedule gets thrown off a little bit. Safety Policy: A.) Make sure all doors are closed behind you when going into and out of the penguin exhibit. B.) Put on boots before going into the hallway behind the exhibit. C.) Use foot bath in the hallway behind the exhibit. D.) Don’t touch the penguins in the exhibit unless they clearly and purposefully approach you. E.) Don’t go on exhibit if anyone else is in there, unless it is Dan Clady and you ask him first. Too many people in the exhibit makes the birds feel stressed because they think something medical will be done. F.) Don’t climb the rocks to get to the second story or for any reason. G.) If you notice a penguin is injured while on exhibit, let Dan, or the penguin biologist on duty know as soon as possible. You can call for them on channel 1 for Dan Clady or Moses (which Dan also goes by), otherwise call 205 Emergency Situations: Fire Extinguishers- Located to the left of the emergency exit doors in Shark Central. Fire pull handle- Located in Penguin Palooza right next to the emergency exit door. Emergency Exits- Stairwell located to the right of the penguin map in Penguin Palooza + Parking garage exit in Shark Central. In the case of a fire: Gather everyone and have them exit out the stairwell next to the penguin map, or out to the parking garage exit in shark central. Make sure to have a radio on you before you go. In the case of a power outage: Get the flashlight from your work station and have everyone stay put so they don’t bump into things and each other in the dark. If the power doesn’t come back on shortly you will get a radio call with further instructions, or 205 will come and get you. In case of code Blowfish (bomb threat): Exit same doors as fire exits and move away from the building, at least as far as the Taylor Southgate Bridge. In the case of severe weather/tornado: Have guests stay put if possible. We cannot force them to stay. Some areas of the aquarium will be closed off. Keep your radio and flashlight handy and wait for instructions from 205. FAQs: Where is the elevator? At the beginning on the penguin exhibit on your right, or at the end of shark central on your left. Where are the bathrooms? The closets ones are back in the café on your right. How do you tell the girls penguins from the boy penguins? There is no easy physical way to tell them apart. Our biologists do bloodwork and take note of which penguin is which. How cold is it in there? The exhibit is kept at about 40 degrees in the air, 50 degrees in the water. It changes slightly as the seasons change because we keep the penguins on their natural light and temperature cycle to encourage healthy molting and breeding. Why are bubbles coming out of the penguins when they swim? Penguins have the ability to raise and lower their feathers, and sometimes trap air between their feathers and squeeze it out while they’re swimming. Do you have any Emperor Penguins? There are no Emperor Penguins in this exhibit. The largest species we have here are the King Penguins. The Emperors like it so cold that some of the other penguin species here would be uncomfortable, and the water would freeze to they would have it to play in, exercise in, and clean their feathers in. What do penguins eat? Penguins like a variety of seafood including fish, squid and krill, which are tiny shrimp How can I help endangered penguins? Penguin encounters, penguin paintings, water conservation, electricity conservation, recycling etc.
Recommended publications
  • Macaroni Penguin
    Macaroni Penguin Website : https://www.cuteness.com/article/macaroni-penguin-kids Live Camera: https://tnaqua.org/animal/macaroni-penguin/ Macaroni penguins are the most abundant of the different penguin species in the world. They are easily identified by the yellow hairs on the top of their heads. But be careful! This penguin looks a lot like the Royal penguin. The big difference is that the Macaroni penguin has a black face, and the Royal penguin has a white face. Now visit the website. Look at the first paragraph that begins with “Macaroni penguins inhabit a number of islands…”: 1) Where do Macaroni penguins live? a. In my house b. Near Antarctica c. North Pole d. Along the equator 2) What are two threats to Macaroni penguins that come from human beings? (More than one) . a. Leopard seals b. Commercial fishing c. Oil pollution d. Sea lions Go to this section : 3) What other penguin can be confused with the Macaroni penguin? a. Royal penguin b. Emperor penguin c. Antarctic penguin d. Rockhopper penguin 4) About how does this penguin weigh? a. Five pounds b. Seven pounds c. Nine pounds d. Eleven pounds Go to this section : 5) How did this penguin get its name? a. No one knows b. It was named after a hat c. It was named after the food d. It was named after the explorer who found them 6) True or false. The song “Yankee Doodle” was partly about the Macaroni penguin. a. True b. False c. What’s a Doodle? 1 Go to this section : 7) Where do Macaroni penguins lay their eggs? a.
    [Show full text]
  • Climate Change Threatens Penguins
    SEPTEMBER 2009 Climate Change Threatens Penguins By: Shaye Wolf Penguins are not just found in •11 of 18 penguin species are Antarctica declining and considered an Penguins—waddling wonders of extinction risk the Southern Hemisphere Although penguins are commonly associated with Antarctica, penguins •Two species are considered Penguins (order Sphenisciformes, are found in a variety of habitats stable. family Spheniscidae) are flightless in the Southern Hemisphere. seabirds found almost entirely in Eighteen different penguin species •The population status of the the Southern Hemisphere. Although inhabit areas from Antarctica to the remaining five is unknown. their wings have become useless for Equator. They can be divided into Studies have linked climate change flight, they have become superbly three groups: to past, ongoing, and projected adapted to swimming and diving. population declines of many For example, Gentoo penguins •Four penguin species breed in Antarctica and/or the Antarctic penguin species. Because penguins can swim up to 35 km per hour— live in different ocean habitats of compared with 9 km per hour for islands: the Emperor, Adélie, Chinstrap, and Gentoo penguin. the Southern Hemisphere, climate the fastest Olympic swimmer. change affects penguins in these Emperor penguins can dive to •Most penguin species breed on regions in different ways. depths of more than 520 m to find islands in the sub-Antarctic waters food—deeper than any other bird. of the Southern Ocean (a.k.a. How is climate change affecting Penguins must return to land or sea Antarctic Ocean), the South Atlantic Antarctic penguins? ice to rear their young, however, Ocean, the South Pacific Ocean, and they are renowned for their The Antarctic continent is warming and the Southern Indian Ocean: as a whole,1 but the Antarctic feats of endurance as parents.
    [Show full text]
  • Developing UAV Monitoring of South Georgia and the South Sandwich Islands’ Iconic Land-Based Marine Predators
    fmars-08-654215 May 26, 2021 Time: 18:32 # 1 ORIGINAL RESEARCH published: 01 June 2021 doi: 10.3389/fmars.2021.654215 Developing UAV Monitoring of South Georgia and the South Sandwich Islands’ Iconic Land-Based Marine Predators John Dickens1*, Philip R. Hollyman1, Tom Hart2, Gemma V. Clucas3, Eugene J. Murphy1, Sally Poncet4, Philip N. Trathan1 and Martin A. Collins1 1 British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom, 2 Department of Zoology, University of Oxford, Oxford, United Kingdom, 3 Cornell Lab of Ornithology, Cornell University, Ithaca, NY, United States, 4 South Georgia Survey, Stanley, Falkland Islands Many remote islands present barriers to effective wildlife monitoring in terms of Edited by: challenging terrain and frequency of visits. The sub-Antarctic islands of South Georgia Wen-Cheng Wang, National Taiwan Normal University, and the South Sandwich Islands are home to globally significant populations of seabirds Taiwan and marine mammals. South Georgia hosts the largest breeding populations of Antarctic Reviewed by: fur seals, southern elephant seals and king penguins as well as significant populations of Gisele Dantas, wandering, black-browed and grey-headed albatross. The island also holds important Pontifícia Universidade Católica de Minas Gerais, Brazil populations of macaroni and gentoo penguins. The South Sandwich Islands host the Sofie Pollin, world’s largest colony of chinstrap penguins in addition to major populations of Adélie KU Leuven Research & Development, Belgium and macaroni penguins. A marine protected area was created around these islands in *Correspondence: 2012 but monitoring populations of marine predators remains a challenge, particularly John Dickens as these species breed over large areas in remote and often inaccessible locations.
    [Show full text]
  • Foraging Ecology and Diving Behaviour of Macaroni Penguins 27
    1998 Green et al.: Foraging ecology and diving behaviour of Macaroni Penguins 27 FORAGING ECOLOGY AND DIVING BEHAVIOUR OF MACARONI PENGUINS EUDYPTES CHRYSOLOPHUS AT HEARD ISLAND K. GREEN 1,2, R. WILLIAMS 1 & M.G. GREEN 2 1Antarctic Division, Channel Highway, Kingston, Tasmania 7050, Australia 2Current address: National Parks and Wildlife Service, Snowy Mountains Region, PO Box 2228, Jindabyne, New South Wales 2627, Australia ([email protected]) Received 7 May 1997, accepted 6 June 1998 SUMMARY GREEN, K., WILLIAMS, R. & GREEN, M.G. 1998. Foraging ecology and diving behaviour of Macaroni Penguins Eudyptes chrysolophus at Heard Island. Marine Ornithology 26: 27–34. Over the chick-rearing period, Macaroni Penguins Eudyptes chrysolophus foraged to the north-east of Heard Island within an approximate 300-km radius, feeding mainly on euphausiids and fish. As the season progressed, the amount of euphausiids in the diet declined by 93% with the diet becoming almost totally composed of the myctophid fish Krefftichthys anderssoni. Penguins foraged mainly on the Heard Island shelf area (seas shallower than 1000 m). Penguin dive profiles were complex, unlike the simple ‘V’ shaped dives recorded elsewhere. Diving was mainly between dawn and dusk to depths of 10–60 m, and the deepest dives were undertaken during daylight hours. The connection between the observed diving patterns and the diet was difficult to elucidate because K. anderssoni only migrates vertically into surface waters at night and is believed to be out of the penguins’ diving range during the day. INTRODUCTION METHODS Macaroni Penguins Eudyptes chrysolophus on Heard and Diet McDonald Islands are thought to number about two million breeding pairs (Woehler 1991).
    [Show full text]
  • Playful Penguins by Melissa Michael
    Playful Penguins By Melissa Michael www.teachertreasurehunter.blogspot.com •Emperor Penguin •King Penguin •Gentoo Penguin •Macaroni Penguin •Adélie Penguin •Little Penguin Emperor Penguin HABITAT: The emperor penguin lives in the Antarctic. It will spend its entire life in the Antarctic waters and on the ice. They are never on land. FOOD: They mostly eat Antarctic silverfish. They may also eat krill or squid. PREDATORS: Their main enemies are orcas and leopard seals. The chicks are also prey for sea birds. COOL FACTS: *The females lay one large egg and then the males take care of it. The males keep the egg on their feet and cover it with their brooding pouch. The brooding pouch is Credit: Photo by Lin Padgham; Creative Commons license loose skin covered with feathers that can APPEARANCE: The emperor penguin has cover the egg. The males will not eat black feathers on its back. The feathers in anything for the 2 months when they care front are white. They have a black head for the egg. and black beak with an orange stripe. *They are the largest penguin in the world. There are yellow patches on each side of its They are about 44 inches tall. head. The chicks have gray feathers with a *They can dive deeper than any other black and white face patch. bird. © 2013 © 2013 Michael Melissa King Penguin HABITAT: They live on islands of the sub- Antarctic and ice-free ocean waters. They never live on pack ice like their close relative the Emperor penguin. FOOD: They eat small fish and some squid.
    [Show full text]
  • Marine Predators at South Georgia: an Overview of Recent Bio-Logging Studies
    Mem. Natl Inst. Polar Res., Spec. Issue, 58, 118–132, 2004 ©National Institute of Polar Research Review Marine predators at South Georgia: an overview of recent bio-logging studies Philip N. Trathan* and John P. Croxall British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK (*[email protected]) (Received March 21, 2003; Accepted July 15, 2003) Abstract: There is a unique diversity and density of land-based marine predators breeding at Bird Island, South Georgia, operating at a wide variety of spatial and temporal scales. These provide exceptional opportunities for bio-logging studies, the objectives of which have been to investigate trophic interactions in ecosystem contexts (including applications in fish- eries and environmental management and conservation). Associated data from studies on feeding ecology, reproductive performance and population dynamics provide valuable con- textual information for bio-logging analyses. An associated ship-based offshore marine sci- ence programme also provides vital information about the local and regional biological and physical environment, which is both complex and highly variable. Further developments of our bio-logging studies at South Georgia face a number of important challenges. These include: • acquiring samples large enough for statistical analysis; • replicating study sites and/or populations in order to characterize population and species behaviour; • collecting simultaneous data from multiple sensors or devices in order to interpret foraging behaviour; • acquiring key collateral data on prey and environment at appropriate spatial and temporal scales to understand foraging dynamics in context. We illustrate approaches to address some of these challenges from recent studies of the South Georgia marine ecosystem.
    [Show full text]
  • Foraging Strategy Plasticity in Fiordland Penguins (Eudyptes Pachyrhynchus): a Stable Isotope Approach
    Marshall University Marshall Digital Scholar Theses, Dissertations and Capstones 2020 FORAGING STRATEGY PLASTICITY IN FIORDLAND PENGUINS (EUDYPTES PACHYRHYNCHUS): A STABLE ISOTOPE APPROACH Jeffrey Wayne White [email protected] Follow this and additional works at: https://mds.marshall.edu/etd Part of the Animal Sciences Commons, Behavior and Ethology Commons, and the Terrestrial and Aquatic Ecology Commons Recommended Citation White, Jeffrey Wayne, "FORAGING STRATEGY PLASTICITY IN FIORDLAND PENGUINS (EUDYPTES PACHYRHYNCHUS): A STABLE ISOTOPE APPROACH" (2020). Theses, Dissertations and Capstones. 1284. https://mds.marshall.edu/etd/1284 This Thesis is brought to you for free and open access by Marshall Digital Scholar. It has been accepted for inclusion in Theses, Dissertations and Capstones by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected], [email protected]. FORAGING STRATEGY PLASTICITY IN FIORDLAND PENGUINS (EUDYPTES PACHYRHYNCHUS): A STABLE ISOTOPE APPROACH A thesis submitted to the Graduate College of Marshall University In partial fulfillment of the requirements for the degree of Master of Science In Biology by Jeffrey Wayne White Approved by Dr. Herman Mays, Committee Chairperson Dr. Anne Axel Dr. Jennifer Mosher Dr. John Hopkins III Marshall University May 2020 APPROVAL OF THESIS We, the faculty supervising the work of Jeffrey Wayne White, affirm that the thesis, Foraging strategy plasticity in Fiordland Penguins (Eudyptes pachyrhynchus): A stable isotope approach, meets the high academic standards for original scholarship and creative work established by the Biology Department and the College of Arts and Sciences. This work also conforms to the editorial standards of our discipline and the Graduate College of Marshall University.
    [Show full text]
  • Penguins: up Close and Personal
    Penguins: Up Close and Personal Penguins: Up Close and Personal by ReadWorks A penguin is a type of bird that lives in water and on land. The black-and-white appearance of penguins is known as countershading, which is a form of camouflage that helps keep them safe in the water. Wild penguins are found only in the Southern Hemisphere. Most live within the polar region in very cold climates around Antarctica; however, some species of penguins live in warmer climates in South Africa, New Zealand, and some countries in South America. While there are over 17 different types of penguins, this passage will focus on only three: the emperor penguin, the king penguin, and the little blue penguin. The biggest of all penguins, the emperor penguin, is almost three-and-a-half feet tall-that is almost as tall as the average first grader! And they can weigh up to 88 pounds. Incredibly, emperor penguins breed on the ice in Antarctica during winter. They face temperatures of -22 ReadWorks.org · © 2013 ReadWorks®, Inc. All rights reserved. Penguins: Up Close and Personal degrees Fahrenheit and below. After the female lays an egg, the male keeps the egg warm and protects it for a period of two months-during which time he doesn't eat at all! The female makes a hunting trip for those two months, sometimes traveling up to 50 miles to reach the ocean. When she returns, she regurgitates food for the chick, and then the male goes and finds food for himself. In the wild, emperor penguins live 15 to 20 years.
    [Show full text]
  • Distributions and Predator-Prey Interactions of Macaroni Penguins, Antarctic Fur Seals, and Antarctic Krill Near Bird Island, South Georgia
    MARINE ECOLOGY PROGRESS SERIES Vol. 86: 15-30, 1992 Published September 3 Mar. Ecol. Prog. Ser. 1 I l Distributions and predator-prey interactions of macaroni penguins, Antarctic fur seals, and Antarctic krill near Bird Island, South Georgia George L. Hunt, ~r',Dennis ~einemann'.',Inigo ~verson~ 'Department of Ecology and Evolutionary Biology, University of California. Irvine, California 92717, USA 'British Antarctic Survey, Natural Environment Research Council, High Cross Madingley Road, Cambridge CB3 OET, United Kingdom ABSTRACT: We studied the distributions, abundances and interactions of macaroni penguins Eudyptes chrysolophus, Antarchc fur seals Arctocephalus gazella, and their zooplankton prey, m particular Antarctic krill Euphausia superba, near Bird Island, South Georgia, South Atlantic Ocean, in February 1986. Simultaneous surveys of marine birds, Antarctic fur seals and Antarctic krill were conducted along a series of transects radiating from the breeding colonies of the vertebrate predators. We examined the relationships between the distributions of predators and their prey with respect to the abundance of krill in the water column and marine habitats near the colonies. Antarctic fur seals and macaroni penguins showed positive correlations with Antarctic krill density across a wide range of spatial scales. Because krill was abundant close to the colony and predator densities decreased with distance due to geometry, distance from colony was a confounding variable. When the influences of distance and direction on predator abundance were factored out, we were able to demonstrate an additional influence of Antarctic krill abundance at measurement scales between 10 and 100 km for Antarctic fur seals and for macaroni penguins at the scale of 70 to 100 km.
    [Show full text]
  • The Gentoo Penguin As a Candidate Species for the Ccamlr Ecosystem Monitoring Program
    WG-CEMP-90/14 THE GENTOO PENGUIN AS A CANDIDATE SPECIES FOR THE CCAMLR ECOSYSTEM MONITORING PROGRAM IP. Croxall and T.n. Williams* Abstract Based on dietary and other biological information collected over several years at Bird Island, South Georgia and at the South Shetland Islands (both within Integrated Study Regions (ISRS) of the CCAMLR Ecosystem Monitoring Program), we suggest (and provide a full bibliography of supporting literature) that the gentoo penguin meets the specified criteria qualifying species for inclusion in the CEMP. The extensive dependence of this species in these ISRs on Euphausia superba, (including in winter), its residence in the ISRs in winter and its early attainment of sexual maturity are all features of special relevance to the CEMP. Resume Les informations portant sur le regime alimentaire et la biologie, collectees sur plusieurs annees a l'ile Bird, en Georgie du Sud, et aux iles Shetland du Sud (toutes deux dans les zones d'etude integree (ISR) du programme de contrOle de l'ecosysteme de la CCAMLR), nous amenent a suggerer (en presentant la bibliographie complete de la litterature de support) que le manchot papou repond aux criteres specifies de selection des especes ainclure au CEMP. Le fait que cette espece depende largement d'Euphausia superba dans ces ISR (meme en hiver), sa presence dans les ISR en hiver et sa maturite sexuelle precoce presentent un interet particulier pour le CEMP. Pe3lOMe Ha OCHOBamlVl ,l(aHHbIX no pal..\HoHY H ,l(pyrHx 6HOJlOrHlIeCKHx ,l(aHHbIX, c06paHHblx B TelleHHe HeCKOJlbKHX J1eT Ha OCTpOBe Bep,l(, IO)KHa51 reOprH5I, H IO)KHbIX OpKHeticKHx oCTpoBax (06a YllacTKa HaXO,l(51TC5I B npe,l(eJlax PatioHoB KOMnJleKCHblX HCCJle,l(oBaHHti no IIporpaMMe AHTKOMa no MOHHTopHHry 3KocHcTeMbl), Mbl npe,l(nOJlaraeM (H npe,l(CTaBJl5IeM nOJlHblti cnHCOK cnpaBollHoti J1HTepaTypbl), lITO nanyaccKHti nHHrBHH OTBellaeT BceM He06xo,l(HMb1M KpHTepH5IM BKJllOlIeHH5I BH,l(OB B IIporpaMMY CEMP.
    [Show full text]
  • AMLR Program: Foraging Areas of Krill-Consuming Penguins and Fur Seals Near Seal Island, Antarctica
    with a working radio reception range of approximately 5 kilo- AMLR program: Foraging areas meters from the vessel for penguins to 15 kilometers for fur of krill-consuming seals. penguins and fur seals The Kaiyo Maru supported tracking operations from 1-8 Jan- near Seal Island, Antarctica uary 1991. Tracks to foraging areas were completed for four chinstrap penguins (six trips), one macaroni penguin, and one fur seal (table 1). Most penguins were followed for the majority JOHN L. BENGTSON, PETER BOVENG, and JOHN K. JANSEN of an entire feeding trip to sea; however, the one fur seal fol- lowed was monitored on its outbound journey only until it appeared to have reached the outer limit of its foraging range National Marine Mammal Laboratory (on the third day of an 8-day foraging trip). During tracking Alaska Fisheries Science Center National Marine Fisheries Service operations, Japanese scientists conducted acoustic and net sam- National Oceanic and Atmospheric Adn in is tra tion pling to characterize the prey field. Seattle, Washington 98115 Antarctic fur seals were tracked from 13 to 22 February aboard the Alcazar. Although the initial plan had included tracking both penguins and fur seals, unavoidable scheduling Because land-breeding predators such as antarctic fur seals delays required that actual tracking operations be limited to fur (Arctocephalus gazella), chinstrap penguins (Pygoscelis antarctica), seals alone because penguin chicks had already started to and macaroni penguins (Eudyptes chrysolophus) are tied to colo- fledge. A total of eight tracks of female fur seals during offshore nies ashore during their breeding seasons, these species have feeding trips was obtained (table 2).
    [Show full text]
  • Environmental Response of Upper Trophic-Level Predators Reveals a System Change in an Antarctic Marine Ecosystem K
    doi 10.1098/rspb.2000.1371 Environmental response of upper trophic-level predators reveals a system change in an Antarctic marine ecosystem K. Reid* andJ.P.Croxall British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET,UK Long-term changes in the physical environment in the Antarctic Peninsula region have signi¢cant potential for a¡ecting populations of Antarctic krill (Euphausia superba), a keystone food webspecies. In order to investigate this, we analysed data on krill-eating predators at South Georgia from 1980 to 2000. Indices of population size and reproductive performance showed declines in all species and an increase in the frequency of years of low reproductive output. Changes in the population structure of krill and its relationship with reproductive performance suggested that the biomass of krill within the largest size class was su¤cient to support predator demand in the 1980s but not in the 1990s. We suggest that the e¡ects of underlying changes in the system on the krill population structure have been ampli¢ed by predator- induced mortality, resulting in breeding predators now regularly operating close to the limit of krill availability. Understanding how krill demography is a¡ected by changes in physical environmental factors and by predator consumption and how, in turn, this in£uences predator performance and survival, is one of the keys to predicting future change in Antarctic marine ecosystems. Keywords: Antarctic krill Euphausia superba; South Georgia; predators; system change these changes. A keystone prey species throughout most 1. INTRODUCTION of the Southern Ocean, in particular the Antarctic Penin- Detecting and understanding the causes and conse- sula/Scotia Sea region, is Antarctic krill (Euphausia quences of long-term change in marine ecosystems is superba).
    [Show full text]