Department of the Interior Fish and Wildlife Service
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
SUB-COMMITTEE on SHIP DESIGN and EQUIPMENT 54Th Session
E SUB-COMMITTEE ON SHIP DESIGN AND DE 54/INF.2 EQUIPMENT 14 June 2010 54th session ENGLISH ONLY Agenda item 13 DEVELOPMENT OF A MANDATORY CODE FOR SHIPS OPERATING IN POLAR WATERS A tiered risk assessment approach to polar operations safety and the mandatory Polar Code Submitted by CLIA SUMMARY Executive summary: As a consultant to CLIA on the matter of Polar safety and operations, the International Association of Antarctica Tour Operators (IAATO) commissioned Safety at Sea Ltd. (SaS) to undertake an initial risk assessment study of SOLAS passenger vessels operating in Antarctic waters. This preliminary study is aimed at supporting passenger ship operators in the development of a Tiered Risk Assessment approach that can be used in the development and application of a mandatory Polar Code and/or as a framework for voyage planning and risk assessment. Strategic direction: 5.2 High-level action: 5.2.1 Planned output: 5.2.1.2 Action to be taken: Paragraph 8 Related document: DE 53/26, section 18 Background 1 The Sub-Committee will recall that CLIA and the International Association of Antarctic Tour Operators (IAATO) presented an overview of a tiered risk assessment approach to a polar operations safety and the mandatory Polar Code at DE 53. CLIA was asked to kindly make the full report of the study available upon its completion. 2 The Risk Assessment Study, prepared by Safety At Sea Ltd. has been finalized and is attached for consideration. I:\DE\54\INF-2.doc DE 54/INF.2 Page 2 Overview 3 The study consisted of a review of: current activities of passenger ship-based tourism within the Antarctic (IAATO context); the work of the Antarctic Treaty Consultative Meeting Intersessional Contact Group (ATCM ICG) on issues concerning passenger ships operating in Antarctic waters; as well as documents and discussion pertaining to the development and adoption of Guidelines for Ships Operating in Polar Waters by the International Maritime Organization (IMO). -
African Penguin Colony
An Innovative and Inspiring Space for a Growing African Penguin Colony enguins are among the most iconic and beloved avian groups, and the PCincinnati Zoo & Botanical Garden is embarking on an opportunity to further their engagement in care and conservation of African Penguins. This species in particular is endangered in their native range and requires the collective focus of zoos, aquariums, and other conservation organizations to ensure its survival into the future. The Cincinnati Zoo is seeking to construct a new habitat space for African Penguins that will allow for our colony to grow from 11 birds to 30+, which will contribute immensely to ex-situ conservation efforts, not to mention inspiring our visitors to care more about the species’ plight. A brand new habitat offers the opportunity to dream and innovate and truly bring the best experience to its animal residents. The new African Penguin habitat at the Cincinnati Zoo will be three times larger than the current space and offer a variety of new habitat feature to maximize their welfare, including: a dynamic pool area to encourage natural swimming behavior and exercise, natural substrates to dig into and to promote improved foot health, outdoor heating and cooling so that penguins can stay outside longer in the year, and a dramatically larger indoor bedroom area with a pool and UV-transmitting skylights to ensure health and comfort during our Cincinnati winter. African Penguin reproduction will be a key goal of this new habitat, and the new habitat and bedroom area will offer the opportunity to expand our nesting sites and maximize successful rearing of chicks. -
Penguins Goals of the Seaworld and Busch Gardens Education
Goals of the SeaWorld and Busch Gardens Education Departments Based on a long-term commitment to education and conservation, SeaWorld and Busch Gardens strive to provide an enthusiastic, imaginative, and intellectually stimulating atmosphere to help students and guests develop a lifelong appreciation, understanding, and stewardship for our environment. Specifically, our goals are ... • To instill in students and guests of all ages an appreciation for science and a respect for all living creatures and habitats. • To conserve our valuable natural resources by increasing awareness of the interrelationships of humans and the environment. • To increase students’ and guests’ basic competencies in science, math, and other disciplines. • To be an educational resource to the world. “For in the end we will conserve only what we love. We will love only what we understand. We will understand only what we are taught.” — B. Dioum Penguins K–3 Teacher’s Guide PART OF THE SEAWORLD EDUCATION SERIES Research/Writing Illustrations Donna Potter Parham Doug Fulton Noelle Phillips Technical Advisors SeaWorld San Diego Brad Andrews Creative Services Wendy Turner Photos Education Directors Mike Aguilera Lorna Crane Ken Bohn Hollis Gillespie Bob Couey Bob Mindick Frank Todd Joy Wolf SeaWorld San Diego Photo Department Editorial Staff Jody Byrum Judith Coats Deborah Nuzzolo Donna Parham Covers Front: Adélie penguins (Pygoscelis adeliae) leap from the antarctic sea. Back (clockwise from upper left): Humboldt penguin (Spheniscus humboldti) chicks, a rockhopper penguin (Eudyptes chrysocome), a SeaWorld aviculturist feeds Humboldt penguins, a SeaWorld Adventure camper meets a Magellanic penguin (Spheniscus magellanicus). ©2001 Sea World, Inc. All Rights Reserved. Published by the SeaWorld Education Department 500 SeaWorld Drive, San Diego, California, 92109-7904 Permission is granted by SeaWorld for classroom teachers to make reprographic copies of worksheets for noncommercial use. -
Age and Growth of the Southern Blue Whiting Micromesistius Australis in the SW Atlantic*
SCI. MAR., 64 (3): 269-274 SCIENTIA MARINA 2000 Age and growth of the southern blue whiting Micromesistius australis in the SW Atlantic* MARIA CRISTINA CASSIA Instituto Nacional de Investigación y Desarrollo Pesquero, Paseo Victoria Ocampo N° 1, Mar del Plata (7600), Argentina. E-mail: mccassia@ inidep.edu.ar SUMMARY: Age and growth of southern blue whiting Micromesistius australis are studied. Sagitta otoliths from 3650 specimens were used for age determination. These were taken during research surveys and commercial catches in the South West Atlantic during 1994 and 1995. The size of fishes ranged from 17 to 60 cm total length, corresponding to ages 0 to 23 years. Females attained a greater asymptotic length (L∞ 59.74 cm) than males (L∞ 54.72 cm). Comparison of growth curves by the likelihood ratio showed that the differences among females and males were due to the asymptotic length, while the other parameters (K and t0) were not statistically different. The mean weight-at-age, mean length-at-age, and total mortali- ty (Z) were estimated. Growth parameters estimated by sex in the period 1994-95, mean size per age group, and the num- ber of individuals per age in the catches show differences with those calculated when the population was in the early stage of exploitation. A predominance of 2 to 9 year old individuals was observed in the total catches in 1994-1995, whereas in the beginning of the fisheries total catches were basically fish 15 to 19 years old. Key words: Micromesistius australis, age, growth, population-age structure, Southwest Atlantic. -
Colour Aberrations in African Penguins 19 COLOUR ABERRATIONS in AFRICAN PENGUINS SPHENISCUS DEMERSUS
Traisnel et al.: Colour aberrations in African Penguins 19 COLOUR ABERRATIONS IN AFRICAN PENGUINS SPHENISCUS DEMERSUS GWENDOLINE TRAISNEL1, LORIEN PICHEGRU1, HENVIK J. VISSER2 & LLOYD C. EDWARDS3 1 DST-NRF Centre of Excellence at the Percy FitzPatrick Institute of African Ornithology, Institute for Coastal and Marine Research and Department of Zoology at the Nelson Mandela University, Port Elizabeth, South Africa ([email protected]) 2 Addo Elephant Marine Section, South African National Parks, Port Elizabeth, South Africa 3 Raggy Charters, Port Elizabeth, South Africa Received 31 July 2017, accepted 3 October 2017 ABSTRACT TRAISNEL, G., PICHEGRU, L., VISSER, H.J. & EDWARDS, L.C. 2018. Colour aberrations in African Penguins Spheniscus demersus. Marine Ornithology 46: 19–22. Colour aberrations among wild birds are of long-time interest because they are uncommon, particularly in seabirds, although recent publications have revealed varying forms of aberrations in cormorants and penguins. In African Penguins Spheniscus demersus, there have been previous sightings of abnormal plumages, particularly in Algoa Bay, South Africa. This paper reveals new cases of plumage aberrations in African Penguins: leucism, “brown,” and phaeomelanism, all within Algoa Bay. While all aberrations seemed of natural origin, one in the shape of a number eight may have resulted from human actions. Key words: African Penguin, abnormal plumages, Algoa Bay, leucism, phaeomelanism, “brown” INTRODUCTION but also an effort on the part of the scientific community to report these rare observations. For example, albinism has been recently Production of melanin pigments eumelanin and phaeomelanin recorded in shags and cormorants (Cook et al. 2012, Crossland can be subject to alterations, both of heritable and non-heritable 2012), as has isabel (incorrect term, as the mutation involved was origin, resulting in abnormalities in plumage colour (van Grouw “brown”) (Oosthuizen & De Bruyn, 2009) and ino (Juàres et al. -
Species Status Assessment Emperor Penguin (Aptenodytes Fosteri)
SPECIES STATUS ASSESSMENT EMPEROR PENGUIN (APTENODYTES FOSTERI) Emperor penguin chicks being socialized by male parents at Auster Rookery, 2008. Photo Credit: Gary Miller, Australian Antarctic Program. Version 1.0 December 2020 U.S. Fish and Wildlife Service, Ecological Services Program Branch of Delisting and Foreign Species Falls Church, Virginia Acknowledgements: EXECUTIVE SUMMARY Penguins are flightless birds that are highly adapted for the marine environment. The emperor penguin (Aptenodytes forsteri) is the tallest and heaviest of all living penguin species. Emperors are near the top of the Southern Ocean’s food chain and primarily consume Antarctic silverfish, Antarctic krill, and squid. They are excellent swimmers and can dive to great depths. The average life span of emperor penguin in the wild is 15 to 20 years. Emperor penguins currently breed at 61 colonies located around Antarctica, with the largest colonies in the Ross Sea and Weddell Sea. The total population size is estimated at approximately 270,000–280,000 breeding pairs or 625,000–650,000 total birds. Emperor penguin depends upon stable fast ice throughout their 8–9 month breeding season to complete the rearing of its single chick. They are the only warm-blooded Antarctic species that breeds during the austral winter and therefore uniquely adapted to its environment. Breeding colonies mainly occur on fast ice, close to the coast or closely offshore, and amongst closely packed grounded icebergs that prevent ice breaking out during the breeding season and provide shelter from the wind. Sea ice extent in the Southern Ocean has undergone considerable inter-annual variability over the last 40 years, although with much greater inter-annual variability in the five sectors than for the Southern Ocean as a whole. -
The Rockhopper Penguin Eudyptes
Afr. J. mar. Sci. 25: 487–498 487 DECREASE IN NUMBERS OF THE EASTERN ROCKHOPPER PENGUIN EUDYPTES CHRYSOCOME FILHOLI AT MARION ISLAND, 1994/95–2002/03 R. J. M. CRAWFORD1, J. COOPER2, B. M. DYER1, M. D. GREYLING3, N. T. W. KLAGES4, D. C. NEL5, J. L. NEL6, S. L. PETERSEN2 and A. C. WOLFAARDT7 The number of eastern rockhopper penguins Eudyptes chrysocome filholi breeding at subantarctic Marion Island decreased from about 173 000 pairs in 1994/95 to about 67 000 pairs in 2001/02. During 1994/95–2002/03 pairs fledged on average 0.40 chicks per year, an amount thought insufficient to balance mortality of breeding adults, and there was a decrease in the mass at arrival at breeding colonies of both males and females. Except in 1997/98, the mass of chicks at fledging was less than that recorded at two other localities. These factors suggest an inade- quate supply of food for rockhopper penguins at Marion Island. Decreases of rockhopper penguins at several other localities also have been attributed to inadequate food. Rockhopper penguins at Marion Island continued to feed mainly on crustaceans during chick rearing. There was a marked increase in the contribution of fish to the diet in 1999/00 that coincided with an increase in mass at arrival at colonies of both males and females. Trends in numbers of pairs breeding in different sections of Marion Island were not always consistent, indicating the need for island-wide monitoring to establish the overall trend. Key words: breeding success, diet, Eudyptes chrysocome, Marion Island, mass, population decrease, rockhopper penguin, Subantarctic The rockhopper penguin Eudyptes chrysocome has a population at Antipodes Islands is thought to have circumpolar distribution in the southern hemisphere, decreased between 1972/73 and 1989/90 and that at where it breeds at subantarctic and south temperate Auckland Island from 5 000–10 000 pairs in 1972/73 islands (Marchant and Higgins 1990). -
Longevity in Little Penguins Eudyptula Minor
71 LONGEVITY IN LITTLE PENGUINS EUDYPTULA MINOR PETER DANN1, MELANIE CARRON2, BETTY CHAMBERS2, LYNDA CHAMBERS2, TONY DORNOM2, AUSTIN MCLAUGHLIN2, BARB SHARP2, MARY ELLEN TALMAGE2, RON THODAY2 & SPENCER UNTHANK2 1 Research Group, Phillip Island Nature Park, PO Box 97, Cowes, Phillip Island, Victoria, 3922, Australia ([email protected]) 2 Penguin Study Group, PO Box 97, Cowes, Phillip Island, Victoria, 3922, Australia Received 17 June 2005, accepted 18 November 2005 Little Penguins Eudyptula minor live around the mainland and Four were females, two were males and one was of unknown sex offshore islands of southern Australia and New Zealand (Marchant (Table 1). The oldest of the birds was a male that was banded by the & Higgins 1990). They are the smallest penguin species extant, Penguin Study Group as a chick before fledging on Phillip Island breeding in burrows and coming ashore only after nightfall. Most on 2 January 1976 in a part of the colony known as “the Penguin of their mortality appears to result from processes occurring at sea Parade.” This bird was not recorded again after initial banding (Dann 1992). The average life expectancy of breeding adult birds until it was five years old and was found raising two chicks at the is approximately 6.5 years (Reilly & Cullen 1979, Dann & Cullen Penguin Parade. This individual had a bill depth measurement 12% 1990, Dann et al. 1995); however, some individuals in southeastern less than the mean for male penguins from Phillip Island (Arnould Australia have lived far in excess of the average life expectancy. et al. 2004), but was classified as a male based on the sex of its mates (sexed as females from the presence of cloacal distension Approximately 44 000 birds have been flipper-banded on Phillip following egg-laying or from their bill-depth measurements). -
Blue Whiting — a Key Species in the Mid-Water Ecosystems of the North-Eastern Atlantic
International Council ICES CM 2002/L:28 forHeino the &Exploration Godø Theme Session L:ICES Census CM 2002/L:28of Marine of the Sea Life: Turning Concept into Reality Blue whiting — a key species in the mid-water ecosystems of the north-eastern Atlantic Mikko Heino and Olav Rune Godø Abstract. Blue whiting (Micromesistius poutassou) is a mesopelagic gadoid that is widely distributed in northeastern Atlantic from the Canary Island to Spitsbergen. It is abundant and commercially exploited in the Norwegian Seas, off Iceland, Faeroe Islands, Hebrides and Ireland, and in the Bay of Biscay. Blue whiting is a highly migratory species. During the spawning season (March-April), blue whiting concentrates to dense aggregations on the well- known spawning locations along the shelf edge west of Ireland and Hebrides and in the Rockall area. Other spawning areas also exist, but stock structure, distribution and migration of this abundant species are insufficiently known. The oceanic distribution of blue whiting westward, towards the mid-Atlantic Ridge (MAR), has not been thoroughly investigated. Scattered observations show that the species occurs along the MAR from the Azores in the south to the Reykjanes Ridge in the north. The possibility that blue whiting is a key species in the mi-water community of the MAR should not be dismissed. Where present, blue whiting is often highly abundant, and plays an important role in the pelagic ecosystems, both as a consumer of zooplankton and small mesopelagics, and as a prey for larger fish and cetaceans. Is there a ‘stock’ of blue whiting over the MAR? If yes, is this stock separate from the stock(s) in the northeastern Atlantic? Institute of Marine Research in Bergen has proposed a component project of MAR-ECO that combines routine monitoring information with observations from the MAR-ECO surveys to evaluate the significance of blue whiting in the pelagic ecosystem of the MAR. -
Introducing the Emperor of Antarctica
Read the passage. Then answer the question below. Introducing the Emperor of Antarctica A plump five-foot figure, wearing what looks like a tuxedo, walks across a frozen landscape. Suddenly, the figure drops to its belly and paddles its limbs as if swimming. Sound strange? Actually, it is the emperor of Antarctica…the emperor penguin, that is. One could easily argue that the emperor penguin is the king of survival. These amazing creatures live in the harshest climate on earth. Temperatures in Antarctica regularly reach –60°C and blizzards can last for days. But in this frigid world, the emperors swim, play, breed, and raise their chicks. Although emperor penguins are birds, they are unable to take flight. Rather, they do their “flying” in the water. Their flipper-like wings and sleek bodies make them expert swimmers. Emperors are able to dive deeper than any other bird and can stay under water for up to 22 minutes. The emperors are so at home in the water that young penguins enter the water when they are just six months old. Like many birds, the emperor penguins migrate during the winter. This migration, however, is very different. Each year, as winter approaches, the penguins leave the comfort—and food supply—of the ocean to begin a 70-mile journey across the ice. Walking single file, the penguins waddle along for days, flopping to their bellies and pushing themselves along with their flippers when their feet get tired. Along the way, colonies of penguins meet up with other colonies all headed for the same place—the safety of their breeding grounds. -
Report of the International Association of Antarctica Tour Operators 2008-2009
IP 33 rev. 2 Agenda Item: ATCM 4, ATCM 11 Presented by: IAATO Original: English Report of the International Association of Antarctica Tour Operators 2008-2009 1 IP 33 rev. 2 Report of the International Association of Antarctica Tour Operators 2008-2009 Under Article III (2) of the Antarctic Treaty Introduction The International Association of Antarctica Tour Operators (IAATO) is pleased to present a report of its activities to ATCM XXXII in Baltimore, Maryland, USA from April 6-17, 2009, in relation to Article III (2) of the Antarctic Treaty. IAATO is a member organization founded by seven companies in 1991 to advocate, promote and practice safe and environmentally responsible private-sector travel to the Antarctic. During the 2008-2009 fiscal year, IAATO maintained its total membership level at 108 companies and organizations. A Membership Directory, regularly updated, can be found on line at www.iaato.org. As an organization, IAATO provides an online and central office resource for its members. Comprehensive operational guidelines and procedures are stored in the Members Only section of the website for reference, research purposes and downloading by its members (www.iaato.org). Regular updates and information are shared with members throughout the year, both in the field and home offices. The aim is to encourage the highest possible operating standards for IAATO companies by providing them with the information needed for a safe and environmentally responsible operation. Coinciding with the start of the new 2008-2009 fiscal year, a new Executive Director was appointed to manage the IAATO Secretariat. IAATO Secretariat offices were relocated in July 2008 to 179 Wayland Avenue in Providence, Rhode Island, USA, and a full-time office manager was hired. -
Macaroni Penguin
Macaroni Penguin Website : https://www.cuteness.com/article/macaroni-penguin-kids Live Camera: https://tnaqua.org/animal/macaroni-penguin/ Macaroni penguins are the most abundant of the different penguin species in the world. They are easily identified by the yellow hairs on the top of their heads. But be careful! This penguin looks a lot like the Royal penguin. The big difference is that the Macaroni penguin has a black face, and the Royal penguin has a white face. Now visit the website. Look at the first paragraph that begins with “Macaroni penguins inhabit a number of islands…”: 1) Where do Macaroni penguins live? a. In my house b. Near Antarctica c. North Pole d. Along the equator 2) What are two threats to Macaroni penguins that come from human beings? (More than one) . a. Leopard seals b. Commercial fishing c. Oil pollution d. Sea lions Go to this section : 3) What other penguin can be confused with the Macaroni penguin? a. Royal penguin b. Emperor penguin c. Antarctic penguin d. Rockhopper penguin 4) About how does this penguin weigh? a. Five pounds b. Seven pounds c. Nine pounds d. Eleven pounds Go to this section : 5) How did this penguin get its name? a. No one knows b. It was named after a hat c. It was named after the food d. It was named after the explorer who found them 6) True or false. The song “Yankee Doodle” was partly about the Macaroni penguin. a. True b. False c. What’s a Doodle? 1 Go to this section : 7) Where do Macaroni penguins lay their eggs? a.