Synopsis of Linear Associative Algebra. a Report on Its Natural

Total Page:16

File Type:pdf, Size:1020Kb

Synopsis of Linear Associative Algebra. a Report on Its Natural SYNOPSIS OF LINEAR ASSOCIATIVE ALGEBRA A REPORT ON ITS NATURAL DEVELOPMENT AND RESULTS REACHED UP TO THE PRESENT TIME BY JAMES BYRNIE SHAW Professor of Mathematics in the James Millikin University WASHINGTON, D. C. : Published by the Carnegie Institution of Washington 1907 CARNEGIE INSTITUTION OF WASHINGTON PUBLICATION No. 78 Z&t OT (gafftmort (preeg BALTIMORE, HD., D. A. CONTENTS. INTRODUCTION. ... ERRATA. Page. 11. Line read 13, for \e tj \'' |c,,|'. 15. In the foot-notes change numbering as follows : for 1 read 2, for 2 read 3, for 3 read 4, for 4 rend 1 . 26. Line 21, for A" read A,, . 33. Line e read 15, for Aes k Ae^,, 34. Line 6, for [?, (,,) read [rn((p^. 49. Line 6, for njj'j., read m' 53, 54. In the table for r>6 in every instance change r2 to r 3, and r 3 to r 4. = / case (27), however, read e, (211) (12 r 3). 57. Line read t . 8, for t, t 59. Line 33, remove the period after A. 67. Line 12, insert it comma (,) after "integer". to *. 68. Lines 9 and 10, change / 71. Line 17, in type III for e n read e l( . l l 72. Last line, for aqa~ read aqa~ . In 2* 6 73. Line 3 from bottom, for jk read jk . 94. Line 7, for Si'j' read Si*j'\ l '.' 1. L.ist in the second column of the determinant and third line S. line, for j~ /' <f> <f> l read S . .j~ y* <j> 100. Line 12, for = read < = <. 106. Some of these cases are equivalent to others previously given. 3 = = 107. Line from bottom, e., read for ~(221) e, (211). * 2 ' a- 116. Line 25 should read p = '. 'J 124. Note 3, add: cf. BEEZ S. 128. Line 1 1, for = 1 .... k, read i=\....Ji,. SYNOPSIS OF LINEAR ASSOCIATIVE ALGEBRA INTRODUCTION. 1 This memoir is genetic in its intent, in that it aims to set forth the present state of the mathematical discipline indicated by its title: not in a comparative study of different known algebras, nor in the exhaustive study of any particular algebra, but in tracing the general laws of the whole subject. Developments of individual known algebras may be found in the original memoirs. A partial bibliography of this entire field may be found in the Bibliography of the 2 Quaternion Society, which is fairly complete on the subject. Comparative 8 studies, more or less complete, may be found in HANKEL'S lectures, and in 4 CAYLEY'S paper on Multiple Algebra. These studies, as well as those men- tioned below, are historical and critical, as well as comparative. The phyletic 6 development is given partially in STUDY'S Encyklopadie article, his Chicago 7 Congress* paper, and in CARTAN'S Encyclopedic article. These papers furnish numerous expositions of systems, and references to original sources. Further historical references are also indicated below. 8 In view of this careful work therefore, it does not seem desirable to review the field again historically. There is a necessity, however, for a presentation of the subject which sets forth the results already at hand, in a genetic order. From such presentation may possibly come suggestions for the future. Attention will be given to chronology, and it is hoped the references given will indicate priority claims to a certain extent. These are not always easy to settle, as they are sometimes buried in papers never widely circulated, nor is it always possible to say whether a notion existed in a paper explicitly or only implicitly, consequently this memoir does not presume to offer any authori- tative statements as to priority. The memoir is divided into three parts : General Theory, Particular Sys- tems, Applications. Under the General Theory is given the development of the subject from fundamental principles, no use being made of other mathematical disciplines, such as bilinear forms, matrices, continuous groups, and the like. 'Presented, in a slightly different form, as an abstract of this paper, to the Congress of Arts and Sciences at the Universal Exposition, St. Louis, Sept. 22, 1904. ' Bibliography of Quaternions and allied systems of mathematics, Alexander Macfarlane, 1904, Dublin. 'HAMKBL 1. References to the bibliography at the end of the memoir are given by author and number of paper. CAYLET 9. 'ST0DT8. STUDY 7. 'CABTAN 3. BEXAN 2, GIBBS 2, R. GRAVES 1, HAOEN 1, MACFABLANE 4. 1 5 ASSOCIATIVE ALGEBRA 6 SYNOPSIS OF LINEAR 1 of sets. The We find the first Buch general treatment in HAMILTON'S theory of in this was made by first extensive attempt at development algebras w:iy S was It lias been critic- BENJAMIN PEIRCE . His memoir really epoch-making. who has undertaken to extend Peirce's method, ally examined by HAWKKS", 4 treatment of a similar character was by showing its full power . The next to several theorems of CARTAN", who used the characteristic equation develop the semi-simple, or Dedekind, much generality. In this development appear The important theorem and the pseudo-nul, or nilpotent, sub-algebras. very the use of double that the structure of every algebra may be represented by is the ultimate the first factor being quadrate, the second non-quadrate, units, who reaches. The latest direct treatment is by TABER", proposition he Peirce had reexamines the results of PEIRCE, establishing them fully (which them to domain for the coordinates. not done in every case) and extending any the are not only in the field of [His units however linearly independent or field coordinates, but for any domain ] have been followed Two lines of development of linear associative algebra continuous It was besides this direct line. The first is by use of the group. 7 The method was followed PoiNCARE who first announced this isomorphism. 8 and non ScHEFFERS who classified algebras as quaternionic quaternionic. by , can be so that In the latter class he found "regular" units which arranged in terms of those which the product of any two is expressible linearly to order five follow both. He worked out complete lists of all algebras 9 who added the theorems that quater- inclusive. His successor was MoLiEN , and that algebras nionic algebras contain independent quadrates, quaternionic He did can be classified according to non-quaternionic types. not, however, CARTAN. reach the duplex character of the units found by C.S. PEIRCE" The other line of development is by using the matrix theory. ' in it sooner. The first noticed this isomorphism, although embryo appeared u 13 . The former shows that the line was followed by SHAW and FROBENICS determines its units, and certain of the direct equation of an algebra quadrate the other units form a which with the quadrates units ; that nilpotent system The is thus made a sub- may be reduced to certain canonical forms. algebra of the associative units used in these canonical forms. algebra under the algebra has a DEDEKIND whose FROBENIUS proves that every algebra sub-algebra, factors in the of the This is the semi- equation contains all equation algebra, showed that the units form a simple algebra of CARTAN. He also remaining units be nilpotent algebra whose may regularized. of these It is interesting to note the substantial identity developments, will be in the order aside from the vehicle of expression. The results given the method of derivation. The of development of the paper with no regard to references will cover the different proofs. 2. HAWKES 1, 3, 4. > HAMILTON 1. B. PBIRCE 1, 3. HAWKES ' SCHEFFEBS 8. CARTAN 2. TABER4. POINCAKE 1. 1, 2, IOC. 8. PEIBCEl, 4. "SHAW 4. "FHOBENIUS 14. INTRODUCTION 7 The last chapter of the general theory gives a sketch of .the theory of general algebra, placing linear associative algebra in its genetic relations to linear general algebra. Some scant work has been done in this development, the line of 1 particularly along symbolic logic. On the philosophical side, which this treatment general leads up to, there have always been two views of complex algebra. The one regards a number in such an algebra as in a reality duplex, triplex, or multiplex of arithmetical numbers or expressions. so-called The units become mere umbrae serving to distinguish the different 2 coordinates. This seems to have been CAYLEy's view. It is in essence the view of most writers on the subject. The other regards the number in a linear algebra as a single entity, and multiplex only in that an equality between two such numbers implies n equalities between certain coordinates or functions S of the numbers. This was HAMILTON'S view, and to a certain extent GRASS- MANN'S.* The first view seeks to derive all properties from a multiplication table. The second seeks to derive these properties from definitions applying to all numbers of an algebra. The attempt to base all mathematics on arith- metic leads to the first view. The attempt to base all mathematics on algebra, or the theory of entities defined by relational identities, leads to the second view. It would seem that the latter would be the more profitable from the standpoint of utility. This has been the case notably in all developments along this line, for example, quaternions and space-analysis in general. HAMILTON, and those who have caught his idea since, have endeavored to form expressions for other algebras which will serve the purpose which the scalar, vector, conjugate, etc., do in quaternions, in relieving the system of reference to any unit-system. Such definition of algebra, or of an algebra, is a develop- ment in terms of what may be called the fundamental invariant forms of the algebra.
Recommended publications
  • Formal Power Series - Wikipedia, the Free Encyclopedia
    Formal power series - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Formal_power_series Formal power series From Wikipedia, the free encyclopedia In mathematics, formal power series are a generalization of polynomials as formal objects, where the number of terms is allowed to be infinite; this implies giving up the possibility to substitute arbitrary values for indeterminates. This perspective contrasts with that of power series, whose variables designate numerical values, and which series therefore only have a definite value if convergence can be established. Formal power series are often used merely to represent the whole collection of their coefficients. In combinatorics, they provide representations of numerical sequences and of multisets, and for instance allow giving concise expressions for recursively defined sequences regardless of whether the recursion can be explicitly solved; this is known as the method of generating functions. Contents 1 Introduction 2 The ring of formal power series 2.1 Definition of the formal power series ring 2.1.1 Ring structure 2.1.2 Topological structure 2.1.3 Alternative topologies 2.2 Universal property 3 Operations on formal power series 3.1 Multiplying series 3.2 Power series raised to powers 3.3 Inverting series 3.4 Dividing series 3.5 Extracting coefficients 3.6 Composition of series 3.6.1 Example 3.7 Composition inverse 3.8 Formal differentiation of series 4 Properties 4.1 Algebraic properties of the formal power series ring 4.2 Topological properties of the formal power series
    [Show full text]
  • How Should the College Teach Analytic Geometry?*
    1906.] THE TEACHING OF ANALYTIC GEOMETRY. 493 HOW SHOULD THE COLLEGE TEACH ANALYTIC GEOMETRY?* BY PROFESSOR HENRY S. WHITE. IN most American colleges, analytic geometry is an elective study. This fact, and the underlying causes of this fact, explain the lack of uniformity in content or method of teaching this subject in different institutions. Of many widely diver­ gent types of courses offered, a few are likely to survive, each because it is best fitted for some one purpose. It is here my purpose to advocate for the college of liberal arts a course that shall draw more largely from projective geometry than do most of our recent college text-books. This involves a restriction of the tendency, now quite prevalent, to devote much attention at the outset to miscellaneous graphs of purely statistical nature or of physical significance. As to the subject matter used in a first semester, one may formulate the question : Shall we teach in one semester a few facts about a wide variety of curves, or a wide variety of propositions about conies ? Of these alternatives the latter is to be preferred, for the educational value of a subject is found less in its extension than in its intension ; less in the multiplicity of its parts than in their unification through a few fundamental or climactic princi­ ples. Some teachers advocate the study of a wider variety of curves, either for the sake of correlation wTith physical sci­ ences, or in order to emphasize what they term the analytic method. As to the first, there is a very evident danger of dis­ sipating the student's energy ; while to the second it may be replied that there is no one general method which can be taught, but many particular and ingenious methods for special problems, whose resemblances may be understood only when the problems have been mastered.
    [Show full text]
  • An Introduction to Operad Theory
    AN INTRODUCTION TO OPERAD THEORY SAIMA SAMCHUCK-SCHNARCH Abstract. We give an introduction to category theory and operad theory aimed at the undergraduate level. We first explore operads in the category of sets, and then generalize to other familiar categories. Finally, we develop tools to construct operads via generators and relations, and provide several examples of operads in various categories. Throughout, we highlight the ways in which operads can be seen to encode the properties of algebraic structures across different categories. Contents 1. Introduction1 2. Preliminary Definitions2 2.1. Algebraic Structures2 2.2. Category Theory4 3. Operads in the Category of Sets 12 3.1. Basic Definitions 13 3.2. Tree Diagram Visualizations 14 3.3. Morphisms and Algebras over Operads of Sets 17 4. General Operads 22 4.1. Basic Definitions 22 4.2. Morphisms and Algebras over General Operads 27 5. Operads via Generators and Relations 33 5.1. Quotient Operads and Free Operads 33 5.2. More Examples of Operads 38 5.3. Coloured Operads 43 References 44 1. Introduction Sets equipped with operations are ubiquitous in mathematics, and many familiar operati- ons share key properties. For instance, the addition of real numbers, composition of functions, and concatenation of strings are all associative operations with an identity element. In other words, all three are examples of monoids. Rather than working with particular examples of sets and operations directly, it is often more convenient to abstract out their common pro- perties and work with algebraic structures instead. For instance, one can prove that in any monoid, arbitrarily long products x1x2 ··· xn have an unambiguous value, and thus brackets 2010 Mathematics Subject Classification.
    [Show full text]
  • Greece Part 3
    Greece Chapters 6 and 7: Archimedes and Apollonius SOME ANCIENT GREEK DISTINCTIONS Arithmetic Versus Logistic • Arithmetic referred to what we now call number theory –the study of properties of whole numbers, divisibility, primality, and such characteristics as perfect, amicable, abundant, and so forth. This use of the word lives on in the term higher arithmetic. • Logistic referred to what we now call arithmetic, that is, computation with whole numbers. Number Versus Magnitude • Numbers are discrete, cannot be broken down indefinitely because you eventually came to a “1.” In this sense, any two numbers are commensurable because they could both be measured with a 1, if nothing bigger worked. • Magnitudes are continuous, and can be broken down indefinitely. You can always bisect a line segment, for example. Thus two magnitudes didn’t necessarily have to be commensurable (although of course they could be.) Analysis Versus Synthesis • Synthesis refers to putting parts together to obtain a whole. • It is also used to describe the process of reasoning from the general to the particular, as in putting together axioms and theorems to prove a particular proposition. • Proofs of the kind Euclid wrote are referred to as synthetic. Analysis Versus Synthesis • Analysis refers to taking things apart to see how they work, or so you can understand them. • It is also used to describe reasoning from the particular to the general, as in studying a particular problem to come up with a solution. • This is one general meaning of analysis: a way of solving problems, of finding the answers. Analysis Versus Synthesis • A second meaning for analysis is specific to logic and theorem proving: beginning with what you wish to prove, and reasoning from that point in hopes you can arrive at the hypotheses, and then reversing the logical steps.
    [Show full text]
  • Ring (Mathematics) 1 Ring (Mathematics)
    Ring (mathematics) 1 Ring (mathematics) In mathematics, a ring is an algebraic structure consisting of a set together with two binary operations usually called addition and multiplication, where the set is an abelian group under addition (called the additive group of the ring) and a monoid under multiplication such that multiplication distributes over addition.a[›] In other words the ring axioms require that addition is commutative, addition and multiplication are associative, multiplication distributes over addition, each element in the set has an additive inverse, and there exists an additive identity. One of the most common examples of a ring is the set of integers endowed with its natural operations of addition and multiplication. Certain variations of the definition of a ring are sometimes employed, and these are outlined later in the article. Polynomials, represented here by curves, form a ring under addition The branch of mathematics that studies rings is known and multiplication. as ring theory. Ring theorists study properties common to both familiar mathematical structures such as integers and polynomials, and to the many less well-known mathematical structures that also satisfy the axioms of ring theory. The ubiquity of rings makes them a central organizing principle of contemporary mathematics.[1] Ring theory may be used to understand fundamental physical laws, such as those underlying special relativity and symmetry phenomena in molecular chemistry. The concept of a ring first arose from attempts to prove Fermat's last theorem, starting with Richard Dedekind in the 1880s. After contributions from other fields, mainly number theory, the ring notion was generalized and firmly established during the 1920s by Emmy Noether and Wolfgang Krull.[2] Modern ring theory—a very active mathematical discipline—studies rings in their own right.
    [Show full text]
  • On the Constructibility of the Axes of an Ellipsoid
    ON THE CONSTRUCTIBILITY OF THE AXES OF AN ELLIPSOID. THE CONSTRUCTION OF CHASLES IN PRACTICE AKOS´ G.HORVATH´ AND ISTVAN´ PROK Dedicated to the memory of the teaching of Descriptive Geometry in BME Faculty of Mechanical Engineering Abstract. In this paper we discuss Chasles’s construction on ellipsoid to draw the semi-axes from a complete system of conjugate diameters. We prove that there is such situation when the construction is not planar (the needed points cannot be constructed with compasses and ruler) and give some others in which the construction is planar. 1. Introduction Who interested in conics know the construction of Rytz, namely a construction which determines the axes of an ellipse from a pair of conjugate diameters. Contrary to this very few mathematicians know that in the first half of the nineteens century Chasles (see in [1]) gave a construction in space to the analogous problem. The only reference which we found in English is also in an old book written by Salmon (see in [6]) on the analytic geometry of the three-dimensional space. In [2] the author extracted this analytic method to prove some results on the quadric of n-dimensional space. However, in practice this construction cannot be done using compasses and ruler only as we will see in present paper (Statement 4). On the other hand those steps of the construction which are planar constructions we can draw by descriptive geometry (see the figures in this article). 2. Basic properties The proof of the statements of this section can be found in [2].
    [Show full text]
  • 11.-HYPERBOLA-THEORY.Pdf
    12. HYPERBOLA 1. INTRODUCTION A hyperbola is the locus of a point which moves in the plane in such a way that Z the ratio of its distance from a fixed point in the same plane to its distance X’ P from a fixed line is always constant which is always greater than unity. M The fixed point is called the focus, the fixed line is called the directrix. The constant ratio is generally denoted by e and is known as the eccentricity of the Directrix hyperbola. A hyperbola can also be defined as the locus of a point such that S (focus) the absolute value of the difference of the distances from the two fixed points Z’ (foci) is constant. If S is the focus, ZZ′ is the directrix and P is any point on the hyperbola as show in figure. Figure 12.1 SP Then by definition, we have = e (e > 1). PM Note: The general equation of a conic can be taken as ax22+ 2hxy + by + 2gx + 2fy += c 0 This equation represents a hyperbola if it is non-degenerate (i.e. eq. cannot be written into two linear factors) ahg ∆ ≠ 0, h2 > ab. Where ∆=hb f gfc MASTERJEE CONCEPTS 1. The general equation ax22+ 2hxy + by + 2gx + 2fy += c 0 can be written in matrix form as ahgx ah x x y + 2gx + 2fy += c 0 and xy1hb f y = 0 hb y gfc1 Degeneracy condition depends on the determinant of the 3x3 matrix and the type of conic depends on the determinant of the 2x2 matrix.
    [Show full text]
  • Hilbert's Basis Theorem for Non-Associative and Hom
    HILBERT’S BASIS THEOREM FOR NON-ASSOCIATIVE AND HOM-ASSOCIATIVE ORE EXTENSIONS PER BACK¨ AND JOHAN RICHTER Abstract. We prove a hom-associative version of Hilbert’s basis theorem, which includes as special cases both a non-associative version and the classi- cal associative Hilbert’s basis theorem for Ore extensions. Along the way, we develop hom-module theory, including the introduction of corresponding iso- morphism theorems and a notion of being hom-noetherian. We conclude with some examples of both non-associative and hom-associative Ore extensions which are all noetherian by our theorem. 1. Introduction Hom-associative algebras are not necessarily associative algebras, the associativ- ity condition being replaced by α(a) · (b · c) = (a · b) · α(c), where α is a linear map referred to as a twisting map, and a,b,c arbitrary elements in the algebra. Both as- sociative algebras and non-associative algebras can thus be seen as hom-associative algebras; in the first case, by taking α equal to the identity map, and in the latter case by taking α equal to the zero map. Historically hom-associative algebras originate in the development of hom-Lie al- gebras, the latter introduced by Hartwig, Larsson and Silvestrov as generalizations of Lie algebras, the Jacobi identity now twisted by a vector space homomorphism; the “hom” referring to this homomorphism [6]. The introduction of these gener- alizations of Lie algebras was mainly motivated by an attempt to study so-called q-deformations of the Witt and Virasoro algebras within a common framework. Makhlouf and Silvestrov then introduced hom-associative algebras as the natural counterparts to associative algebras; taking a hom-associative algebra and defining the commutator as a new multiplication gives a hom-Lie algebra, just as with the classical relation between associative algebras and Lie algebras [7].
    [Show full text]
  • Macfarlane Hyperbolic 3-Manfiolds
    MACFARLANE HYPERBOLIC 3-MANIFOLDS JOSEPH A. QUINN Abstract. We identify and study a class of hyperbolic 3-manifolds (which we call Mac- farlane manifolds) whose quaternion algebras admit a geometric interpretation analogous to Hamilton's classical model for Euclidean rotations. We characterize these manifolds arithmetically, and show that infinitely many commensurability classes of them arise in diverse topological and arithmetic settings. We then use this perspective to introduce a new method for computing their Dirichlet domains. We give similar results for a class of hyperbolic surfaces and explore their occurrence as subsurfaces of Macfarlane manifolds. 1. Introduction Quaternion algebras over complex number fields arise as arithmetic invariants of com- plete orientable finite-volume hyperbolic 3-manifolds [16]. Quaternion algebras over totally real number fields are similarly associated to immersed totally-geodesic hyperbolic subsur- faces of these manifolds [16, 28]. The arithmetic properties of the quaternion algebras can be analyzed to yield geometric and topological information about the manifolds and their commensurability classes [17, 20]. In this paper we introduce an alternative geometric interpretation of these algebras, re- calling that they are a generalization of the classical quaternions H of Hamilton. In [22], the author elaborated on a classical idea of Macfarlane [15] to show how an involution on the complex quaternion algebra can be used to realize the action of Isom`pH3q multiplica- tively, similarly to the classical use of the standard involution on H to realize the action of Isom`pS2q. Here we generalize this to a class of quaternion algebras over complex number fields and characterize them by an arithmetic condition.
    [Show full text]
  • VECTOR ANALYSIS and QUATERNIONS MATHEMATICAL MONOGRAPHS EDITED by Mansfield Merriraan and Robert S
    4Lm, VECTOR ANALYSIS AND QUATERNIONS MATHEMATICAL MONOGRAPHS EDITED BY Mansfield Merriraan and Robert S. Woodward Octavo, Cloth No. 1. History of Modern Mathematics. By DAVID EUGENE SMITH. $1.25 net. No. 2. Synthetic Projective Geometry. By the Late GEORGE BBUCE HALSTED. $1.25 net. No. 3. Determinants. By the Late LAENAS GIFFORD WELD. $1.25 net. No. 4. Hyperbolic Functions. By the Late JAMES MCMAHON. $1.25 net. No. 5. Harmonic Functions. By WILLIAM E. BYEBLT. $1.25 net. No. 6. Grassmann's Space Analysis. By EDWARD W. HYDE. $1.25 net. No. 7. Probability and Theory of Errors. By ROBERT S. WOODWARD. $1.25 net. No. 8. Vector Analysis and Quaternions. By the Late ALEXANDER MACFARLANE. $1.25 net. No. 9. Differential Equations. By WILLIAM WOOLSEY JOHNSON. $1.25 net. No. 10. The Solution of Equations. By MANSFIELD MERRIMAN. $1.25 net. No'. 11. Functions of a Complex Variable. By THOMAS S. FISKE. $1.25 net. No, 12. The Theory of Relativity. By ROBERT D. CARMICHAEL. $1.50 net. No. 13. The Theory of Numbers. By ROBERT D. CARMICHAEL. $1.25 net. No. 14. Algebraic Invariants. By LEONARD E. DICKSON. $1.50 net. No. 16. Mortality Laws and Statistics. By ROBERT HENDERSON. $1.50 net. No. 16. Diophantine Analysis. By ROBERT D. CARMICHAEL. $1.50 net. No. 17. Ten British Mathematicians. By the Late ALEXANDER MACFARLANE. $1.50 net. No. 18. Elliptic Integrals. By HARRIS HANCOCK. $1.50 net. No. 19. Empirical Formulas. By THEODORE R. RUNNING. $2.00 net. No. 20. Ten British Physicists. By the Late ALEXANDER MACFARLANE.
    [Show full text]
  • Elizabeth F. Lewis Phd Thesis
    PETER GUTHRIE TAIT NEW INSIGHTS INTO ASPECTS OF HIS LIFE AND WORK; AND ASSOCIATED TOPICS IN THE HISTORY OF MATHEMATICS Elizabeth Faith Lewis A Thesis Submitted for the Degree of PhD at the University of St Andrews 2015 Full metadata for this item is available in St Andrews Research Repository at: http://research-repository.st-andrews.ac.uk/ Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/6330 This item is protected by original copyright PETER GUTHRIE TAIT NEW INSIGHTS INTO ASPECTS OF HIS LIFE AND WORK; AND ASSOCIATED TOPICS IN THE HISTORY OF MATHEMATICS ELIZABETH FAITH LEWIS This thesis is submitted in partial fulfilment for the degree of Ph.D. at the University of St Andrews. 2014 1. Candidate's declarations: I, Elizabeth Faith Lewis, hereby certify that this thesis, which is approximately 59,000 words in length, has been written by me, and that it is the record of work carried out by me, or principally by myself in collaboration with others as acknowledged, and that it has not been submitted in any previous application for a higher degree. I was admitted as a research student in September 2010 and as a candidate for the degree of Ph.D. in September 2010; the higher study for which this is a record was carried out in the University of St Andrews between 2010 and 2014. Signature of candidate ...................................... Date .................... 2. Supervisor's declaration: I hereby certify that the candidate has fulfilled the conditions of the Resolution and Regulations appropriate for the degree of Ph.D.
    [Show full text]
  • Multisemigroups with Multiplicities and Complete Ordered Semi-Rings
    Beitr Algebra Geom (2017) 58:405–426 DOI 10.1007/s13366-016-0320-8 ORIGINAL PAPER Multisemigroups with multiplicities and complete ordered semi-rings Love Forsberg1 Received: 24 February 2016 / Accepted: 5 October 2016 / Published online: 4 November 2016 © The Author(s) 2016. This article is published with open access at Springerlink.com Abstract Motivated by the appearance of multisemigroups in the study of additive 2- categories, we define and investigate the notion of a multisemigroup with multiplicities. This notion seems to be well suited for applications in higher representation theory. Keywords Semigroup · Multisemigroup · 2-category · Representation theory Mathematics Subject Classification 18D05 · 20M50 1 Introduction Abstract 2-representation theory originates from the papers (Bernstein et al. 1999; Khovanov 2000; Chuang and Rouquier 2008) and is nowadays formulated as the study of 2-representations of additive k-linear 2-categories, where k is the base field, see e.g. Mazorchuk (2012) for details. Various aspects of general 2-representation theory of abstract additive k-linear 2-categories were studied in the series (Mazorchuk and Miemietz 2011, 2014, 2016a, b) of papers by Mazorchuk and Miemietz. An important role in this study is played by the so-called multisemigroup of an additive k-linear 2- category which was originally introduced in Mazorchuk and Miemietz (2016b). Recall that a multisemigroup is a set S endowed with a multioperation, that is a map ∗:S × S → 2S which satisfies the following associativity axiom: s ∗ c = a ∗ t s∈a∗b t∈b∗c B Love Forsberg [email protected] 1 Department of Mathematics, Uppsala University, Box.
    [Show full text]