Doktorska Disertacija

Total Page:16

File Type:pdf, Size:1020Kb

Doktorska Disertacija Univerzitet u Novom Sadu Prirodno-matematički fakultet Departman za biologiju i ekologiju MSc Olivera Babić Karakterizacija zemljišnih cijanobakterijskih sojeva izolovanih iz šumskih ekosistema planinskih područja Republike Srbije -Doktorska disertacija- U Novom Sadu, 2018. PREDGOVOR Zahvaljujem se svima na Departmanu za biologiju i ekologiju i Prirodno-matematičkom fakultetu koji su omogućili izradu ove disertacije u okviru istraživanja na projektu „Biosenzing tehnologije i globalni sistem za kontinuirana istraživanja i integrisano upravljanje ekosistemima“ (Evidencioni broj projekta: III 43002) koji fininsira Ministartsvo prosvete, nauke i tehnološkog razvoja Republike Srbije i na projektu “Identification and characterization of cyanobacterial toxins based on their interaction with basic cellular detoxification systems in zebrafish (Danio rerio) and zooplankton Daphnia magna (IZ73ZO_152274/1)“ koje finansira Švajcarska. Posebnu zahvalnost dugujem svojoj mentorki, prof. dr Jelici Simeunović, za pomoć pri izradi i pisanju ove disertacije, spremnosti da svoje znanje podeli sa mnom kao i da omogući moje usavršavanje u Švajcarskoj. Takođe veliku zahvalnost dugujem predsedniku komisije prof. dr Zorici Svirčev na pomoći i korisnim savetima i doprinosu mog odlaska i usavršavanja u Finskoj. Hvala članovima komisije, prof. dr Draganu Radnoviću i prof. dr Simonidi Đurić na konstruktivnim i stručnim sugestijama. Hvala dr Ivici Tamaš na pomoći i savetima koji su mi pomogli pri pisanju disertacije. Veliku zahvalnost na pomoći u izradi eksperimentalnog dela disertacije dugujem dr Mileni Rašeti i Filipu Šibulu sa Departmana za hemiju kao i dr Tanji Tunić, dr Varji Knežević i Šandoru Šipošu sa Departmana za biologiju i ekologiju. Veliko hvala i dr Ivanu Milovanoviću (FINS) na pomoći prilikom izrade disertacije. Posebnu zahvalnost dugujem dr Petri Marić sa Instituta Ruđer Bošković iz Zagreba za svu pomoć pruženu tokom izrade ove doktorske disertacije. Iskrenu zahvalnost dugujem svim bivšim i sadašnjim članovima Katedre za mikrobiologiju, svim profesorima i kolegama doktorantima, na pomoći i podršći. Zahvaljujem se prijateljima na bezgraničnom razumevanju i nesebičnoj podršci. Najveću zahvalnost dugujem svojoj porodici pre svega svojim roditeljma, Jeleni i Branku, bez čije ljubavi, podrške i razumevanja ovaj rad ne bi bio moguć. SADRŽAJ 1. UVOD 1 1.1. Opšti deo 1 1.1.1. Morfološke karakteristike cijanobakterija 2 1.1.2. Klasifikacija 6 1.1.3. Fiziologija cijanobakterija 10 1.2. Biološki aktivna jedinjenja cijanobakterija 13 1.2.1. Masne kiseline 15 - Mehanizmi sinteze masnih kiselina 16 1.2.2. Antimikrobna jedinjenja 17 a) Alkaloidi 17 b) Peptidi 18 c) Terpenoidi 18 d) Masne kiseline 18 1.2.3. Antioksidativna jedinjenja 19 a) Fikocijanin 20 b) Karotenoidi 20 c) Fenoli 20 d) Enzimski antioksidansi 20 1.2.4. Toksini 21 1.2.4.1. Funkcionalne grupe cijanotoksina 23 1) Hepatotoksini 23 a) Mikrocistini 24 Biosinteza mikrocistina 25 Unos mikrocistina i mehanizam delovanja u eukariotskim ćelijama 26 b) Nodularin 26 c) Cilindrospermopsin 27 2) Neurotoksini 28 a) Anatoksini 28 b) Saksitoksin 29 Genotoksičnost cijanobakterija 30 1.2.4.2. Sudbina cijanotoksina u terestričnim ekosistemima 30 1.2.4.3. Metode detekcije cijanotoksina 31 1) Analitičke metode 31 2) Bioanalitičke metode 32 3) Molekularne metode 32 4) Biološki eseji 33 a) Artemia salina bioesej 33 b) Daphnia magna bioesej 34 c) Danio rerio bioesej 34 1.3. Rasprostranjenost cijanobakterija 36 1.4. Cijanobakterije terestričnih staništa i njihove adaptivne strategije 38 1.5. Uloga cijanobakterija u funkcionisanju zemljišnih ekosistema 40 1.5.1. Uloga cijanobakterija u kruženju biogenih elemenata 41 1.5.2. Produkcija egzopolisaharida 41 - Sastav i makromolekularne karakteristike egzopolisaharida 42 1.5.3. Naseljavanje „ogoljenih“ zemljišta 43 1.6. Upotreba terestričnih cijanobakterija 45 2. CILJEVI ISTRAŽIVANJA I HIPOTEZE 48 3. MATERIJAL I METODE RADA 50 3.1. Uzorkovanje zemljišta 50 3.2. Izolacija i determinacija izolovanih terestričnih cijanobakterija 53 3.3. Identifikacija cijanobakterijskih sojeva korišćenjem dela genske sekvence 16S 55 rRNK gena 3.3.1. Izolacija i purifikacija genomske DNK 55 3.4. Sekvencioniranje dela genske sekvence 16S rRNK gena 56 3.4.1. Prečišćavanje PCR proizvoda 57 3.4.2. Određivanje koncentracije DNK 57 3.4.3. Sekvenciranje dela genske sekvence 16S rRNK gena 57 3.5. Metod za utvrđivanje produkcije biomase cijanobakterijskih sojeva 58 3.6. Metod za utvrđivanje produkcije fikobilinskih pigmenata kod cijanobakterija 58 3.7. Ispitivanje miksotrofnog rasta - određivanje uticaja glukoze i saharoze na 59 produkciju biomase i fikobiliproteinskih pigmenata 3.8. Određivanje sadržaja ugljenih hidrata (PSA test) 59 3.9. Testiranje biološke aktivnosti cijanobakterija 61 3.9.1. Priprema ekstrakata cijanobakterija za detekciju biološki aktivnih 61 materija (BAM) 3.9.2. Određivanje antibakterijske aktivnosti cijanobakterija 61 3.9.2.1. Disk-difuziona metoda 62 3.9.2.2. Određivanje minimalne inhibitorne koncentracije (MIC) i minimalne 63 baktericidne koncentracije (MBC) cijanobakterijskih ekstrakata primenom mikrodilucione metode 3.9.3. Hemijska karakterizacija i određivanje sastava masnih kiselina nakon 64 transesterifikacije sa bor(III)-fluoridom metodom gasne hromatografije (GC-FID) 3.9.4. Određivanje antioksidativne aktivnosti cijanobakterija in vitro 66 3.9.4.1. Određivanje kapaciteta „hvatanja“ DPPH• radikala 66 3.9.4.2. Određivanje redoks kapaciteta FRAP metodom 67 3.9.5. Hemijska analiza fenolnog sastava cijanobakterija primenom LC/MS- 68 MS analize 3.9.6. Određivanje toksičnosti izolovanih cijanobakterija 68 3.9.6.1. Artemia salina bioesej 69 3.9.6.2. Daphnia magna bioesej 69 3.9.6.3. Danio rerio bioesej (DarT test) 71 3.10. qPCR metoda i ispitivanje efekta ekstrakta odabranog cijanobakterijskog soja na 72 ekspresiju 11 gena uključenih u signalne puteve kod model organizma Danio rerio 3.10.1. Ekstrakcija RNK 73 3.10.2. Sinteza cDNK 74 3.10.3. qPCR 74 3.11. Utvrđivanje toksigeničnosti cijanobakterija i detekcija prisutva mcy gena PCR 76 metodom 3.12. Statistička obrada podataka 77 4. REZULTATI I DISKUSIJA 78 4.1. Izolacija i determinacija izolovanih terestričnih cijanobakterija 78 4.2. Identifikacija cijanobakterijskih sojeva korišćenjem dela genske sekvence 16S 85 rRNK gena 4.3. Uticaj azota na produkciju biomase i sadržaj fikobiliproteinskih pigmenata 91 4.4. Ispitivanje miksotrofnog rasta – određivanje uticaja glukoze i saharoze na 97 produkciju biomase i sadržaj fikobiliproteinskih pigmenata 4.5. Određivanje sadržaja ugljenih hidrata – PSA test 111 4.6. Testiranje biološke aktivnosti terestričnih cijanobakterija izolovanih iz šumskih 115 ekosistema 4.7. Određivanje antimikrobne aktivnosti cijanobakterija 115 4.8. Hemijska karakterizacija i određivanje sastava masnih kiselina nakon 122 transesterifikacije sa bor(III)-fluoridom metodom gasne hromatografije (CG-FID) 4.9. Određivanje antioksidativne aktivnosti cijanobakterija in vitro 131 4.9.1. Rezultati određivanja kapaciteta „hvatanja“ DPPH• radikala 131 4.9.2. Rezultati određivanja redoks kapaciteta FRAP metodom 133 4.10. Hemijska analiza fenolnog sastava cijanobakterija primenom LC/MS-MS analize 136 4.11. Detekcija toksičnosti cijanobakterijskih sojeva izolovanih iz šumskih ekosistema 141 4.11.1. Artemia salina bioesej 142 4.11.2. Daphnia magna bioesej 145 4.11.3. Danio rerio bioesej 147 4.12. qPCR metoda i ispitivanje efekta ekstrakta odabranog cijanobakterijskog soja na ekspresiju 11 gena uključenih u signalne puteve kod model organizma Danio rerio 154 4.13. Utvrđivanje toksigeničnosti cijanobakterija i detekcija prisutva mcy gena PCR 160 metodom 5. ZAKLJUČAK 165 6. LITERATURA 168 7. PRILOZI 201 SKRAĆENICE AChE - acetilholinesteraza (acetylcholinesterase) AhR - aril-hidrokarbonski receptor (aryl hydrocarbon receptor) ahr2 gen- gen koji kodira aril hidrokarbonski receptor 2 (aryl hydrocarbon receptor 2) ALA - α-linoleinska kiselina APC – alofikocijanin (allophycocyanin) APX - askorbatna peroksidaza (ascorbate peroxidase) AR – androgeni receptor (androgene receptors) Ara - arabinoza ARA – arahidonska kiselina (arachidonic acid ) ASW – veštačka morska voda (artifical sea water) ATP - adenozin trifosfat (adenosine triphosphate) ATCC – Američka kolekcija kultura (American type culture collection) BAM – biološki aktivne materije bip gen– gen koji kodira vezujući imunoglobulinski protein (binding immunoglobulin protein) bp – bazni parovi (base pair) BLP – biološke lesne pokorice BMAA - β-metilamino-L-alanin BZP - biološke zemljišne pokorice cat gen– gen koji kodira katalazu (catalase) CAT – katalaza (catalase) CG-FID – gasna hromatografija sa plameno jonizacionim detektorom cry5 gen– gen koji kodira kriptohrom 5 (cryptochrome) CYN – cilindrospermopsin (cylindrospermopsin) cyp1a1 gen– gen koji kodira citohrom P450, familija 1, potfamilija 1 (cytochrome P450, family 1, subfamily A, polypeptide 1) DarT test – Danio rerio test (Danio rerio teratogenic assay) DHA - dokozaheksaenoinska kiselina D-MeAsp – D-eritro-β-metil asparaginska kiselina DMSO - dimetil sulfoksid (dimethyl sulfoxide) DPPH• radikal - 1,1-difenil-2-pikrilhidrazil radikal DRE - dioksin odgovorni elementi (dioxin responsive elements) ELISA – enzimski imuno-vezujući test (enzyme-linked immunosorbent assay) EPA - eikozapentaenoinska kiselina EPS- ekstracelularne polimerne supstance (extracellular polymeric substances) ER - estrogeni receptor (estrogen receptors) FET – testovi toksičnosti sa embrionima riba (fish embryo toxicity test) Gal - galaktoza GC – gasna
Recommended publications
  • Periodic and Coordinated Gene Expression Between a Diazotroph and Its Diatom Host
    The ISME Journal (2019) 13:118–131 https://doi.org/10.1038/s41396-018-0262-2 ARTICLE Periodic and coordinated gene expression between a diazotroph and its diatom host 1 1,2 1 3 4 Matthew J. Harke ● Kyle R. Frischkorn ● Sheean T. Haley ● Frank O. Aylward ● Jonathan P. Zehr ● Sonya T. Dyhrman1,2 Received: 11 April 2018 / Revised: 28 June 2018 / Accepted: 28 July 2018 / Published online: 16 August 2018 © International Society for Microbial Ecology 2018 Abstract In the surface ocean, light fuels photosynthetic carbon fixation of phytoplankton, playing a critical role in ecosystem processes including carbon export to the deep sea. In oligotrophic oceans, diatom–diazotroph associations (DDAs) play a keystone role in ecosystem function because diazotrophs can provide otherwise scarce biologically available nitrogen to the diatom host, fueling growth and subsequent carbon sequestration. Despite their importance, relatively little is known about the nature of these associations in situ. Here we used metatranscriptomic sequencing of surface samples from the North Pacific Subtropical Gyre (NPSG) to reconstruct patterns of gene expression for the diazotrophic symbiont Richelia and we – 1234567890();,: 1234567890();,: examined how these patterns were integrated with those of the diatom host over day night transitions. Richelia exhibited significant diel signals for genes related to photosynthesis, N2 fixation, and resource acquisition, among other processes. N2 fixation genes were significantly co-expressed with host nitrogen uptake and metabolism, as well as potential genes involved in carbon transport, which may underpin the exchange of nitrogen and carbon within this association. Patterns of expression suggested cell division was integrated between the host and symbiont across the diel cycle.
    [Show full text]
  • Nostocaceae (Subsection IV
    African Journal of Agricultural Research Vol. 7(27), pp. 3887-3897, 17 July, 2012 Available online at http://www.academicjournals.org/AJAR DOI: 10.5897/AJAR11.837 ISSN 1991-637X ©2012 Academic Journals Full Length Research Paper Phylogenetic and morphological evaluation of two species of Nostoc (Nostocales, Cyanobacteria) in certain physiological conditions Bahareh Nowruzi1*, Ramezan-Ali Khavari-Nejad1,2, Karina Sivonen3, Bahram Kazemi4,5, Farzaneh Najafi1 and Taher Nejadsattari2 1Department of Biology, Faculty of Science, Tarbiat Moallem University, Tehran, Iran. 2Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran. 3Department of Applied Chemistry and Microbiology, University of Helsinki, P.O. Box 56, Viikki Biocenter, Viikinkaari 9, FIN-00014 Helsinki, Finland. 4Department of Biotechnology, Shahid Beheshti University of Medical Sciences, Tehran, Iran. 5Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Accepted 25 January, 2012 Studies of cyanobacterial species are important to the global scientific community, mainly, the order, Nostocales fixes atmospheric nitrogen, thus, contributing to the fertility of agricultural soils worldwide, while others behave as nuisance microorganisms in aquatic ecosystems due to their involvement in toxic bloom events. However, in spite of their ecological importance and environmental concerns, their identification and taxonomy are still problematic and doubtful, often being based on current morphological and
    [Show full text]
  • Anabaena Variabilis ATCC 29413
    Standards in Genomic Sciences (2014) 9:562-573 DOI:10.4056/sig s.3899418 Complete genome sequence of Anabaena variabilis ATCC 29413 Teresa Thiel1*, Brenda S. Pratte1 and Jinshun Zhong1, Lynne Goodwin 5, Alex Copeland2,4, Susan Lucas 3, Cliff Han 5, Sam Pitluck2,4, Miriam L. Land 6, Nikos C Kyrpides 2,4, Tanja Woyke 2,4 1Department of Biology, University of Missouri-St. Louis, St. Louis, MO 2DOE Joint Genome Institute, Walnut Creek, CA 3Lawrence Livermore National Laboratory, Livermore, CA 4Lawrence Berkeley National Laboratory, Berkeley, CA 5Los Alamos National Laboratory, Los Alamos, NM 6Oak Ridge National Laboratory, Oak Ridge, TN *Correspondence: Teresa Thiel ([email protected]) Anabaena variabilis ATCC 29413 is a filamentous, heterocyst-forming cyanobacterium that has served as a model organism, with an extensive literature extending over 40 years. The strain has three distinct nitrogenases that function under different environmental conditions and is capable of photoautotrophic growth in the light and true heterotrophic growth in the dark using fructose as both carbon and energy source. While this strain was first isolated in 1964 in Mississippi and named Ana- baena flos-aquae MSU A-37, it clusters phylogenetically with cyanobacteria of the genus Nostoc . The strain is a moderate thermophile, growing well at approximately 40° C. Here we provide some additional characteristics of the strain, and an analysis of the complete genome sequence. Introduction Classification and features Anabaena variabilis ATCC 29413 (=IUCC 1444 = The general characteristics of A. variabilis are PCC 7937) is a semi-thermophilic, filamentous, summarized in Table 1 and its phylogeny is shown heterocyst-forming cyanobacterium.
    [Show full text]
  • Umezakia Natans M.Watan. Does Not Belong to Stigonemataceae but To
    Fottea 11(1): 163–169, 2011 163 Umezakia natans M.WATAN . does not belong to Stigonemataceae but to Nostocaceae Yuko NIIYAMA 1, Akihiro TUJI 1 & Shigeo TSUJIMURA 2 1Department of Botany, National Museum of Nature and Science, 4–1–1 Amakubo, Tsukuba, Ibaraki 305–0005, Japan; e–mail: [email protected] 2Lake Biwa Environmental Research Institute, 5–34 Yanagasaki, Otsu, Shiga 520–0022, Japan Abstract: Umezakia natans M.WA T A N . was described by Dr. M. Watanabe in 1987 as a new species in the family of Stigonemataceae, following the rules of the Botanical Code. According to the original description, this planktonic filamentous species grows well in a growth media with pH being 7 to 9, and with a smaller proportion of sea water. Both heterocytes and akinetes were observed, as well as true branches developing perpendicular to the original trichomes in cultures older than one month. Watanabe concluded that Umezakia was a monotypic and only planktonic genus belonging to the family of Stigonemataceae. Unfortunately, the type culture has been lost. In 2008, we successfully isolated a new strain of Umezakia natans from a sample collected from Lake Suga. This lake is situated very close to the type locality, Lake Mikata in Fukui Prefecture, Japan. We examined the morphology of this U. natans strain, and conducted a DNA analysis using 16S rDNA regions. Morphological characters of the newly isolated strain were in a good agreement with the original description of U. natans. Furthermore, results of the DNA analysis showed that U. natans appeared in a cluster containing Aphanizomenon ovalisporum and Anabaena bergii.
    [Show full text]
  • Algal Toxic Compounds and Their Aeroterrestrial, Airborne and Other Extremophilic Producers with Attention to Soil and Plant Contamination: a Review
    toxins Review Algal Toxic Compounds and Their Aeroterrestrial, Airborne and other Extremophilic Producers with Attention to Soil and Plant Contamination: A Review Georg G¨аrtner 1, Maya Stoyneva-G¨аrtner 2 and Blagoy Uzunov 2,* 1 Institut für Botanik der Universität Innsbruck, Sternwartestrasse 15, 6020 Innsbruck, Austria; [email protected] 2 Department of Botany, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 blvd. Dragan Tsankov, 1164 Sofia, Bulgaria; mstoyneva@uni-sofia.bg * Correspondence: buzunov@uni-sofia.bg Abstract: The review summarizes the available knowledge on toxins and their producers from rather disparate algal assemblages of aeroterrestrial, airborne and other versatile extreme environments (hot springs, deserts, ice, snow, caves, etc.) and on phycotoxins as contaminants of emergent concern in soil and plants. There is a growing body of evidence that algal toxins and their producers occur in all general types of extreme habitats, and cyanobacteria/cyanoprokaryotes dominate in most of them. Altogether, 55 toxigenic algal genera (47 cyanoprokaryotes) were enlisted, and our analysis showed that besides the “standard” toxins, routinely known from different waterbodies (microcystins, nodularins, anatoxins, saxitoxins, cylindrospermopsins, BMAA, etc.), they can produce some specific toxic compounds. Whether the toxic biomolecules are related with the harsh conditions on which algae have to thrive and what is their functional role may be answered by future studies. Therefore, we outline the gaps in knowledge and provide ideas for further research, considering, from one side, Citation: G¨аrtner, G.; the health risk from phycotoxins on the background of the global warming and eutrophication and, ¨а Stoyneva-G rtner, M.; Uzunov, B.
    [Show full text]
  • Identification and Characterization of Novel Filament-Forming Proteins In
    www.nature.com/scientificreports OPEN Identifcation and characterization of novel flament-forming proteins in cyanobacteria Benjamin L. Springstein 1,4*, Christian Woehle1,5, Julia Weissenbach1,6, Andreas O. Helbig2, Tal Dagan 1 & Karina Stucken3* Filament-forming proteins in bacteria function in stabilization and localization of proteinaceous complexes and replicons; hence they are instrumental for myriad cellular processes such as cell division and growth. Here we present two novel flament-forming proteins in cyanobacteria. Surveying cyanobacterial genomes for coiled-coil-rich proteins (CCRPs) that are predicted as putative flament-forming proteins, we observed a higher proportion of CCRPs in flamentous cyanobacteria in comparison to unicellular cyanobacteria. Using our predictions, we identifed nine protein families with putative intermediate flament (IF) properties. Polymerization assays revealed four proteins that formed polymers in vitro and three proteins that formed polymers in vivo. Fm7001 from Fischerella muscicola PCC 7414 polymerized in vitro and formed flaments in vivo in several organisms. Additionally, we identifed a tetratricopeptide repeat protein - All4981 - in Anabaena sp. PCC 7120 that polymerized into flaments in vitro and in vivo. All4981 interacts with known cytoskeletal proteins and is indispensable for Anabaena viability. Although it did not form flaments in vitro, Syc2039 from Synechococcus elongatus PCC 7942 assembled into flaments in vivo and a Δsyc2039 mutant was characterized by an impaired cytokinesis. Our results expand the repertoire of known prokaryotic flament-forming CCRPs and demonstrate that cyanobacterial CCRPs are involved in cell morphology, motility, cytokinesis and colony integrity. Species in the phylum Cyanobacteria present a wide morphological diversity, ranging from unicellular to mul- ticellular organisms.
    [Show full text]
  • Filamentous Cyanobacteria from Western Ghats of North Kerala, India
    Bangladesh J. Plant Taxon. 28(1): 83‒95, 2021 (June) https://doi.org/10.3329/bjpt.v28i1.54210 © 2021 Bangladesh Association of Plant Taxonomists FILAMENTOUS CYANOBACTERIA FROM WESTERN GHATS OF NORTH KERALA, INDIA 1 V. GEETHU AND MAMIYIL SHAMINA Cyanobacterial Diversity Division, Department of Botany, University of Calicut, Kerala, India Keywords: Cyanobacteria, Filamentous, Peruvannamuzhi, Western Ghats. Abstract Cyanobacteria are Gram negative, photosynthetic and nitrogen fixing microorganisms which contribute much to our present-day life as medicines, foods, biofuels and biofertilizers. Western Ghats are the hotspots of biodiversity with rich combination of microbial flora including cyanobacteria. Though cosmopolitan in distribution, their abundance in tropical forests are not fully exploited. To fill up this knowledge gap, the present research was carried out on the cyanobacterial flora of Peruvannamuzhi forest and Janaki forests of Western Ghats in Kozhikode District, North Kerala State, India. Extensive specimen collections were conducted during South-West monsoon (June to September) and North-East monsoon (October to December) in the year 2019. The highest diversity of cyanobacteria was found on rock surfaces. A total of 18 cyanobacterial taxa were identified. Among them filamentous heterocystous forms showed maximum diversity with 10 species followed by non- heterocystous forms with 8 species. The highest number of cyanobacteria were identified from Peruvannamuzhi forest with 15 taxa followed by Janaki forest with 3 taxa. The non- heterocystous cyanobacterial genus Oscillatoria Voucher ex Gomont showed maximum abundance with 4 species. In this study we reported Planktothrix planktonica (Elenkin) Agagnostidis & Komárek 1988, Oscillatoria euboeica Anagnostidis 2001 and Nostoc interbryum Sant’Anna et al. 2007 as three new records from India.
    [Show full text]
  • Aetokthonos Hydrillicola Gen. Et Sp. Nov.: Epiphytic Cyanobacteria on Invasive Aquatic Plants Implicated in Avian Vacuolar Myelinopathy
    Phytotaxa 181 (5): 243–260 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2014 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.181.5.1 Aetokthonos hydrillicola gen. et sp. nov.: Epiphytic cyanobacteria on invasive aquatic plants implicated in Avian Vacuolar Myelinopathy SUSAN B. WILDE1*, JEFFREY R. JOHANSEN2,3, H. DAYTON WILDE4, PENG JIANG4, BRADLEY A. BARTELME1 & REBECCA S. HAYNIE5 1Warnell School of Forestry and Natural Resources. University of Georgia, Athens, GA 30602. 2Department of Biology, John Carroll University, University Heights, OH 44118. 3Department of Botany, Faculty of Science, University of South Bohemia, 31 Branišovská, 370 05 České Budějovice, Czech Republic. 4Department of Horticulture, University of Georgia, Athens, GA 30602. 5SePRO Corporation, 11550 North Meridian Street, Suite 600, Carmel, IN 46032. *Corresponding author ([email protected]) Abstract Research into the taxonomy of a novel cyanobacterial epiphyte in locations where birds, most notably Bald eagle and Ameri- can coots, are dying from a neurologic disease (Avian Vacuolar Myelinopathy—AVM) has been ongoing since 2001. Field investigations revealed that all sites where birds were dying had extensive invasive aquatic vegetation with dense colonies of an unknown cyanobacterial species growing on the underside of leaves. Morphological evaluation indicated that this was a true-branching, heterocystous taxon falling within the former order Stigonematales. However, 16S rRNA gene sequence demonstrated that it did not match closely with any described genus or species. More recent sequence analysis of the 16S rRNA gene and associated ITS region from additional true branching species resulted in a unique phylogenetic placement distant from the other clades of true-branching cyanobacteria.
    [Show full text]
  • (Cyanobacterial Genera) 2014, Using a Polyphasic Approach
    Preslia 86: 295–335, 2014 295 Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach Taxonomické hodnocení cyanoprokaryot (cyanobakteriální rody) v roce 2014 podle polyfázického přístupu Jiří K o m á r e k1,2,JanKaštovský2, Jan M a r e š1,2 & Jeffrey R. J o h a n s e n2,3 1Institute of Botany, Academy of Sciences of the Czech Republic, Dukelská 135, CZ-37982 Třeboň, Czech Republic, e-mail: [email protected]; 2Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 31, CZ-370 05 České Budějovice, Czech Republic; 3Department of Biology, John Carroll University, University Heights, Cleveland, OH 44118, USA Komárek J., Kaštovský J., Mareš J. & Johansen J. R. (2014): Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. – Preslia 86: 295–335. The whole classification of cyanobacteria (species, genera, families, orders) has undergone exten- sive restructuring and revision in recent years with the advent of phylogenetic analyses based on molecular sequence data. Several recent revisionary and monographic works initiated a revision and it is anticipated there will be further changes in the future. However, with the completion of the monographic series on the Cyanobacteria in Süsswasserflora von Mitteleuropa, and the recent flurry of taxonomic papers describing new genera, it seems expedient that a summary of the modern taxonomic system for cyanobacteria should be published. In this review, we present the status of all currently used families of cyanobacteria, review the results of molecular taxonomic studies, descriptions and characteristics of new orders and new families and the elevation of a few subfamilies to family level.
    [Show full text]
  • NOSTOCALES, CYANOBACTERIA): CONVERGENT EVOLUTION RESULTING in a CRYPTIC GENUS Sergey Shalygin John Carroll University, [email protected]
    John Carroll University Carroll Collected Masters Theses Theses, Essays, and Senior Honors Projects Winter 2016 CYANOMARGARITA GEN. NOV. (NOSTOCALES, CYANOBACTERIA): CONVERGENT EVOLUTION RESULTING IN A CRYPTIC GENUS Sergey Shalygin John Carroll University, [email protected] Follow this and additional works at: http://collected.jcu.edu/masterstheses Part of the Biology Commons Recommended Citation Shalygin, Sergey, "CYANOMARGARITA GEN. NOV. (NOSTOCALES, CYANOBACTERIA): CONVERGENT EVOLUTION RESULTING IN A CRYPTIC GENUS" (2016). Masters Theses. 21. http://collected.jcu.edu/masterstheses/21 This Thesis is brought to you for free and open access by the Theses, Essays, and Senior Honors Projects at Carroll Collected. It has been accepted for inclusion in Masters Theses by an authorized administrator of Carroll Collected. For more information, please contact [email protected]. CYANOMARGARITA GEN. NOV. (NOSTOCALES, CYANOBACTERIA): CONVERGENT EVOLUTION RESULTING IN A CRYPTIC GENUS A Thesis Submitted to the Office of Graduate Studies College of Arts & Sciences of John Carroll University In Partial Fulfillment of the Requirements For the Degree of Master of Science By Sergei Shalygin 2016 The thesis of Sergei Shalygin is hereby accepted: ., µ_ fJo., t fvt8fl'_ 7 <>U, Reader - C · opher A. Sheil Date M,UJf� Reader - Michael P. Martin Date I 2 - z ,, Reader - Nicole Pietrasiak Date ---1-1 - z z - <ot<e Date I certify that this is the copy or the original document \I - 22- �{ {) Author - Sergei Shalygin Date ACKNOWLEDGEMENTS I thank John Carroll University for salary support, supplies and use of laboratory facilities, and supportive faculty and staff in the Biology Department. Additionally, I am grateful to all lab mates from the Johansen laboratory for useful discussion of the work.
    [Show full text]
  • Biology and Management of Nostoc (Cyanobacteria) in Nurseries and Greenhouses1 H
    SS-AGR-431 Biology and Management of Nostoc (Cyanobacteria) in Nurseries and Greenhouses1 H. Dail Laughinghouse IV, David E. Berthold, Chris Marble, and Debalina Saha2 This document provides an overview of the biology and Order: Nostocales ecology of Nostoc-like cyanobacteria (blue-green algae) in humid soils and discusses methods to manage this weed Family: Nostocaceae in nursery environments. Here, we simplify and group all macroscopic, morphologically Nostoc-like taxa into Nostoc. Type Species: Nostoc commune Vaucher ex Bornet et However, what we call Nostoc in the field actually com- Flahault (1888) prises many different genera, such as Aliinostoc, Aulosira, Desmonostoc, Halotia, Isocystis, Mojavia, Nostoc, and Common Names: algae, star jelly, ground boogers, dragon Trichormus. Very general comments on management are snot, mare’s eggs made because strain-specific properties, such as different Nostoc colonies are composed of aggregated and entangled degrees of mucilage and pigmentation, may cause variation trichomes (chains of cells) that can grow into macroscopic among each taxon’s susceptibility to control methods. It mats and gelatinous colonies, which can be blue-green, is important to remember that, in the field, the terrestrial yellow-brown, or dark brown in color. Colonies are usually algae commonly live as a complex community of several spherical at the beginning of the vegetative stage and are species of cyanobacteria, chlorophytes, and diatoms, and later irregular, foliar, or filiform. Trichomes are uniseriate, live in associations with fungi, forming lichens. unbranched, flexuous, or curved, and always constricted at the cross walls. Vegetative cells are barrel-shaped to Description cylindrical. Heterocytes (specialized N-fixing cells) are Phylum: Cyanobacteria spherical to oval in shape and usually solitary.
    [Show full text]
  • 1 Current and Selected Bibliographies on Benthic
    1 ================================================================================== CURRENT AND SELECTED BIBLIOGRAPHIES ON BENTHIC BIOLOGY – 2014 [published in May 2016] -------------------------------------------------------------------------------------------------------------------------------------------- FOREWORD. “Current and Selected Bibliographies on Benthic Biology” is published annually for the members of the Society for Freshwater Science (SFS) (formerly, the Midwest Benthological Society [MBS, 1953-1975] then the North American Benthological Society [NABS, 1975-2011]). This compilation summarizes titles of articles published during the year (2014). Additionally, pertinent titles of articles published prior to 2014 also have been included if they had not been cited in previous reviews, or to correct errors in previous annual bibliographies, and authors of several sections have also included citations for recent (2015–) publications. I extend my appreciation to past and present members of the MBS, NABS and SFS Literature Review and Publications Committees and the Society presidents and treasurer Mike Swift for their support (including some funds to compensate hourly assistance to Wetzel during the editing of literature contributions from section compilers), to librarians Elizabeth Wohlgemuth (Illinois Natural History Survey) and Susan Braxton (Prairie Research Institute) for their assistance in accessing journals, other publications, bibliographic search engines and abstracting resources, and rare publications critical to the
    [Show full text]