Reproductive Cycle of Branchiura Sowerbyi (Oligochaeta: Naididae: Tubificinae) Cultivated Under Laboratory Conditions

Total Page:16

File Type:pdf, Size:1020Kb

Reproductive Cycle of Branchiura Sowerbyi (Oligochaeta: Naididae: Tubificinae) Cultivated Under Laboratory Conditions ZOOLOGIA 28 (4): 427–431, August, 2011 doi: 10.1590/S1984-46702011000400003 Reproductive cycle of Branchiura sowerbyi (Oligochaeta: Naididae: Tubificinae) cultivated under laboratory conditions Haroldo Lobo1, 2 & Roberto da Gama Alves1 1 Programa de Pós-Graduação em Ciências Biológicas – Comportamento e Biologia Animal, Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora. 36036-900 Juiz de Fora, MG, Brazil. 2 Corresponding author. E-mail: [email protected] ABSTRACT. The biology of Branchiura sowerbyi Beddard, 1892 has been the focus of many studies in temperate regions, where the species is exotic, according to literature data. Due to its high productivity and easy cultivation, B. sowerbyi is of great interest as a food source for fish farming. The present study reports information on the reproductive biology and growth of B. sowerbyi under laboratory conditions at 25 ± 1°C. Weekly observations during 52 weeks indicated that the time between cocoon laying and young hatching was 14 to 16 days, the specific daily growth rate was 0.91 ± 0.04% (mean ± SD) and the time to reach sexual maturity was 40.83 ± 6.88 days. As reported by other authors, the hatching rate observed was low (33.08%), but the survival rate of young was high, approximately 96%. Laboratory observations showed that B. sowerbyi has two annual reproductive cycles, the first (between the 5th and 24th week) being more pronounced than the second (between the 31st and 51st week) concerning the number of cocoons. KEY WORDS. Cocoons; fish food; growth rate; oligochaete; tubificid. Branchiura sowerbyi Beddard, 1892 is commonly found DORFELD et al. 2006). According to RABURU et al. (2002), in a study in organically enriched freshwater environments in tropical in Lake Naivasha (Kenya), this tubificid presented high annual and temperate regions. In the latter, B. sowerbyi is used as a productivity (7.43 g of dry matter per m2) compared to the thermal pollution indicator (ASTON 1968). The biology of the oligochaete Limnodrilus hoffmeisteri Claparede, 1862 (0.65 g of species has been the focus of many studies. ASTON & MILNER dry matter per m2). These studies show the importance of the (1982) and ASTON et al. (1982) studied the ideal conditions to species within the benthic community of tropical aquatic en- breed it in activated sewage, and found better growth and re- vironments. productive rate in a mixture of activated sewage and fine sand Due to its larger size (20 to 185 mm long) and high pro- (66% of activated sewage) at 25°C. CASELLATO (1984) studied the ductivity compared to other tubificid species (YAN & WANG 1999, species’ life cycle in a water-lily tank at the Botanical Garden RABURU et al. 2002), B. sowerbyi raises great commercial interest of Padua and reported that B. sowerbyi presents the highest re- as live fish food. Many studies show that aquatic oligochaete production activity in the spring. CASELLATO et al. (1987) de- represent a significant part in the diet of some fish species (RIERA scribed the species’ histological characteristics during et al. 1991, GOPHEN et al. 1998, RAHMAN et al. 2006). LIETZ (1987) gametogenesis. BONACINA et al. (1994) studied the population advocated the potential of these animals as live fish food, since ecology of B. sowerbyi in mass cultivation and suggested a math- they are easily cultivated in large scales and are resistant to ematical model to estimate its demographic parameters in natu- variations in temperature and dissolved oxygen levels. ral environments. DUCROT et al. (2007) conducted a long study Another interest is the use of B. sowerbyi in ecotoxicological showing important aspects of the species’ biology, aiming to studies (KEILTY et al. 1988, MARCHESE & BRINKHURST 1996, DUCROT et use it in ecotoxicological tests (for other studies on this spe- al. 2007), since specimens are easy to handle (MARCHESE & cies, see NAQVI 1973, ASTON 1984, DREWES & ZORAN 1989, CASELLATO BRINKHURST 1996) and are present in aquatic environments where et al. 1992, MARCHESE & BRINKHURST 1996). Tubifex tubifex (Müller, 1774), commonly used in ecotoxicology, Most of the above studies were carried out in temperate is either relatively rare or is not present (DUCROT et al. 2007). regions, where B. sowerbyi is exotic, according to ASTON (1968). According to CASELLATO et al. (1992), in order to use a species in In Brazil, studies in lentic environments and reservoirs show ecotoxicological studies with the aim to evaluate the level of that B. sowerbyi is one of the most abundant species among the sediment contamination of rivers and lakes by pollutants, it is benthic organisms (ALVES & STRIXINO 2000, PAMPLIN et al. 2005, first necessary to understand its biological attributes. © 2011 Sociedade Brasileira de Zoologia | www.sbzoologia.org.br | All rights reserved. 428 H. Lobo & R. da G. Alves The present study reports on characteristics of the repro- tion, number of cocoons per adult per day and number of eggs ductive biology and growth of B. sowerbyi under laboratory per cocoon were recorded. Data are presented as mean ± stan- conditions, and provides other information that could be in- dard deviation. The average rate of daily growth (Gw%) was corporated in ecotoxicological studies on the species. The in- calculated according to REYNOLDSON (1987): –1 formation provided here complements a previous study Gw% = (LnW2 – LnW1) x 100t ; where: W1 = initial weight (mg); (NASCIMENTO & ALVES 2008) on the egg-laying and egg hatching W2 = final weight (mg); and t = time in days. rates of B. sowerbyi individuals maintained in clay substrate. MATERIAL AND METHODS Table I. Composition of the fish food Alcon Basic® used as organic matter source for the maintenance of B. sowerbyi in laboratory. Specimens of B. sowerbyi used in the experiment were Figures provided by the manufacturer (value per kilogram of the product). obtained from a culture kept at the Benthonic Invertebrate Laboratory at the Universidade Federal de Juiz de Fora (Juiz de Food composition Quantity Fora, Minas Gerais, Brazil) under ambient temperature and Vitamin A 30,000 UI photoperiod. The organisms are originally from Diogo Lake Vitamin D3 5,000 UI (Luis Antônio, São Paulo, Brazil). The collection method was Vitamin E 83.3 mg described in NASCIMENTO & ALVES (2008). The experiment was conducted in 250-mL beakers con- Vitamin K3 8.3 mg taining 100 mL of sand, 100 mL of water (dechlorinated and Vitamin B1 6.7 mg ® aerated) and 0.1 g of fish food (AlconBASIC , Tab. I) as a source Vitamin B2 25.0 mg of organic matter. The sand used in the experiment, collected Vitamin B6 6.7 mg from the Peixe River (21°54’37”S and 43°33’24”W), located in southwestern Minas Gerais state (Brazil), had been previously Vitamin B12 33.3 mg analyzed under a stereoscopic microscope (40x magnification) Niacin 116.7 mg to remove invertebrates. The granulometric sand fraction used Calcium Pantothenate 50.0 mg was 0.25 to 1.00 mm. Six beakers were used for cocoon pro- Biotin 0.3 mg duction. Each beaker contained five mature specimens (six weeks of age) and was kept in incubators at 25 ± 0.1°C, in the Folic Acid 2.5 mg dark. Every other day for 20 days the substrate of each beaker Hill 520.0 mg was washed in a 0.25-mm sifter and analyzed under a stereo- Iron 83.3 mg scopic microscope to collect and count the cocoons. The trans- Cupper 8.3 mg parence of the cocoon allowed us to easily count the number of eggs inside. Zinc 83.3 mg Using a 3-mL Pasteur pipette, the cocoons were collected Manganese 66.7 mg and put in 100-mL beakers containing 25 mL of substrate and Selenium 0.2 mg 25 mL of dechlorinated and aerated water. The recipients con- Iodine 1.7 mg taining the cocoons were kept in incubators at 25 ± 0.1°C, in Methionine 833.3 mg the dark, and analyzed under a stereoscopic microscope every two days for observation and counting of eclosions. Stabilized Vitamin C 250.0 mg Thirty young individuals (two days old), which presented normal movement and no body deformations, were selected for observation of growth and sexual maturation that was de- RESULTS termined by the laying of the first cocoon. Six 250-mL beakers, each containing five individuals, were analyzed weekly during A rate of eclosion of 33.08% was determined from 67 364 days to record the weight of individuals and number of cocoons, containing 1.99 ± 0.21 eggs·cocoon–1 (mean ± SD). eggs and cocoons. To do this, the substrate was washed in 0.250- There were no deaths among the adults during the 21-days mm sifters and analyzed under a stereoscopic microscope. To period of cocoon collection. The time between cocoon laying avoid stress on the organisms, they were removed with a Stanley and hatching varied from 10 to 20 days (Fig. 1). Most of the knife and transferred to a Petri dish containing dechlorinated hatchings (90.91%) occurred between 12 and 18 days after the water. After the collection of cocoons, our subjects were trans- cocoon had been laid. Positive growth was observed until the ferred to a new substrate with 0.1 g of fish food. organisms completed 14 weeks (Fig. 2), after which their weights For each beaker, the time between cocoon laying and stabilized. After the 36th week the weights of the subjects var- hatching, average rate of daily growth, time of sexual matura- ied greatly among one another. ZOOLOGIA 28 (4): 427–431, August, 2011 Reproductive cycle of Branchiura sowerbyi cultivated under laboratory conditions 429 70 55 50 60 45 50 40 35 40 30 30 25 Frequency (%) 20 20 Average weight (mg) 15 10 10 5 0 0 ٜ ٜ ٜ 2 6 0 4 ٜ ٜ 8 ٜ ٜ ٜ ٜ ٜ 68 46 24 34 20 22 24 10 28 14 16 40 42 46 30 26 18 32 44 50 36 48 12 38 810 52 10 12 12 14 14 16 16 18 18 20 20 22 Times (days) 12Time (week) Figures 1-2.
Recommended publications
  • Annelida: Oligochaeta: Naididae) Geographical Distribution from Southern Caspian Sea Basin, Mazandaran Province - Iran
    Iranian Journal of Fisheries Sciences 20(1) 109-128 2021 DOI: 10.22092/ijfs.2021.351016.0 Research Article New report for Pristinella jenkinae Stephenson, 1931 (Annelida: Oligochaeta: Naididae) geographical distribution from Southern Caspian Sea basin, Mazandaran province - Iran Erfani M.1* Received: May 2020 Accepted: November 2020 Abstract Pristinella jenkinae (Stephenson, 1931) is a freshwater cosmopolitan oligochaete. This species was found during limnological investigation in two rivers alongside Iranian coasts and has not been previously reported from Iran‟s freshwater fauna and Southern Caspian Sea basin. The specimens of P. jenkinae were collected bimonthly from Cheshmehkileh and Sardabrood rivers and estuaries (river mouth) using a Van Veen grab (0.03 m2) and Surber (0.1 m2, 0.2 mm-mesh size) samplers at three stations in each estuary (S1: riverine, S2: estuary and S3: marine ecosystem) with three replicates from November 2014 through September 2015. Results of temporal distribution showed that the highest and lowest density and biomass of this species were in January (102.3±68.3 ind m-2 and 0.075±0.034g m-2) and in September (24.4±12.3 ind m-2 and 0.020±0.005g m-2), respectively which were significantly different (N=57, t=0.99, p<0.05). Spatial distribution of P. jenkinae among sampling stations (S1, S2 and S3) showed significant differences (N=57, t=0.99, p<0.05). Freshwater stations (S1) within the river showed Downloaded from jifro.ir at 17:51 +0330 on Friday September 24th 2021 higher density and biomass (112.1±64.8 ind m-2 and 0.082±0.035g m-2) than semi- brackish stations (S2) within the estuary (18.8±10.3 ind m-2 and 0.013±0.005g m-2).
    [Show full text]
  • Asian Journal of Medical and Biological Research Identification Of
    Asian J. Med. Biol. Res. 2016, 2 (1), 27-32; doi: 10.3329/ajmbr.v2i1.27565 Asian Journal of Medical and Biological Research ISSN 2411-4472 (Print) 2412-5571 (Online) www.ebupress.com/journal/ajmbr Article Identification of genera of tubificid worms in Bangladesh through morphological study Mariom*, Sharmin Nahar Liza and Md. Fazlul Awal Mollah Department of Fisheries Biology and Genetics, Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh *Corresponding author: Mariom, Department of Fisheries Biology and Genetics, Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh. E-mail: [email protected] Received: 12 January 2016/Accepted: 17 January 2016/ Published: 31 March 2016 Abstract: Tubificids are aquatic oligochaete worms (F- Naididae, O- Haplotaxida, P- Annelida) distributed all over the world. The worms are very important as they are used as live food for fish and other aquatic invertebrates. A step was taken to identify the genera of tubicifid worms that exist in Mymensingh district, Bangladesh on the basis of some external features including the shape of their anterior (prostomium) and posterior end, number of body segment and arrangement of setae. The study result indicated the existence of three genera among the tubificid worms. These were Tubifex, Limnodrilus and Aulodrilus. All these three genera possessed a cylindrical body with a bilateral symmetry formed by a series of metameres. The number of body segments ranged from 34 to 120 in Tubifex, 50 to 87 in Limnodrilus, and 35 to 100 in Aulodrilus. In Tubifex, the first segment, with the prostomium, was round or triangular bearing appendages, whereas, in Limnodrilus and Aulodrilus, the prostomium without appendages was triangular and conical, respectively.
    [Show full text]
  • Annelida: Clitellata: Naididae): a New Non-Indigenous Species for Europe, and Other Non-Native Annelids in the Schelde Estuary
    Aquatic Invasions (2013) Volume 8, Issue 1: 37–44 doi: http://dx.doi.org/10.3391/ai.2013.8.1.04 Open Access © 2013 The Author(s). Journal compilation © 2013 REABIC Research Article Bratislavia dadayi (Michaelsen, 1905) (Annelida: Clitellata: Naididae): a new non-indigenous species for Europe, and other non-native annelids in the Schelde estuary Jan Soors1*, Ton van Haaren2, Tarmo Timm3 and Jeroen Speybroeck1 1 Research Institute for Nature and Forest (INBO), Kliniekstraat 25, 1070 Brussel, Belgium 2 Grontmij, Sciencepark 406, 1090 HC Amsterdam, The Netherlands 3 Centre for Limnology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 61117 Rannu, Tartumaa, Estonia E-mail: [email protected] (JS), [email protected] (TvH), [email protected] (JS), [email protected] (TT) *Corresponding author Received: 18 November 2011 / Accepted: 24 January 2013 / Published online: 21 February 2013 Handling editor: Vadim Panov Abstract For the first time, the freshwater oligochaete species Bratislavia dadayi (Michaelsen, 1905) is recorded in Europe. The species was found at three subtidal stations in the Schelde estuary in Belgium, where it was probably introduced from the Americas. We provide an overview of the species’ nomenclature, diagnostics, distribution, and ecology. Bratislavia dadayi is one of 11 non-indigenous annelids currently known to occur in the Schelde estuary. Key words: alien species; Annelida; Clitellata; Oligochaeta; Polychaeta; Belgium Introduction Annelids, and oligochaetes in particular, are a less-studied group, often overlooked when Over the last 150 years, the number of non- considering alien species. Yet the best studied native species turning up in areas far from their Annelid species, Lumbricus terrestris (L., 1758), original range has increased significantly (Bax et is now considered a widespread invasive species al.
    [Show full text]
  • Two Aquatic Oligochaete Species, Dero Dorsalis and Allonais Pectinata (Annelida: Clitellata: Naididae), New to Korea
    Anim. Syst. Evol. Divers. Vol. 30, No. 2: 119-123, April 2014 http://dx.doi.org/10.5635/ASED.2014.30.2.119 Short communication Two Aquatic Oligochaete Species, Dero dorsalis and Allonais pectinata (Annelida: Clitellata: Naididae), New to Korea Jeounghee Lee1, Jongwoo Jung1,2,* 1Division of EcoCreative, Ewha Womans University, Seoul 120-750, Korea 2Department of Science Education, Ewha Womans University, Seoul 120-750, Korea ABSTRACT The genera Dero and Allonais belong to the family Naididae. Most species in the genus Dero have unique morphological characters including a branchial fossa and/or gills at the posterior end of the body. The genus Allonais has no eyes unlike its close relative the genus Nais. Of these genera, one species of Dero, D. obtusa, was recently reported in Korea. However, the genus Allonais has not been recorded in Korea. Here, we report Dero dorsalis Ferronière, 1899 and Allonais pectinata (Stephenson, 1910) with a diagnosis and illustrations. Keywords: Dero dorsalis, Allonais pectinata, Naididae, Oligochaeta, Clitellata, Korea INTRODUCTION were kept cool and were sorted in the laboratory using a stereo- microscope while the worms were alive. Then, the samples Aquatic oligochaeta is one of the most abundant and ecologi- were preserved in 70% ethanol solution. The specimens were cally important groups in freshwater benthic environments stained with Rose Bengal dye for observations and measure- (Jung, 2011). Most species in this group are ⁄1 mm to a few ments and were temporarily mounted in glycerin. Pictures centimeters in length. This group contains several families. were taken with a BX 41 optical microscope (Olympus, Tokyo, Among them, naidid worms are small benthic and/or epiben- Japan) and an EOS 650D camera (Canon, Tokyo, Japan).
    [Show full text]
  • Coleoptera: Hydrophilidae) Are Specialist Predators of Snails
    Eur. J. Entomol. 112(1): 145–150, 2015 doi: 10.14411/eje.2015.016 ISSN 1210-5759 (print), 1802-8829 (online) Larvae of the water scavenger beetle, Hydrophilus acuminatus (Coleoptera: Hydrophilidae) are specialist predators of snails TOSHIO INODA1, YUTA INODA1 and JUNE KATHYLEEN RULLAN 2 1 Shibamata 5-17-10, Katsushika, Tokyo 125-0052, Japan; e-mail: [email protected] 2 University of the Philippines, Manila, Philippines; e-mail: [email protected] Key words. Coleoptera, Hydrophilidae, Hydrophilus acuminatus, feeding preferences, snail specialist Abstract. Hydrophilus acuminatus larvae are known to feed on aquatic prey. However, there is no quantitative study of their feeding habits. In order to determine the feeding preferences and essential prey of larvae of H. acuminatus, both field and laboratory experi- ments were carried out. Among the five potential species of prey,Austropeplea ollula (Mollusca: Lymnaeidae), Physa acuta (Mollusca: Physidae), Asellus hilgendorfi (Crustacea: Asellidae), Palaemon paucidens (Crustacea: Palaemonidae) and larvae of Propsilocerus akamusi (Insecta: Chironomidae), the first instar larvae of H. acuminatus strongly prefered the Austropeplea and Physa snails in both cafeteria and single-prey species experiments. Larvae that were provided with only snails also successfully developed into second instar larvae, while larvae fed Palaemon, Propsilocerus larvae or Asellus died during the first instar. In addition, the size of adult H. acuminatus reared from first-instar larvae and fed only snails during their entire development was not different from that of adult H. acuminatus collected in the field. This indicates that even though the larvae ofH. acuminatus can feed on several kinds of invertebrates, they strongly prefer snails and without them cannot complete their development.
    [Show full text]
  • Selection of Suitable Media and Intervals of Media Inoculation for Culturing Tubificid Worms
    J. Bangladesh Agril. Univ. 10(2): 325–330, 2012 ISSN 1810-3030 Selection of suitable media and intervals of media inoculation for culturing Tubificid worms M. F. A. Mollah, K. Mosharaf and Mariom Department of Fisheries Biology and Genetics, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh, E-mail:[email protected] Abstract Tubificid worms are aquatic invertebrates, belonging to the class Oligochaeta and family Tubificidae, used as an important live food for fishes. The study was conducted to culture Tubificid worms under running water in order to develop a suitable culture media and an optimum duration of media inoculation for culturing Tubificid worms. The worms were cultured under two experiments in cemented culvert system (160×25×10 cm3) for 90 days. In the first experiment the worms were cultured in three different media designated as treatment-I, treatment-II and treatment-III. The highest yield (503.39±22.98 mg cm-2) was found at 70th day of culture duration in the culture media containing a mixture of 35% mustard oil cake, 20% wheat bran, 25% cow-dung and 20% fine sand (treatment-III). Only 1.99 kg media ingredients valued BDT 29.85 were needed to yield 1 kg worms. In the second experiment, the worms were cultured at three different intervals of media inoculation i.e., 6, 10 and 15 days interval designated as treatment-I, treatment-II and treatment-III respectively using the media found best in the first experiment. Inoculation of media at 10 days interval showed significantly (P<0.01) higher production (488.94±5.60 mg cm-2).
    [Show full text]
  • The Giant Interneuron Pathways and Escape Reflexes of the Aquatic Oligochaete, Branchiura Sowerbyi Mark Joseph Zoran Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1987 The giant interneuron pathways and escape reflexes of the aquatic oligochaete, Branchiura sowerbyi Mark Joseph Zoran Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Zoology Commons Recommended Citation Zoran, Mark Joseph, "The giant interneuron pathways and escape reflexes of the aquatic oligochaete, Branchiura sowerbyi " (1987). Retrospective Theses and Dissertations. 8604. https://lib.dr.iastate.edu/rtd/8604 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS While the most advanced technology has been used to photograph and reproduce this manuscript, the quality of the reproduction is heavily dependent upon the quality of the material submitted. For example: • Manuscript pages may have indistinct print. In such cases, the best available copy has been filmed. • Manuscripts may not always be complete. In such cases, a note will indicate that it is not possible to obtain missing pages. • Copyrighted material may have been removed from the manuscript. In such cases, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, and charts) are photographed by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each oversize page is also filmed as one exposure and is available, for an additional charge, as a standard 35mm slide or as a 17"x 23" black and white photographic print.
    [Show full text]
  • Pesticide Toxicity Index for Freshwater Aquatic Organisms, 2Nd Edition
    Pesticide Toxicity Index for Freshwater Aquatic Organisms, 2nd Edition By Mark D. Munn, Robert J. Gilliom, Patrick W. Moran, and Lisa H. Nowell National Water-Quality Assessment Program Scientific Investigations Report 2006-5148 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior Dirk Kempthorne, Secretary U.S. Geological Survey P. Patrick Leahy, Acting Director U.S. Geological Survey, Reston, Virginia: 2006 Revised and reprinted: 2006 For sale by U.S. Geological Survey, Information Services Box 25286, Denver Federal Center Denver, CO 80225 For more information about the USGS and its products: Telephone: 1-888-ASK-USGS World Wide Web: http://www.usgs.gov/ Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested reference: Munn, M.D., Gilliom, R.J., Moran, P.W., and Nowell, L.H., 2006, Pesticide toxicity index for freshwater aquatic organisms, 2nd Edition: U.S. Geological Survey Scientific Investigations Report 2006-5148, 81 p. iii FOREWORD The U.S. Geological Survey (USGS) is committed to providing the Nation with accurate and timely scien- tific information that helps enhance and protect the overall quality of life and that facilitates effective management of water, biological, energy, and mineral resources (http://www.usgs.gov/). Information on the quality of the Nation’s water resources is critical to assuring the long-term availability of water that is safe for drinking and recreation and suitable for industry, irrigation, and habitat for fish and wildlife.
    [Show full text]
  • Oligochaete Sampling to Determine the Presence of Tubifex Tubifex in Four Study Lakes in Interior Alaska, 2007
    Fishery Data Series No. 10-25 Oligochaete Sampling to Determine the Presence of Tubifex tubifex in Four Study Lakes in Interior Alaska, 2007 by Kelly Mansfield and April Behr April 2010 Alaska Department of Fish and Game Divisions of Sport Fish and Commercial Fisheries Symbols and Abbreviations The following symbols and abbreviations, and others approved for the Système International d'Unités (SI), are used without definition in the following reports by the Divisions of Sport Fish and of Commercial Fisheries: Fishery Manuscripts, Fishery Data Series Reports, Fishery Management Reports, and Special Publications. All others, including deviations from definitions listed below, are noted in the text at first mention, as well as in the titles or footnotes of tables, and in figure or figure captions. Weights and measures (metric) General Measures (fisheries) centimeter cm Alaska Administrative fork length FL deciliter dL Code AAC mideye-to-fork MEF gram g all commonly accepted mideye-to-tail-fork METF hectare ha abbreviations e.g., Mr., Mrs., standard length SL kilogram kg AM, PM, etc. total length TL kilometer km all commonly accepted liter L professional titles e.g., Dr., Ph.D., Mathematics, statistics meter m R.N., etc. all standard mathematical milliliter mL at @ signs, symbols and millimeter mm compass directions: abbreviations east E alternate hypothesis HA Weights and measures (English) north N base of natural logarithm e cubic feet per second ft3/s south S catch per unit effort CPUE foot ft west W coefficient of variation CV gallon gal copyright © common test statistics (F, t, χ2, etc.) inch in corporate suffixes: confidence interval CI mile mi Company Co.
    [Show full text]
  • Envall Et Al
    Molecular Phylogenetics and Evolution 40 (2006) 570–584 www.elsevier.com/locate/ympev Molecular evidence for the non-monophyletic status of Naidinae (Annelida, Clitellata, TubiWcidae) Ida Envall a,b,c,¤, Mari Källersjö c, Christer Erséus d a Department of Zoology, Stockholm University, SE-106 91 Stockholm, Sweden b Department of Invertebrate Zoology, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden c Laboratory of Molecular Systematics, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden d Department of Zoology, Göteborg University, Box 463, SE-405 30 Göteborg, Sweden Received 24 October 2005; revised 9 February 2006; accepted 15 March 2006 Available online 8 May 2006 Abstract Naidinae (former Naididae) is a group of small aquatic clitellate annelids, common worldwide. In this study, we evaluated the phylo- genetic status of Naidinae, and examined the phylogenetic relationships within the group. Sequence data from two mitochondrial genes (12S rDNA and 16S rDNA), and one nuclear gene (18S rDNA), were used. Sequences were obtained from 27 naidine species, 24 species from the other tubiWcid subfamilies, and Wve outgroup taxa. New sequences (in all 108) as well as GenBank data were used. The data were analysed by parsimony and Bayesian inference. The tree topologies emanating from the diVerent analyses are congruent to a great extent. Naidinae is not found to be monophyletic. The naidine genus Pristina appears to be a derived group within a clade consisting of several genera (Ainudrilus, Epirodrilus, Monopylephorus, and Rhyacodrilus) from another tubiWcid subfamily, Rhyacodrilinae. These results dem- onstrate the need for a taxonomic revision: either Ainudrilus, Epirodrilus, Monopylephorus, and Rhyacodrilus should be included within Naidinae, or Pristina should be excluded from this subfamily.
    [Show full text]
  • Annelida: Clitellata: Naididae) ⇑ Yingkui Liu A, Steven V
    Molecular Phylogenetics and Evolution 112 (2017) 244–257 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Multi-locus phylogenetic analysis of the genus Limnodrilus (Annelida: Clitellata: Naididae) ⇑ Yingkui Liu a, Steven V. Fend b, Svante Martinsson a, Xu Luo a, Akifumi Ohtaka c, Christer Erséus a, a Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30 Göteborg, Sweden b 17650 Kilkenny Rd., Los Gatos, CA 95030, USA c Department of Natural Science, Faculty of Education, Hirosaki University, Hirosaki, Aomori 036-8560, Japan article info abstract Article history: Limnodrilus species are annelid worms distributed worldwide in various freshwater sediments. The sys- Received 22 December 2016 tematics of Limnodrilus has chiefly been based on morphology, but the genus has not been subject to any Revised 24 March 2017 closer phylogenetic studies over the past two decades. To reconstruct the evolutionary history of Accepted 20 April 2017 Limnodrilus, and to assess the monophyly of this genus and its systematic position within the subfamily Available online 27 April 2017 Tubificinae (Annelida: Clitellata: Naididae), 45 Limnodrilus specimens, representing 19 species, and 35 other naidid species (representing 24 genera) were sampled. The data consisted of sequences of three Keywords: mitochondrial genes (COI, 12S and 16S rDNA) and four nuclear markers (18S and 28S rDNA, Histone 3, Oligochaetes and ITS). The phylogeny was estimated, using Maximum Likelihood and Bayesian analyses of concate- Clitellates Limnodrilus nated data of seven DNA loci, as well as a multi-locus coalescent-based approach. All analyses strongly Phylogeny suggest that Limnodrilus is monophyletic, but only if the morphospecies L.
    [Show full text]
  • This Article Appeared in a Journal Published by Elsevier. the Attached
    This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Molecular Phylogenetics and Evolution 57 (2010) 687–702 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Genetic variation and phylogeny of the cosmopolitan marine genus Tubificoides (Annelida: Clitellata: Naididae: Tubificinae) a,b, c a Sebastian Kvist ⇑, Indra Neil Sarkar , Christer Erséus a Department of Zoology, University of Gothenburg, Box 463, SE-405 30 Göteborg, Sweden b Richard Gilder Graduate School, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA c Center for Clinical and Translational Science, Department of Microbiology & Molecular Genetics and Department of Computer Science, University of Vermont, 89 Beaumont Avenue, Given Courtyard N309, Burlington VT 05405, USA article info a b s t r a c t Article history: Prior attempts to resolve the phylogenetic relationships of the cosmopolitan, marine clitellate genus Received 15 February 2010 Tubificoides, using only morphology, resulted in unresolved trees.
    [Show full text]