Adaptive Spacecraft Attitude Control Using Single-Gimbal Control Moment Gyroscopes Without Singularity Avoidance

Total Page:16

File Type:pdf, Size:1020Kb

Adaptive Spacecraft Attitude Control Using Single-Gimbal Control Moment Gyroscopes Without Singularity Avoidance JOURNAL OF GUIDANCE,CONTROL, AND DYNAMICS Adaptive Spacecraft Attitude Control Using Single-Gimbal Control Moment Gyroscopes Without Singularity Avoidance Zhanzhan Zhao,∗ Gerardo Cruz,† and Dennis S. Bernstein‡ University of Michigan, Ann Arbor, Michigan 48109 DOI: 10.2514/1.G003926 This paper applies retrospective cost adaptive control (RCAC) to spacecraft attitude control with a rotation-matrix attitude parameterization using constant-speed single-gimbal control moment gyroscopes. Unlike control laws that use torque-steering laws to synthesize torque requests while avoiding gimbal singularities, the adaptive control law requests the rate of each gimbal. Because no torque request is provided, there is no need to invert the mapping from the gimbal rates to the control torque, and thus no attempt is made to avoid gimbal singularities. The RCAC implementation is based on a target model involving a single Markov parameter corresponding to the initial gimbal configuration. The parameters and weights for RCAC are based on nominal-model tuning, which uses no explicit knowledge of the nonlinear equations of motion. This paper investigates the robustness of RCAC to off-nominal conditions of commands, noise, and unknown bus inertia; and it examines the performance of RCAC in the case where an approximately singular gimbal configuration occurs during attitude command, following as well as the case of an initial gimbal-lock singularity. The performance of the adaptive controller in the presence of sensor/actuator misalignment is also investigated. Nomenclature k = discrete-time step kw = initial waiting period A = attitude parameter matrix diag a1;a2;a3 lz = dimension of z a1;a2;a3 = attitude parameters lu = dimension of u BCMG;B1;B2 = control input matrices Θ c = center of mass of the spacecraft lΘ = dimension of mi = mass of Wi ci = center of mass of the ith wheel e = rotation eigenaxis for the rotated bus inertia n = number of the gimbals ⇀ nc = controller order O matrix J B;rot B∕G = direction cosine matrix obtained by resolving × i ! ei = ith column of the 3 3 identity matrix I3 R G ∕B in FB 0 i e = misalignment eigenaxis from F to F 0 O 0 B B B ∕B =! direction cosine matrix obtained by resolving FB = bus-fixed frame R B∕B 0 in FB 0 FB 0 = sensor-fixed frame O 0∕ = direction cosine matrix obtained by resolving B Gi ! F = frame representing the attitude command for F 0 0 C B R Gi∕B in FB F = frame fixed to gimbal G O O Gi i i = B∕Gi F = inertial frame O 0 O 0 I i = B ∕Gi FWi = frame fixed to wheel Wi Pi;k = controller coefficient matrix Gi = ith gimbal Qi;k = controller coefficient matrix Gf q = finite impulse response filter used by q = forward shift operator R retrospective cost adaptive control B∕I = direction cosine matrix obtained by resolving H = matrix that models the initial gimbal configu- ! R B∕I in FB ration used in Gf R C∕I = direction cosine matrix obtained by resolving I3 = 3 × 3 identity matrix ! ! R C∕I in FC J = inertia tensor J SC∕c of the spacecraft relative η Downloaded by UNIV OF MICHIGAN on August 20, 2019 | http://arc.aiaa.org DOI: 10.2514/1.G003926 Ru = control weighting matrix uIlu to c resolved in FB η ! Rz = performance weighting matrix zIlz J = inertia tensor J ∕ of the bus relative to c η B B c RΘ = regularization weighting matrix ΘIlΘ resolved in F ~ B R = attitude-error rotation matrix between RB∕I and J = rotated bus inertia matrix R B;rot ! ! C∕I J = inertia tensor J ∕ of W relative to c i Wi ci i i R B∕B 0 = rotation tensor that rotates FB 0 into FB resolved in FW ! !i R B∕I = rotation tensor that rotates FI into FB Ji;c = inertia tensor J W ∕c of Wi relative to c resolved ! i R C∕I = rotation tensor that rotates FI into FC in FB ! ^ Θ^ R ∕ = rotation tensor that rotates F into F Jk = retrospective cost function !Gi B B Gi 0 0 R Gi∕B = rotation tensor that rotates FB into FGi ri = position of ci relative to c resolved in FB Received 22 June 2018; revision received 8 June 2019; accepted for S = vector representation of the attitude error R~ publication 1 July 2019; published online 19 August 2019. Copyright © 2019 s = scalar attitude-error metric by Dennis S. Bernstein. Published by the American Institute of Aeronautics ϕ and Astronautics, Inc., with permission. All requests for copying and Ts = settling time to bring and maintain eig within permission to reprint should be submitted to CCC at www.copyright.com; ϕ∞ employ the eISSN 1533-3884 to initiate your request. See also AIAA Rights t = continuous-time variable and Permissions www.aiaa.org/randp. u = vector of gimbal rates *Graduate Student, Department of Aerospace Engineering; zhanzhao@ ui = gimbal rate of Gi around j^G relative to FB umich.edu. i † Wi = ith wheel Staff Member, NASA Goddard Space Flight Center; gerardo.e.cruz- z = performance variable [email protected]. ‡ z^ = retrospective performance variable Professor, Department of Aerospace Engineering; [email protected]. k Article in Advance / 1 2 Article in Advance / ZHAO, CRUZ, AND BERNSTEIN αi = moment of inertia of Wi around the spin axis In contrast to CMG-driven attitude control laws based on torque- ^ iWi steering laws, the present paper focuses on direct gimbal-rate-requested β = pyramidal face angle adaptive control of single-gimbal constant-speed CMGs without a β ^ ^ i = moment of inertia of Wi around jWi and kWi torque-steering law. In Fig. 2, the controller directly requests the gimbal Θk = controller coefficient vector rates u without a torque-steering law, and thus without specifying a Θ^ = retrospectively optimized controller coefficient requested torque. The gimbal motors implement the requested gimbal vector rates u that, as a result of the CMG dynamics, produce the actuation θ = rotation eigenangle for the rotated bus inertia torque τCMG applied to the spacecraft. Because no torque request is matrix JB;rot specified, there is no need to invert the mapping from the gimbal rates to θi = rotation angle of Gi the control torque, and thus no attempt is made to avoid gimbal θ 0 = misalignment eigenangle from FB to FB 0 . singularities. The direct gimbal-rate approach was used in Refs. [31– ν i = spin rate of the frame FW relative to FG around 33]. In particular, the approach of Ref. [31] was confined to open-loop ^ i i iWi control, Ref. [32] linearized the nonlinear system and applies an ξC = commanded eigenaxis resolved in FI optimal control law, and Ref. [33] applied sliding mode control. τ CMG = torque applied to the spacecraft by the control Nevertheless, approximate gimbal singularities can occur using moment gyroscopes the direct gimbal-rate approach. In these cases, the impact of τdist = torque applied to the spacecraft by the singularities encountered during a maneuver is limited due to the fact disturbances that the control input matrix B is time dependent, and thus rank- τ CMG G = torque applied to the spacecraft by Gi deficient conditions tend to hold at only isolated points. This property Φ i k = regressor matrix thus facilitates a simplified approach to the use of constant-speed ϕ C = commanded eigenangle CMGs for spacecraft attitude control. ϕ eig = rotation angle around the eigenaxis that rotates The adaptive control law adopted in the present paper is R B∕I t to RC t retrospective cost adaptive control (RCAC). RCAC was developed ϕ ϕ ∞ = bound on eig for linear systems in Refs. [34–36]. As shown in the present paper, ω B = angular velocity of FB relative to FI resolved in RCAC requires extremely limited modeling information for a FB spacecraft with CMG actuation, namely, geometric information ω C = angular velocity of FC relative to FI resolved in concerning the initial gimbal configuration. The ability of RCAC to FC control the spacecraft with limited modeling information is ω ~ B = angular velocity of FB relative to FC resolved in demonstrated by tuning RCAC in numerical simulations based on a FB nominal model and by subsequently evaluating its performance using ω⇀ B∕I = angular velocity of FB relative to FI a perturbed model. In this approach, the spacecraft equations of ω⇀ C∕I = angular velocity of FC relative to FI motion are used only for numerical simulation; no explicit knowledge of these equations is used by RCAC. Closed-loop stability for linear systems using RCAC was addressed in Ref. [35]. I. Introduction Proof of closed-loop stability for nonlinear systems in general and CMG control of spacecraft is an open problem. CONTROL moment gyroscope (CMG) consists of a spinning A pyramidal CMG arrangement consisting of four CMGs is A wheel mounted on one or two gimbals; the wheel may considered in this paper. The RCAC law is based on a rotation-matrix spin at either a constant or variable rate. The gimbal or gimbals attitude parameterization, which avoids singularities arising with ’ rotate the wheel s spin axis relative to the spacecraft bus, thereby Euler angles and Rodrigues parameters as well as the double covering applying a reaction torque to the spacecraft. The high torque levels and arising from quaternions. These issues and their ramifications were accuracy provided by CMGs make them well suited for attitude control discussed in Refs. [37,38]. – of large space stations, orbiting telescopes, and agile spacecraft [1 3]. The specific contributions of this paper are as follows: – CMGs are typically operated using torque-steering laws [2 6]. In 1) In contrast with torque-steering laws, a gimbal-rate controller is § τ Fig.
Recommended publications
  • Understanding Euler Angles 1
    Welcome Guest View Cart (0 items) Login Home Products Support News About Us Understanding Euler Angles 1. Introduction Attitude and Heading Sensors from CH Robotics can provide orientation information using both Euler Angles and Quaternions. Compared to quaternions, Euler Angles are simple and intuitive and they lend themselves well to simple analysis and control. On the other hand, Euler Angles are limited by a phenomenon called "Gimbal Lock," which we will investigate in more detail later. In applications where the sensor will never operate near pitch angles of +/‐ 90 degrees, Euler Angles are a good choice. Sensors from CH Robotics that can provide Euler Angle outputs include the GP9 GPS‐Aided AHRS, and the UM7 Orientation Sensor. Figure 1 ‐ The Inertial Frame Euler angles provide a way to represent the 3D orientation of an object using a combination of three rotations about different axes. For convenience, we use multiple coordinate frames to describe the orientation of the sensor, including the "inertial frame," the "vehicle‐1 frame," the "vehicle‐2 frame," and the "body frame." The inertial frame axes are Earth‐fixed, and the body frame axes are aligned with the sensor. The vehicle‐1 and vehicle‐2 are intermediary frames used for convenience when illustrating the sequence of operations that take us from the inertial frame to the body frame of the sensor. It may seem unnecessarily complicated to use four different coordinate frames to describe the orientation of the sensor, but the motivation for doing so will become clear as we proceed. For clarity, this application note assumes that the sensor is mounted to an aircraft.
    [Show full text]
  • Euler Quaternions
    Four different ways to represent rotation my head is spinning... The space of rotations SO( 3) = {R ∈ R3×3 | RRT = I,det(R) = +1} Special orthogonal group(3): Why det( R ) = ± 1 ? − = − Rotations preserve distance: Rp1 Rp2 p1 p2 Rotations preserve orientation: ( ) × ( ) = ( × ) Rp1 Rp2 R p1 p2 The space of rotations SO( 3) = {R ∈ R3×3 | RRT = I,det(R) = +1} Special orthogonal group(3): Why it’s a group: • Closed under multiplication: if ∈ ( ) then ∈ ( ) R1, R2 SO 3 R1R2 SO 3 • Has an identity: ∃ ∈ ( ) = I SO 3 s.t. IR1 R1 • Has a unique inverse… • Is associative… Why orthogonal: • vectors in matrix are orthogonal Why it’s special: det( R ) = + 1 , NOT det(R) = ±1 Right hand coordinate system Possible rotation representations You need at least three numbers to represent an arbitrary rotation in SO(3) (Euler theorem). Some three-number representations: • ZYZ Euler angles • ZYX Euler angles (roll, pitch, yaw) • Axis angle One four-number representation: • quaternions ZYZ Euler Angles φ = θ rzyz ψ φ − φ cos sin 0 To get from A to B: φ = φ φ Rz ( ) sin cos 0 1. Rotate φ about z axis 0 0 1 θ θ 2. Then rotate θ about y axis cos 0 sin θ = ψ Ry ( ) 0 1 0 3. Then rotate about z axis − sinθ 0 cosθ ψ − ψ cos sin 0 ψ = ψ ψ Rz ( ) sin cos 0 0 0 1 ZYZ Euler Angles φ θ ψ Remember that R z ( ) R y ( ) R z ( ) encode the desired rotation in the pre- rotation reference frame: φ = pre−rotation Rz ( ) Rpost−rotation Therefore, the sequence of rotations is concatentated as follows: (φ θ ψ ) = φ θ ψ Rzyz , , Rz ( )Ry ( )Rz ( ) φ − φ θ θ ψ − ψ cos sin 0 cos 0 sin cos sin 0 (φ θ ψ ) = φ φ ψ ψ Rzyz , , sin cos 0 0 1 0 sin cos 0 0 0 1− sinθ 0 cosθ 0 0 1 − − − cφ cθ cψ sφ sψ cφ cθ sψ sφ cψ cφ sθ (φ θ ψ ) = + − + Rzyz , , sφ cθ cψ cφ sψ sφ cθ sψ cφ cψ sφ sθ − sθ cψ sθ sψ cθ ZYX Euler Angles (roll, pitch, yaw) φ − φ cos sin 0 To get from A to B: φ = φ φ Rz ( ) sin cos 0 1.
    [Show full text]
  • Evaluation of MEMS Accelerometer and Gyroscope for Orientation Tracking Nutrunner Functionality
    EXAMENSARBETE INOM ELEKTROTEKNIK, GRUNDNIVÅ, 15 HP STOCKHOLM, SVERIGE 2017 Evaluation of MEMS accelerometer and gyroscope for orientation tracking nutrunner functionality Utvärdering av MEMS accelerometer och gyroskop för rörelseavläsning av skruvdragare ERIK GRAHN KTH SKOLAN FÖR TEKNIK OCH HÄLSA Evaluation of MEMS accelerometer and gyroscope for orientation tracking nutrunner functionality Utvärdering av MEMS accelerometer och gyroskop för rörelseavläsning av skruvdragare Erik Grahn Examensarbete inom Elektroteknik, Grundnivå, 15 hp Handledare på KTH: Torgny Forsberg Examinator: Thomas Lind TRITA-STH 2017:115 KTH Skolan för Teknik och Hälsa 141 57 Huddinge, Sverige Abstract In the production industry, quality control is of importance. Even though today's tools provide a lot of functionality and safety to help the operators in their job, the operators still is responsible for the final quality of the parts. Today the nutrunners manufactured by Atlas Copco use their driver to detect the tightening angle. There- fore the operator can influence the tightening by turning the tool clockwise or counterclockwise during a tightening and quality cannot be assured that the bolt is tightened with a certain torque angle. The function of orientation tracking was de- sired to be evaluated for the Tensor STB angle and STB pistol tools manufactured by Atlas Copco. To be able to study the orientation of a nutrunner, practical exper- iments were introduced where an IMU sensor was fixed on a battery powered nutrunner. Sensor fusion in the form of a complementary filter was evaluated. The result states that the accelerometer could not be used to estimate the angular dis- placement of tightening due to vibration and gimbal lock and therefore a sensor fusion is not possible.
    [Show full text]
  • Dirac's Belt Trick, Gyroscopes, and the Ipad
    Dirac's Belt Trick, Gyroscopes, and the iPad Richard Koch May 19, 2012 Dirac's Belt Trick P. A. M. Dirac, 1902 - 1984 Nobel Prize (with Erwin Schrodinger) in 1933 Formulated Dirac equation, a relativistically correct quantum mechanical description of the electron, which predicted the existence of antiparticles. My Home Page: http://pages.uoregon.edu/koch TeXShop for Macintosh; TeX by Donald Knuth for Everything 2 \documentclass[11pt]{amsart} 2 25 Using T X, we can typeset 1+x+x and the matrix . \usepackage[paper width = 6in, paperheight = 7in]{geometry} E e2x+p5 p10 7 \usepackage[parfill]{parskip} According to calculus q ✓ − ◆ \usepackage{graphicx} 1 2 1 x2 p⇡ 2x +3x dx = 2 and e− dx = \begin{document} 2 Z0 Z0 Using \TeX, we can typeset $\sqrt{ {{1 + x + x^2} The path of a particle in a gravitational field is given by γi(t) \over {e^{2x + \sqrt{5}}}}}$ where and the matrix $\left( \begin{array}{cc} 2 & 5 \\ d2γ dγ dγ i + Γi i j =0 \sqrt{10} & -7 \end{array} \right)$. dt2 jk dt dt According to calculus Xjk $$\int_0^1 {2x + 3x^2}\ dx = 2 \hspace{.2in} \mbox{and} \hspace{.2in} \int_0^\infty e^{- x^2} \ dx = {{\sqrt{\pi}} \over 2}$$ The path of a particle in a gravitational field is given by $\gamma_i(t)$ where $${{d^2 \gamma_i} \over {d t^2}} + \sum_{jk} \Gamma^i_{jk} {{d \gamma_i} \over {dt}} {{d \gamma_j} \over {dt}} = 0$$ \begin{figure}[htbp] \centering \includegraphics[width=2in]{MoveTest-math.jpg} \end{figure} \end{document} 1 WWDC, Apple's Worldwide Developer's Conference Gyroscopes in the iPhone and iPad 1.
    [Show full text]
  • Baumgarte Stabilisation Over the SO(3) Rotation Group for Control
    2015 IEEE 54th Annual Conference on Decision and Control (CDC) December 15-18, 2015. Osaka, Japan Baumgarte Stabilisation over the SO(3) Rotation Group for Control Sebastien Gros, Marion Zanon, Moritz Diehl Abstract— Representations of the SO(3) rotation group are quaternion and the Direction Cosine Matrix (DCM). For a crucial for airborne and aerospace applications. Euler angles complete survey, we refer to [2]. is a popular representation in many applications, but yield Quaternions are an extension of complex numbers to models having singular dynamics. This issue is addressed via non-singular representations, operating in dimensions higher a four-dimensional space, which allows for describing the than 3. Unit quaternions and the Direction Cosine Matrix are SO(3) rotation group. They can be construed as four- the best known non-singular representations, and favoured in dimensional vectors q R4. The SO(3) rotation group is challenging aeronautic and aerospace applications. All non- 2 4 then covered by q Q := q R q>q = 1 with: singular representations yield invariants in the model dynamics, 2 2 j i.e. a set of nonlinear algebraic conditions that must be fulfilled R(q) = E(q)G(q)> SO(3); by the model initial conditions, and that remain fulfilled over 2 2 3 q1 q0 q3 q2 time. However, due to numerical integration errors, these condi- − − tions tend to become violated when using standard integrators, G(q) = 4 q2 q3 q0 q1 5; − − making the model inconsistent with the physical reality. This q3 q2 q1 q0 issue poses some challenges when non-singular representations 2 − − 3 q1 q0 q3 q2 are deployed in optimal control.
    [Show full text]
  • PDF Download
    International Journal of Latest Research in Engineering and Technology (IJLRET) ISSN: 2454-5031 www.ijlret.com || Volume 04 - Issue 09 || September 2018 || PP. 25-32 The Controlled Human Gyroscope – Virtual Reality Motion Base Simulator Randy C. Arjunsingh1, Matthew J. Jensen1, Razvan Rusovici2, Ondrej Doule3 1(Mechanical and Civil Engineering Department, Florida Institute of Technology, United States) 2(Aerospace, Physics and Space Sciences Department, Florida Institute of Technology, United States) 3(Computer Engineering and Sciences Department, Florida Institute of Technology, United States) Abstract: Flight motion simulators are currently used for flight training and research, but there are many limitations to these existing systems. This paper presents a low-cost design for a rotational motion platform titled, ‘The Controlled Human Gyroscope’. It uses a 4-axis system instead of the conventional 3-axis system to avoid gimbal lock and prevent the unnecessary motion of the user. The Human Gyroscope features unlimited rotation about the roll, pitch and yaw axes regardless of the occupant’s orientation. It will therefore provide high fidelity motion simulation and if it is paired with a translational motion platform, it can provide up to 6 degrees of freedom. Equations of motion for this specific system are presented in this paper and can be used to develop a control algorithm. Keywords: Flight motion simulator, Gimbal lock, Human gyroscope, Full rotational control, Rotational Motion I. INTRODUCTION Motion simulation provides a cheap and safe alternative to field training. It submerges the operator into a virtual environment and synchronizes this virtual motion with actual movement of the operator. Mistakes in the field can therefore be avoided, situations can be more accurately replicated than in static simulators and dangerous training situations in real-world no longer have consequences, as they are not in an actual aircraft.
    [Show full text]
  • Tracking Joint Angles During Whole-Arm Movements Using Electromagnetic Sensors
    Brigham Young University BYU ScholarsArchive Faculty Publications 2020-7 Tracking joint angles during whole-arm movements using electromagnetic sensors Ryan Clark Brigham Young University Taylor Dickinson Brigham Young University Johnfredy Loaiza Brigham Young University Daniel W. Geiger Brigham Young University Steven Knight Charles [email protected] Follow this and additional works at: https://scholarsarchive.byu.edu/facpub Part of the Mechanical Engineering Commons BYU ScholarsArchive Citation Clark, Ryan; Dickinson, Taylor; Loaiza, Johnfredy; Geiger, Daniel W.; and Charles, Steven Knight, "Tracking joint angles during whole-arm movements using electromagnetic sensors" (2020). Faculty Publications. 4174. https://scholarsarchive.byu.edu/facpub/4174 This Peer-Reviewed Article is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Faculty Publications by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Tracking joint angles during whole-arm movements using electromagnetic sensors Ryan Clark1, Taylor Dickinson1, Johnfredy Loaiza1, Daniel W. Geiger1, Steven K. Charles1,2 1Mechanical Engineering and 2Neuroscience, Brigham Young University Corresponding Author: Steven Charles Associate Professor Mechanical Engineering and Neuroscience Brigham Young University 350 EB Provo, UT 84602 [email protected] 801-422-7369 Abstract Electromagnetic (EM) motion tracking systems are suitable for many research and clinical applications, including in-vivo measurements of whole-arm movements. Unfortunately, the methodology for in vivo measurements of whole-arm movements using EM sensors is not well described in the literature, making it difficult to perform new measurements and all but impossible to make meaningful comparisons between studies. The recommendations of the International Society of Biomechanics (ISB) have provided a great service, but by necessity they do not provide clear guidance or standardization on all required steps.
    [Show full text]
  • 3D Orientation 48 Rotational Dofs
    Joints = rotations Rotational DOFs are widely used in character animation 3 translational DOFs 3D orientation 48 rotational DOFs Each joint can have up to 3 DOFs 1 DOF: knee 2 DOF: wrist 3 DOF: arm representation of Orientation Translation + 1 0 0 Homogeneous coordinates (review) x tx tx x + 0 1 0 y ty = ty y z + tz 0 0 1 tz z Treat all transformations the same so that they can be easily combined 1 0 0 0 1 1 4X4 matrix used to represent translation, scaling, and rotation translation x new point old point a point in the space is represented as y p = matrix z 1 Scaling Rotation x! 1 0 0 0 x y! 0 cos θ − sin θ 0 y ! = z 0 sin θ cos θ 0 z X axis 0 0 0 sxx sx x 1 0 0 0 1 1 0 0 0 syy = sy y szz 0 0 sz 0 z ! x cos θ 0 sin θ 0 x 1 0 0 0 1 1 y! 0 1 0 0 y ! = z − sin θ 0 cos θ 0 z Y axis 1 0 0 0 1 1 new point scaling matrix old point x! cos θ − sin θ 0 0 x y! sin θ cos θ 0 0 y ! = z 0 0 1 0 z Z axis 1 0 0 0 1 1 Composite transformations Interpolation h0 x0 y0 z0 θ0 φ0 σ0 θ1 φ1σ1 A series of transformations on an h1 object can be applied as a series of matrix multiplications In order to “move things”, we need both translation θ2 and rotation h2 p: position in the global coordinate Interpolation the translation is easy, but what about p x: position in the local coordinate θ3 φ3 rotations? (h3, 0, 0) h3 p = T(x0, y0, z0)R(θ0)R(φ0)R(σ0)T(0, h0, 0)R(θ1)R(φ1)R(σ1)T(0, h1, 0)R(θ2)T(0, h2, 0)R(θ3)R(φ3)x Interpolation of orientation Interpolation of orientation Example: interpolate linearly from a positive 90 degree rotation How about interpolating each entry of the rotation about y axis to a negative 90 degree rotation about y matrix? 0 0 1 0 0 0 −1 0 0 1 0 0 0 1 0 0 −1 0 0 0 1 0 0 0 The interpolated matrix might no longer be 0 0 0 1 0 0 0 1 orthonormal, leading to nonsense for the in- between rotations Linearly interpolate each 0 0 0 0 component and halfway 0 1 0 0 0 0 0 0 between, you get this..
    [Show full text]
  • Novel Steering and Control Algorithms for Single-Gimbal Control Moment Gyroscopes
    NOVEL STEERING AND CONTROL ALGORITHMS FOR SINGLE-GIMBAL CONTROL MOMENT GYROSCOPES By FREDERICK A. LEVE A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2010 © 2010 Frederick A. Leve 2 Dedicated to my mother for always being there to support me 3 ACKNOWLEDGMENTS I would like to thank first my advisor Dr. Norman Fitz-Coy for providing me with the guidance and knowledge for this great research I undertook. Second, I would like to thank my committee members Dr. Warren Dixon, Dr. Anil Rao, Dr. William Hager from UF, and Dr. Scott Erwin from the Air Force Research Lab Space Vehicles Directorate. My committee comprises the expertise in the areas of research that would provide me the best opportunity for my research. Last, but not least, I would like to thank my colleagues in my research lab who provided input throughout my time as a graduate student that aided in this research: Dr. Andy Tatsch, Shawn Allgeier, Vivek Nagabushnan, Josue Munoz, Takashi Hiramatsu, Andrew Waldrum, Sharan Asundi, Dante Buckley, Jimmy Tzu Yu Lin, Shawn Johnson, Katie Cason, and Dr. William Mackunis. 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS .................................. 4 LIST OF TABLES ...................................... 8 LIST OF FIGURES ..................................... 9 ABSTRACT ......................................... 13 CHAPTER 1 INTRODUCTION ................................... 15 1.1 History and Background ............................ 15 1.1.1 Gyroscopic Rate Determination .................... 15 1.1.2 Spin Stabilized Spacecraft ....................... 15 1.1.3 Spacecraft Attitude Control through Gyrostats ............ 15 1.1.4 3-axis Attitude Control of Spacecraft ................. 16 1.1.5 Single-Gimbal Control Moment Gyroscopes (SGCMGs) .....
    [Show full text]
  • Minuteman Manual
    MINUTEMAN™ MINUTEMAN 3D TRACKER USER MANUAL URM06PH191 REV. A – FEBRUARY 2008 MINUTEMAN MANUAL {This page intentionally left blank.} MINUTEMAN MANUAL Copyright© 2006 by Alken, Inc., dba Polhemus Colchester, Vermont, U.S.A. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, mechanical, photocopying, recording or otherwise, without the prior written permission of Polhemus. No patent liability is assumed with respect to the use of the information contained herein. While every precaution has been taken in the preparation of this manual, Polhemus assumes no responsibility for errors or omissions. Neither is any liability assumed for damages resulting from use of the information contained herein. MINUTEMAN™ is a trademark of Polhemus. Windows® is a registered trademark of Microsoft Corporation. FCC Statement This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures: • Reorient or relocate the receiving antenna.
    [Show full text]
  • Full Quaternion Based Attitude Control for a Quadrotor
    2013 European Control Conference (ECC) July 17-19, 2013, Zürich, Switzerland. Full Quaternion Based Attitude Control for a Quadrotor Emil Fresk and George Nikolakopoulos Abstract— The aim of this article is to present a novel quater- However, when working with rotations, whether it’s esti- nion based control scheme for the attitude control problem mators or controllers, there has been one approach utilized of a quadrotor. A quaternion is a hyper complex number of more than any other, when creating models: the Newton– rank 4 that can be utilized to avoid the inherent geometri- cal singularity when representing rigid body dynamics with Euler equations [12], which is able to describe the combined Euler angles or the complexity of having coupled differential translational and rotational dynamics of the rigid body. Al- equations with the Direction Cosine Matrix (DCM). In the though this modeling approach is considered a fundamental presented approach both the quadrotor’s attitude model and one, still it has three drawbacks. Firstly, it is solely based P 2 the proposed non-linear Proportional squared ( ) control on Euler angles, which have the merit of being intuitive, but algorithm have been implemented in the quaternion space, without any transformations and calculations in the Euler’s per definition these angles cannot define certain orientations angle space or DCM. Throughout the article, the merits of the as it suffers from singularities that result in an problem proposed novel approach are being analyzed and discussed, know as “gimbal lock” [13]. This problem is the loss of one while the efficacy of the suggested novel quaternion based degree of freedom in a three-dimensional space that occurs, controller are being evaluated by extended simulation results.
    [Show full text]
  • Using the Hopf Fibration
    Generating Uniform Incremental Grids on SO(3) Using the Hopf Fibration Anna Yershova, Swati Jain, Steven M. LaValle, and Julie C. Mitchell Abstract The problem of generating uniform deterministic samples over the rota- tion group, SO(3), is fundamental to computational biology, chemistry, physics, and numerous branches of computer science. We present the best-known method to date for constructing incremental, deterministic grids on SO(3); it provides: 1) the low- est metric distortion for grid neighbor edges, 2) optimal dispersion-reduction with each additional sample, 3) explicit neighborhood structure, and 4) equivolumetric partition of SO(3) by the grid cells. We also demonstrate the use of the sequence on motion planning problems. 1 Introduction Numerical computations on continuous spaces often require generation of a repre- sentative set of samples. The performance of various methods in engineering and scientific fields, such as numerical optimization and integration as well as collision- free path generation in robot motion planing, rely heavily on the quality of the sam- pling technique. Hence, it is important that the underlying samples are as good as possible. A particular problem of discretization of SO(3), the space of 3D rotations, arises in applications, such as biological protein docking problems, robot motion planning, Anna Yershova Duke University, Durham, NC 27707, USA, e-mail: [email protected] Swati Jain Duke University, Durham, NC 27707, USA, e-mail: [email protected] Steven M. LaValle University of Illinois, Urbana, IL 61801 USA, e-mail: [email protected] Julie C. Mitchell University of Wisconsin-Madison, Madison, WI 53706, e-mail: [email protected] 1 2 Anna Yershova, Swati Jain, Steven M.
    [Show full text]