Baumgarte Stabilisation Over the SO(3) Rotation Group for Control

Total Page:16

File Type:pdf, Size:1020Kb

Baumgarte Stabilisation Over the SO(3) Rotation Group for Control 2015 IEEE 54th Annual Conference on Decision and Control (CDC) December 15-18, 2015. Osaka, Japan Baumgarte Stabilisation over the SO(3) Rotation Group for Control Sebastien Gros, Marion Zanon, Moritz Diehl Abstract— Representations of the SO(3) rotation group are quaternion and the Direction Cosine Matrix (DCM). For a crucial for airborne and aerospace applications. Euler angles complete survey, we refer to [2]. is a popular representation in many applications, but yield Quaternions are an extension of complex numbers to models having singular dynamics. This issue is addressed via non-singular representations, operating in dimensions higher a four-dimensional space, which allows for describing the than 3. Unit quaternions and the Direction Cosine Matrix are SO(3) rotation group. They can be construed as four- the best known non-singular representations, and favoured in dimensional vectors q R4. The SO(3) rotation group is challenging aeronautic and aerospace applications. All non- 2 4 then covered by q Q := q R q>q = 1 with: singular representations yield invariants in the model dynamics, 2 2 j i.e. a set of nonlinear algebraic conditions that must be fulfilled R(q) = E(q)G(q)> SO(3); by the model initial conditions, and that remain fulfilled over 2 2 3 q1 q0 q3 q2 time. However, due to numerical integration errors, these condi- − − tions tend to become violated when using standard integrators, G(q) = 4 q2 q3 q0 q1 5; − − making the model inconsistent with the physical reality. This q3 q2 q1 q0 issue poses some challenges when non-singular representations 2 − − 3 q1 q0 q3 q2 are deployed in optimal control. In this paper, we propose a − − simple technique to address the issue for classical integration E(q) = 4 q2 q3 q0 q1 5: − − schemes, establish formally its properties, and illustrate it on q3 q2 q1 q0 the optimal control of a satellite. − − Keywords SO(3) rotation group, optimal control, Direction A significant advantage of quaternions over Euler angles Cosine Matrix, quaternions. is that the aforementioned singularity does not occur, such that aircraft or satellite models based on the quaternion I. INTRODUCTION representation do not suffer from the gimbal lock. Systems having a 3 degrees-of-freedoms (DOF) orienta- A sometimes prefered higher-dimensional representation tion are common in the aerospace and aeronautic industries, of the SO(3) rotation group is using the three orthonormal e.g. aircraft and satellite control requires the description of vectors describing the three axis of the object reference frame their 3DOF orientation. The orientation of a body in space given in the fixed reference frame. The 9 numbers providing is described via the group of all rotations about the origin these three orthonormal vectors, if properly organised, yield in the three-dimensional Euclidian space, labeled the SO(3) directly the rotation matrix R SO(3) between the object rotation group [1]. and the fixed reference frame. The2 latter is then labeled the Because they are simple to manipulate in the context Direction Cosine Matrix (DCM). Similarly to the quaternion of basic control theory, Euler angles are often preferred to representation where q is normed to 1, a valid DCM must carry out that description. However, Euler angles suffer from satisfy the orthonormality condition a major defect due to the algebra underlying the tangent R>R I = 0: (1) space to the SO(3) rotation group. Namely, for any choice − ( ) of rotation sequence, there are always elements in SO 3 The DCM representation is easy to handle, and the non- for which the associated tangent space is not spanned via linearity of the model dynamics associated to rotations are variations of the corresponding Euler angles. typically milder than when using Euler-based or quaternion- This difficulty is often referred to as the gimbal lock and based representations. This makes the DCM approach partic- implies that aircraft and satellite models based on Euler ularly attractive in the context of direct optimal control [3], angles are singular for some orientations. In order to avoid [4]. The DCM representation has been used for airborne that problem, higher-dimensional representations need to be applications in e.g. [5], [6], [7], [8], [9], [10]. used. The two most commonly used higher-dimensional While providing non-singular models, the quaternion and ( ) representations of the SO 3 rotation group are the unit DCM-based representation of the SO(3) rotation group S. Gros is with the Department of Signals and Systems, Chalmers present some challenges in control. Long simulations of the University of Technology, Horsalsv¨ agen¨ 11, SE-412 96 Goteborg,¨ Swe- model based on quaternions or on the DCM over a long den, [email protected] . M. Zanon and M. Diehl are with time horizon do not preserve the norm or orthonormality the Systems Control and Optimization Laboratory, Department of Mi- conditions q q = 1 and R R I = 0 respectively, because crosystems Engineering (IMTEK), University of Freiburg, Georges- > > − Koehler-Allee 102, 79110 Freiburg, Germany. M.Diehl is additionally of accumulated numerical error. That is, over time these with the Department of Mathematics of the University of Freiburg. representations of the SO(3) rotation group become invalid. mario.zanon,moritz.diehl @imtek.uni-freiburg.de f * This research was supported byg the EU via ERC-HIGHWIND (259 In the context of direct optimal control, when a long control 166), FP7-ITN-TEMPO (607 957), and H2020-ITN-AWESCO (642 682). horizon is used, this can yield inconsistent or inaccurate 978-1-4799-7886-1/15/$31.00 ©2015 IEEE 620 solutions. Some classes of integrators offer solutions to that such that the quaternion norm is globally driven to 1. For vec- 4 issue [11], [12], [13]. However, these solutions require the tors q R such that q>q = 1, the quaternion dynamics (3) implementation of specific codes which are typically not reduce2 to (2). We additionally observe that the proposed available in optimal control toolboxes. Additionally, to the correction is orthogonal to the quaternion natural dynamics, 1 1 1 best author’s knowledge, the proposed methods all involve i.e.q ˙natural = G(q) w andq ˙correction = rq q q − 1 2 > 2 > − additional computations when compared to standard integra- are orthogonal. Indeed, tion methods. Finally, the computational burden of perform- 1 r − ing the Algorithmic Differentiation [14] of these integrators q˙natural;q˙correction = w>G(q)q q>q 1 = 0 (4) is not established yet, and may be more demanding than for h i 4 − classical integrators. We next provide a similar development for the more intricate In contrast, we propose a trivial (Baumgarte-like [15]) case of the DCM representation. modification of the dynamics associated to both the quater- nions and the DCM in order to address the issue of numerical B. DCM representation drift while using standard integration schemes, such that the In this Section, we present the modification of the dynam- formulation of optimal control problems is straightforward ics associated to the DCM so as to tackle the issues raised and no special care needs to be taken. In this paper, we in the introduction. The dynamics of the DCM are given by: extend the framework developed in [3], propose a less R˙ = RW; (5) computationally expensive DCM stabilisation, a quaternion 3 3 stabilisation, and analyse formally the effect of these modi- where W R × is a skew symmetric matrix stemming from fications. We illustrate their effect on the optimal control of the angular2 velocity w. In principle, dynamics (5) preserve a satellite. the orthonormality condition (1). Indeed, for R>R = I the II.S TABILISATION OF NON-SINGULAR SO(3) following holds: REPRESENTATIONS d R>R I = W>R>R + R>RW = W> + W = 0 (6) In this Section, we present the correction that allows dt − for stabilise the orthonormality conditions arising in the However, because of numerical integration error, a long quaternion and the DCM representation. We start with the simulation of (5) can yield large violations of (1). Let us case of the quaternions, which is straightforward. first provide a Proposition that establishes the behaviour of the orthonormality condition (1) under the dynamics (5) for A. Quaternion representation 3 3 any arbitrary matrix R R × . The quaternion dynamics are given by 2 3 3 Proposition 1: For any matrix R R × , subject to the 1 dynamics (5), the following holds: 2 q˙ = G(q)>w; (2) 2 d 1 2 3 where w R is the angular velocity in the reference frame R>R I = 0: 2 dt 2 − F attached to the rotating body. For any vector q R4, it can be verified that G(q)q = 0 holds, such that the2 quaternion Here the notation : F is used for the Froebinuis norm. norm is an invariant of the dynamics (2), in the sense that Proof: Propositionk k 1 follows from the properties of the it is preserved over time. In particular, if a unit quaternion trace operator, and can be established as follows: vector is provided as initial condition, the unit norm is d 1 2 conserved over the whole system trajectory. Due to numerical R>R I = dt 2 − F integration error, however, when processed numerically the d 1 > dynamics (2) yield quaternion vectors that are not unitary. = Tr R>R I R>R I To tackle that issue, one can introduce a simple correction dt 2 − − in (2), so as to ensure that the quaternion norm is not actually > = Tr R˙>R + R>R˙ R>R I preserved over time, but such that it actually exponentially − converges to 1. In the following, we will refer to this > = Tr R>RW WR>R R>R I correction as a stabilisation of the invariant.
Recommended publications
  • Understanding Euler Angles 1
    Welcome Guest View Cart (0 items) Login Home Products Support News About Us Understanding Euler Angles 1. Introduction Attitude and Heading Sensors from CH Robotics can provide orientation information using both Euler Angles and Quaternions. Compared to quaternions, Euler Angles are simple and intuitive and they lend themselves well to simple analysis and control. On the other hand, Euler Angles are limited by a phenomenon called "Gimbal Lock," which we will investigate in more detail later. In applications where the sensor will never operate near pitch angles of +/‐ 90 degrees, Euler Angles are a good choice. Sensors from CH Robotics that can provide Euler Angle outputs include the GP9 GPS‐Aided AHRS, and the UM7 Orientation Sensor. Figure 1 ‐ The Inertial Frame Euler angles provide a way to represent the 3D orientation of an object using a combination of three rotations about different axes. For convenience, we use multiple coordinate frames to describe the orientation of the sensor, including the "inertial frame," the "vehicle‐1 frame," the "vehicle‐2 frame," and the "body frame." The inertial frame axes are Earth‐fixed, and the body frame axes are aligned with the sensor. The vehicle‐1 and vehicle‐2 are intermediary frames used for convenience when illustrating the sequence of operations that take us from the inertial frame to the body frame of the sensor. It may seem unnecessarily complicated to use four different coordinate frames to describe the orientation of the sensor, but the motivation for doing so will become clear as we proceed. For clarity, this application note assumes that the sensor is mounted to an aircraft.
    [Show full text]
  • Euler Quaternions
    Four different ways to represent rotation my head is spinning... The space of rotations SO( 3) = {R ∈ R3×3 | RRT = I,det(R) = +1} Special orthogonal group(3): Why det( R ) = ± 1 ? − = − Rotations preserve distance: Rp1 Rp2 p1 p2 Rotations preserve orientation: ( ) × ( ) = ( × ) Rp1 Rp2 R p1 p2 The space of rotations SO( 3) = {R ∈ R3×3 | RRT = I,det(R) = +1} Special orthogonal group(3): Why it’s a group: • Closed under multiplication: if ∈ ( ) then ∈ ( ) R1, R2 SO 3 R1R2 SO 3 • Has an identity: ∃ ∈ ( ) = I SO 3 s.t. IR1 R1 • Has a unique inverse… • Is associative… Why orthogonal: • vectors in matrix are orthogonal Why it’s special: det( R ) = + 1 , NOT det(R) = ±1 Right hand coordinate system Possible rotation representations You need at least three numbers to represent an arbitrary rotation in SO(3) (Euler theorem). Some three-number representations: • ZYZ Euler angles • ZYX Euler angles (roll, pitch, yaw) • Axis angle One four-number representation: • quaternions ZYZ Euler Angles φ = θ rzyz ψ φ − φ cos sin 0 To get from A to B: φ = φ φ Rz ( ) sin cos 0 1. Rotate φ about z axis 0 0 1 θ θ 2. Then rotate θ about y axis cos 0 sin θ = ψ Ry ( ) 0 1 0 3. Then rotate about z axis − sinθ 0 cosθ ψ − ψ cos sin 0 ψ = ψ ψ Rz ( ) sin cos 0 0 0 1 ZYZ Euler Angles φ θ ψ Remember that R z ( ) R y ( ) R z ( ) encode the desired rotation in the pre- rotation reference frame: φ = pre−rotation Rz ( ) Rpost−rotation Therefore, the sequence of rotations is concatentated as follows: (φ θ ψ ) = φ θ ψ Rzyz , , Rz ( )Ry ( )Rz ( ) φ − φ θ θ ψ − ψ cos sin 0 cos 0 sin cos sin 0 (φ θ ψ ) = φ φ ψ ψ Rzyz , , sin cos 0 0 1 0 sin cos 0 0 0 1− sinθ 0 cosθ 0 0 1 − − − cφ cθ cψ sφ sψ cφ cθ sψ sφ cψ cφ sθ (φ θ ψ ) = + − + Rzyz , , sφ cθ cψ cφ sψ sφ cθ sψ cφ cψ sφ sθ − sθ cψ sθ sψ cθ ZYX Euler Angles (roll, pitch, yaw) φ − φ cos sin 0 To get from A to B: φ = φ φ Rz ( ) sin cos 0 1.
    [Show full text]
  • Evaluation of MEMS Accelerometer and Gyroscope for Orientation Tracking Nutrunner Functionality
    EXAMENSARBETE INOM ELEKTROTEKNIK, GRUNDNIVÅ, 15 HP STOCKHOLM, SVERIGE 2017 Evaluation of MEMS accelerometer and gyroscope for orientation tracking nutrunner functionality Utvärdering av MEMS accelerometer och gyroskop för rörelseavläsning av skruvdragare ERIK GRAHN KTH SKOLAN FÖR TEKNIK OCH HÄLSA Evaluation of MEMS accelerometer and gyroscope for orientation tracking nutrunner functionality Utvärdering av MEMS accelerometer och gyroskop för rörelseavläsning av skruvdragare Erik Grahn Examensarbete inom Elektroteknik, Grundnivå, 15 hp Handledare på KTH: Torgny Forsberg Examinator: Thomas Lind TRITA-STH 2017:115 KTH Skolan för Teknik och Hälsa 141 57 Huddinge, Sverige Abstract In the production industry, quality control is of importance. Even though today's tools provide a lot of functionality and safety to help the operators in their job, the operators still is responsible for the final quality of the parts. Today the nutrunners manufactured by Atlas Copco use their driver to detect the tightening angle. There- fore the operator can influence the tightening by turning the tool clockwise or counterclockwise during a tightening and quality cannot be assured that the bolt is tightened with a certain torque angle. The function of orientation tracking was de- sired to be evaluated for the Tensor STB angle and STB pistol tools manufactured by Atlas Copco. To be able to study the orientation of a nutrunner, practical exper- iments were introduced where an IMU sensor was fixed on a battery powered nutrunner. Sensor fusion in the form of a complementary filter was evaluated. The result states that the accelerometer could not be used to estimate the angular dis- placement of tightening due to vibration and gimbal lock and therefore a sensor fusion is not possible.
    [Show full text]
  • Dirac's Belt Trick, Gyroscopes, and the Ipad
    Dirac's Belt Trick, Gyroscopes, and the iPad Richard Koch May 19, 2012 Dirac's Belt Trick P. A. M. Dirac, 1902 - 1984 Nobel Prize (with Erwin Schrodinger) in 1933 Formulated Dirac equation, a relativistically correct quantum mechanical description of the electron, which predicted the existence of antiparticles. My Home Page: http://pages.uoregon.edu/koch TeXShop for Macintosh; TeX by Donald Knuth for Everything 2 \documentclass[11pt]{amsart} 2 25 Using T X, we can typeset 1+x+x and the matrix . \usepackage[paper width = 6in, paperheight = 7in]{geometry} E e2x+p5 p10 7 \usepackage[parfill]{parskip} According to calculus q ✓ − ◆ \usepackage{graphicx} 1 2 1 x2 p⇡ 2x +3x dx = 2 and e− dx = \begin{document} 2 Z0 Z0 Using \TeX, we can typeset $\sqrt{ {{1 + x + x^2} The path of a particle in a gravitational field is given by γi(t) \over {e^{2x + \sqrt{5}}}}}$ where and the matrix $\left( \begin{array}{cc} 2 & 5 \\ d2γ dγ dγ i + Γi i j =0 \sqrt{10} & -7 \end{array} \right)$. dt2 jk dt dt According to calculus Xjk $$\int_0^1 {2x + 3x^2}\ dx = 2 \hspace{.2in} \mbox{and} \hspace{.2in} \int_0^\infty e^{- x^2} \ dx = {{\sqrt{\pi}} \over 2}$$ The path of a particle in a gravitational field is given by $\gamma_i(t)$ where $${{d^2 \gamma_i} \over {d t^2}} + \sum_{jk} \Gamma^i_{jk} {{d \gamma_i} \over {dt}} {{d \gamma_j} \over {dt}} = 0$$ \begin{figure}[htbp] \centering \includegraphics[width=2in]{MoveTest-math.jpg} \end{figure} \end{document} 1 WWDC, Apple's Worldwide Developer's Conference Gyroscopes in the iPhone and iPad 1.
    [Show full text]
  • PDF Download
    International Journal of Latest Research in Engineering and Technology (IJLRET) ISSN: 2454-5031 www.ijlret.com || Volume 04 - Issue 09 || September 2018 || PP. 25-32 The Controlled Human Gyroscope – Virtual Reality Motion Base Simulator Randy C. Arjunsingh1, Matthew J. Jensen1, Razvan Rusovici2, Ondrej Doule3 1(Mechanical and Civil Engineering Department, Florida Institute of Technology, United States) 2(Aerospace, Physics and Space Sciences Department, Florida Institute of Technology, United States) 3(Computer Engineering and Sciences Department, Florida Institute of Technology, United States) Abstract: Flight motion simulators are currently used for flight training and research, but there are many limitations to these existing systems. This paper presents a low-cost design for a rotational motion platform titled, ‘The Controlled Human Gyroscope’. It uses a 4-axis system instead of the conventional 3-axis system to avoid gimbal lock and prevent the unnecessary motion of the user. The Human Gyroscope features unlimited rotation about the roll, pitch and yaw axes regardless of the occupant’s orientation. It will therefore provide high fidelity motion simulation and if it is paired with a translational motion platform, it can provide up to 6 degrees of freedom. Equations of motion for this specific system are presented in this paper and can be used to develop a control algorithm. Keywords: Flight motion simulator, Gimbal lock, Human gyroscope, Full rotational control, Rotational Motion I. INTRODUCTION Motion simulation provides a cheap and safe alternative to field training. It submerges the operator into a virtual environment and synchronizes this virtual motion with actual movement of the operator. Mistakes in the field can therefore be avoided, situations can be more accurately replicated than in static simulators and dangerous training situations in real-world no longer have consequences, as they are not in an actual aircraft.
    [Show full text]
  • Tracking Joint Angles During Whole-Arm Movements Using Electromagnetic Sensors
    Brigham Young University BYU ScholarsArchive Faculty Publications 2020-7 Tracking joint angles during whole-arm movements using electromagnetic sensors Ryan Clark Brigham Young University Taylor Dickinson Brigham Young University Johnfredy Loaiza Brigham Young University Daniel W. Geiger Brigham Young University Steven Knight Charles [email protected] Follow this and additional works at: https://scholarsarchive.byu.edu/facpub Part of the Mechanical Engineering Commons BYU ScholarsArchive Citation Clark, Ryan; Dickinson, Taylor; Loaiza, Johnfredy; Geiger, Daniel W.; and Charles, Steven Knight, "Tracking joint angles during whole-arm movements using electromagnetic sensors" (2020). Faculty Publications. 4174. https://scholarsarchive.byu.edu/facpub/4174 This Peer-Reviewed Article is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Faculty Publications by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Tracking joint angles during whole-arm movements using electromagnetic sensors Ryan Clark1, Taylor Dickinson1, Johnfredy Loaiza1, Daniel W. Geiger1, Steven K. Charles1,2 1Mechanical Engineering and 2Neuroscience, Brigham Young University Corresponding Author: Steven Charles Associate Professor Mechanical Engineering and Neuroscience Brigham Young University 350 EB Provo, UT 84602 [email protected] 801-422-7369 Abstract Electromagnetic (EM) motion tracking systems are suitable for many research and clinical applications, including in-vivo measurements of whole-arm movements. Unfortunately, the methodology for in vivo measurements of whole-arm movements using EM sensors is not well described in the literature, making it difficult to perform new measurements and all but impossible to make meaningful comparisons between studies. The recommendations of the International Society of Biomechanics (ISB) have provided a great service, but by necessity they do not provide clear guidance or standardization on all required steps.
    [Show full text]
  • 3D Orientation 48 Rotational Dofs
    Joints = rotations Rotational DOFs are widely used in character animation 3 translational DOFs 3D orientation 48 rotational DOFs Each joint can have up to 3 DOFs 1 DOF: knee 2 DOF: wrist 3 DOF: arm representation of Orientation Translation + 1 0 0 Homogeneous coordinates (review) x tx tx x + 0 1 0 y ty = ty y z + tz 0 0 1 tz z Treat all transformations the same so that they can be easily combined 1 0 0 0 1 1 4X4 matrix used to represent translation, scaling, and rotation translation x new point old point a point in the space is represented as y p = matrix z 1 Scaling Rotation x! 1 0 0 0 x y! 0 cos θ − sin θ 0 y ! = z 0 sin θ cos θ 0 z X axis 0 0 0 sxx sx x 1 0 0 0 1 1 0 0 0 syy = sy y szz 0 0 sz 0 z ! x cos θ 0 sin θ 0 x 1 0 0 0 1 1 y! 0 1 0 0 y ! = z − sin θ 0 cos θ 0 z Y axis 1 0 0 0 1 1 new point scaling matrix old point x! cos θ − sin θ 0 0 x y! sin θ cos θ 0 0 y ! = z 0 0 1 0 z Z axis 1 0 0 0 1 1 Composite transformations Interpolation h0 x0 y0 z0 θ0 φ0 σ0 θ1 φ1σ1 A series of transformations on an h1 object can be applied as a series of matrix multiplications In order to “move things”, we need both translation θ2 and rotation h2 p: position in the global coordinate Interpolation the translation is easy, but what about p x: position in the local coordinate θ3 φ3 rotations? (h3, 0, 0) h3 p = T(x0, y0, z0)R(θ0)R(φ0)R(σ0)T(0, h0, 0)R(θ1)R(φ1)R(σ1)T(0, h1, 0)R(θ2)T(0, h2, 0)R(θ3)R(φ3)x Interpolation of orientation Interpolation of orientation Example: interpolate linearly from a positive 90 degree rotation How about interpolating each entry of the rotation about y axis to a negative 90 degree rotation about y matrix? 0 0 1 0 0 0 −1 0 0 1 0 0 0 1 0 0 −1 0 0 0 1 0 0 0 The interpolated matrix might no longer be 0 0 0 1 0 0 0 1 orthonormal, leading to nonsense for the in- between rotations Linearly interpolate each 0 0 0 0 component and halfway 0 1 0 0 0 0 0 0 between, you get this..
    [Show full text]
  • Novel Steering and Control Algorithms for Single-Gimbal Control Moment Gyroscopes
    NOVEL STEERING AND CONTROL ALGORITHMS FOR SINGLE-GIMBAL CONTROL MOMENT GYROSCOPES By FREDERICK A. LEVE A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2010 © 2010 Frederick A. Leve 2 Dedicated to my mother for always being there to support me 3 ACKNOWLEDGMENTS I would like to thank first my advisor Dr. Norman Fitz-Coy for providing me with the guidance and knowledge for this great research I undertook. Second, I would like to thank my committee members Dr. Warren Dixon, Dr. Anil Rao, Dr. William Hager from UF, and Dr. Scott Erwin from the Air Force Research Lab Space Vehicles Directorate. My committee comprises the expertise in the areas of research that would provide me the best opportunity for my research. Last, but not least, I would like to thank my colleagues in my research lab who provided input throughout my time as a graduate student that aided in this research: Dr. Andy Tatsch, Shawn Allgeier, Vivek Nagabushnan, Josue Munoz, Takashi Hiramatsu, Andrew Waldrum, Sharan Asundi, Dante Buckley, Jimmy Tzu Yu Lin, Shawn Johnson, Katie Cason, and Dr. William Mackunis. 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS .................................. 4 LIST OF TABLES ...................................... 8 LIST OF FIGURES ..................................... 9 ABSTRACT ......................................... 13 CHAPTER 1 INTRODUCTION ................................... 15 1.1 History and Background ............................ 15 1.1.1 Gyroscopic Rate Determination .................... 15 1.1.2 Spin Stabilized Spacecraft ....................... 15 1.1.3 Spacecraft Attitude Control through Gyrostats ............ 15 1.1.4 3-axis Attitude Control of Spacecraft ................. 16 1.1.5 Single-Gimbal Control Moment Gyroscopes (SGCMGs) .....
    [Show full text]
  • Minuteman Manual
    MINUTEMAN™ MINUTEMAN 3D TRACKER USER MANUAL URM06PH191 REV. A – FEBRUARY 2008 MINUTEMAN MANUAL {This page intentionally left blank.} MINUTEMAN MANUAL Copyright© 2006 by Alken, Inc., dba Polhemus Colchester, Vermont, U.S.A. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, mechanical, photocopying, recording or otherwise, without the prior written permission of Polhemus. No patent liability is assumed with respect to the use of the information contained herein. While every precaution has been taken in the preparation of this manual, Polhemus assumes no responsibility for errors or omissions. Neither is any liability assumed for damages resulting from use of the information contained herein. MINUTEMAN™ is a trademark of Polhemus. Windows® is a registered trademark of Microsoft Corporation. FCC Statement This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures: • Reorient or relocate the receiving antenna.
    [Show full text]
  • Full Quaternion Based Attitude Control for a Quadrotor
    2013 European Control Conference (ECC) July 17-19, 2013, Zürich, Switzerland. Full Quaternion Based Attitude Control for a Quadrotor Emil Fresk and George Nikolakopoulos Abstract— The aim of this article is to present a novel quater- However, when working with rotations, whether it’s esti- nion based control scheme for the attitude control problem mators or controllers, there has been one approach utilized of a quadrotor. A quaternion is a hyper complex number of more than any other, when creating models: the Newton– rank 4 that can be utilized to avoid the inherent geometri- cal singularity when representing rigid body dynamics with Euler equations [12], which is able to describe the combined Euler angles or the complexity of having coupled differential translational and rotational dynamics of the rigid body. Al- equations with the Direction Cosine Matrix (DCM). In the though this modeling approach is considered a fundamental presented approach both the quadrotor’s attitude model and one, still it has three drawbacks. Firstly, it is solely based P 2 the proposed non-linear Proportional squared ( ) control on Euler angles, which have the merit of being intuitive, but algorithm have been implemented in the quaternion space, without any transformations and calculations in the Euler’s per definition these angles cannot define certain orientations angle space or DCM. Throughout the article, the merits of the as it suffers from singularities that result in an problem proposed novel approach are being analyzed and discussed, know as “gimbal lock” [13]. This problem is the loss of one while the efficacy of the suggested novel quaternion based degree of freedom in a three-dimensional space that occurs, controller are being evaluated by extended simulation results.
    [Show full text]
  • Using the Hopf Fibration
    Generating Uniform Incremental Grids on SO(3) Using the Hopf Fibration Anna Yershova, Swati Jain, Steven M. LaValle, and Julie C. Mitchell Abstract The problem of generating uniform deterministic samples over the rota- tion group, SO(3), is fundamental to computational biology, chemistry, physics, and numerous branches of computer science. We present the best-known method to date for constructing incremental, deterministic grids on SO(3); it provides: 1) the low- est metric distortion for grid neighbor edges, 2) optimal dispersion-reduction with each additional sample, 3) explicit neighborhood structure, and 4) equivolumetric partition of SO(3) by the grid cells. We also demonstrate the use of the sequence on motion planning problems. 1 Introduction Numerical computations on continuous spaces often require generation of a repre- sentative set of samples. The performance of various methods in engineering and scientific fields, such as numerical optimization and integration as well as collision- free path generation in robot motion planing, rely heavily on the quality of the sam- pling technique. Hence, it is important that the underlying samples are as good as possible. A particular problem of discretization of SO(3), the space of 3D rotations, arises in applications, such as biological protein docking problems, robot motion planning, Anna Yershova Duke University, Durham, NC 27707, USA, e-mail: [email protected] Swati Jain Duke University, Durham, NC 27707, USA, e-mail: [email protected] Steven M. LaValle University of Illinois, Urbana, IL 61801 USA, e-mail: [email protected] Julie C. Mitchell University of Wisconsin-Madison, Madison, WI 53706, e-mail: [email protected] 1 2 Anna Yershova, Swati Jain, Steven M.
    [Show full text]
  • Virtual Trackball: Quaternions
    VirtualVirtual Trackball:Trackball: QuaternionsQuaternions 3 March 2009 CMPT370 Dr. Sean Ho Trinity Western University ReviewReview lastlast timetime Math for 3D graphics: homogeneous coordinates ● 4x4 transform matrices ● Translate, scale, rotate Viewing: (see RedBook ch3) ● Positioning the camera: model-view matrix ● Selecting a lens: projection matrix ● Clipping: setting the view volume s 0 0 0 1 0 0 d x x cos −sin 0 0 0 1 0 d 0 s y 0 0 sin cos 0 0 T = y S= R= 0 0 1 d z 0 0 s z 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 CMPT370: quaternions 3 Mar 2009 2 OpenGLOpenGL vertexvertex arraysarrays Stores a vertex list in the graphics hardware Six types of arrays: vertices, colours, colour indices, normals, texture coords, edge flags Our vertex list in C: GLfloat verts[][3] = {{0.0, 0.0, 0.0}, {0.1, 0.0, 0.0}, ...} Load into hardware: glEnableClientState( GL_VERTEX_ARRAY ); glVertexPointer( 3, GL_FLOAT, 0, verts ); ● 3: 3D vertices ● GL_FLOAT: array is of GLfloat-s ● 0: contiguous data ● verts: pointer to data CMPT370: quaternions 3 Mar 2009 3 UsingUsing OpenGLOpenGL vertexvertex arraysarrays Use glDrawElements instead of glVertex Polygon list references indices in the stored vertex array GLubyte cubeIndices[24] = {0,3,2,1, 2,3,7,6, 0,4,7,3, 1,2,6,5, 4,5,6,7, 0,1,5,4}; Each group of four indices is one quad Draw a whole object in one function call: glDrawElements( GL_QUADS, 24, GL_UNSIGNED_BYTE, cubeIndices ); CMPT370: quaternions 3 Mar 2009 4 OpenGLOpenGL displaydisplay listslists Take a group of OpenGL commands (e.g., defining an object) and store in hardware Can change OpenGL state, camera view, etc.
    [Show full text]