Reconstruction of the Climate Envelopes of Salamanders and Their Evolution Through Time
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
<I>Ichthyosaura Alpestris</I>
Volume 26 (January 2016), 49–56 FULL PAPER Herpetological Journal Published by the British Provenance of Ichthyosaura alpestris (Caudata: Herpetological Society Salamandridae) introductions to France and New Zealand assessed by mitochondrial DNA analysis Jan W. Arntzen1, Tania M. King2, Mathieu Denoël3, Iñigo Martínez-Solano4,5 & Graham P. Wallis2 1Naturalis Biodiversity Center, PO Box 9517, 2300 RA Leiden, The Netherlands 2Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand 3Behavioural Biology Unit, Department of Biology, Ecology and Evolution, University of Liège, Quai van Beneden 22, 4020 Liège, Belgium 4CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Universidade do Porto, Rua Padre Armando Quintas, s/n 4485-661 Vairão, Portugal 5(present address) Ecology, Evolution, and Development Group, Department of Wetland Ecology, Doñana Biological Station, CSIC, c/ Americo Vespucio, s/n, 41092, Seville, Spain The last century has seen an unparalleled movement of species around the planet as a direct result of human activity, which has been a major contributor to the biodiversity crisis. Amphibians represent a particularly vulnerable group, exacerbated by the devastating effects of chytrid fungi. We report the malicious translocation and establishment of the alpine newt (Ichthyosaura alpestris) to its virtual antipode in North Island of New Zealand. We use network analysis of mitochondrial DNA haplotypes to identify the original source population as I. a. apuana from Tuscany, Italy. Additionally, a population in southern France, presumed to be introduced, is identified as I. a. alpestris from western Europe. However, the presence of two differentiated haplotypes suggests a mixed origin. -
What Really Hampers Taxonomy and Conservation? a Riposte to Garnett and Christidis (2017)
Zootaxa 4317 (1): 179–184 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2017 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4317.1.10 http://zoobank.org/urn:lsid:zoobank.org:pub:88FA0944-D3CF-4A7D-B8FB-BAA6A3A76744 What really hampers taxonomy and conservation? A riposte to Garnett and Christidis (2017) MARCOS A. RAPOSO1,2, RENATA STOPIGLIA3,4, GUILHERME RENZO R. BRITO1,5, FLÁVIO A. BOCKMANN3,6, GUY M. KIRWAN1,7, JEAN GAYON2 & ALAIN DUBOIS4 1 Setor de Ornitologia, Departamento de Vertebrados, Museu Nacional, Universidade Federal do Rio de Janeiro, Quinta da Boa Vista, s/n, 20940–040 Rio de Janeiro, RJ, Brazil. [email protected] (MAR), [email protected] (GRRB), [email protected] (GMK) 2 UMR 8590, IHPST–Institut d'Histoire et de Philosophie des Sciences et des Techniques, UMR 8590, Université Paris 1 Panthéon- Sorbonne & CNRS, 13 rue du Four, 75006 Paris, France. [email protected] (JG) 3 Laboratório de Ictiologia de Ribeirão Preto, Departamento de Biologia, FFCLRP, Universidade de São Paulo, Av. dos Bandeirantes 3900, 14040–901 Ribeirão Preto, SP, Brazil. [email protected] (RS), [email protected] (FAB) 4 Institut de Systématique, Évolution, Biodiversité, ISYEB – UMR 7205 – CNRS, MNHN, UPMC, EPHE, Muséum national d’Histoire naturelle, Sorbonne Universités, 25 rue Cuvier, CP 30, 75005, Paris, France. [email protected] (AD). 5 Departamento de Zoologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, 21941- 902, Rio de Janeiro, RJ, Brazil. 6 Programa de Pós-Graduação em Biologia Comparada, FFCLRP, Universidade de São Paulo, Av. -
Cop18 Prop. 39
Original language: English CoP18 Prop. 39 CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA ____________________ Eighteenth meeting of the Conference of the Parties Colombo (Sri Lanka), 23 May – 3 June 2019 CONSIDERATION OF PROPOSALS FOR AMENDMENT OF APPENDICES I AND II A. Proposal Inclusion of Echinotriton chinhaiensis (Chang, 1932) and Echinotriton maxiquadratus Hou, Wu, Yang, Zheng, Yuan, and Li, 2014, both of which are endemic to China in Appendix Ⅱ, in accordance with Article Ⅱ, paragraph 2 (a) of the Convention and satisfying Criterion B in Annex 2a of Resolution Conf. 9.24 (Rev. CoP17). The international trade of these two newts should be monitored to minimise the impact of illegal hunting driven by international pet trade or collection on the survival of these two critically endangered species B. Proponent China*: C. Supporting statement 1. Taxonomy 1.1 Class: Amphibia 1.2 Order: Caudata 1.3 Family: Salamandridae 1.4 Genus, species or subspecies, including author and year: 1.5 Scientific synonyms: Echinotriton chinhaiensis: Tylototriton chinhaiensis Chang, 1932; Tylototriton (Echinotriton) chinhaiensis; Pleurodeles chinhaiensis (Chang, 1932); Pleurodeles (Tylototrion) chinhaiensis 1.6 Common names: English: E. chinhaiensis: Chinhai Spiny Newt, Chinhai Spiny Crocodile Newt E. maxiquadratus: Mountain Spiny Newt, Mountain Spiny Crocodile Newt French: Spanish: 1.7 Code numbers: N/A * The geographical designations employed in this document do not imply the expression of any opinion whatsoever on the part of the CITES Secretariat (or the United Nations Environment Programme) concerning the legal status of any country, territory, or area, or concerning the delimitation of its frontiers or boundaries. The responsibility for the contents of the document rests exclusively with its author. -
Title a New Species of Pachytriton from China (Amphibia: Urodela
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kyoto University Research Information Repository A New Species of Pachytriton from China (Amphibia: Urodela: Title Salamandridae) Author(s) Nishikawa, Kanto; Matsui, Masafumi; Jiang, Jian-Ping Citation Current Herpetology (2012), 31(1): 21-27 Issue Date 2012-06 URL http://hdl.handle.net/2433/216840 Right © 2012 by The Herpetological Society of Japan Type Journal Article Textversion publisher Kyoto University Current Herpetology 31(1): 21–27, June 2012 doi 10.5358/hsj.31.21 © 2012 by The Herpetological Society of Japan A New Species of Pachytriton from China (Amphibia: Urodela: Salamandridae) 1 1 2 KANTO NISHIKAWA *, MASAFUMI MATSUI , AND JIAN-PING JIANG 1 Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu-cho, Sakyo-ku, Kyoto 606–8501, Japan 2 Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China Abstract: A new species of the salamandrid genus Pachytriton is described based on two individuals purchased from pet shops in Japan. The original locality of these specimens is known only as “China”, and further details are not known. Morphologically, this species differs from all other congeners in the combination of coloration, body size, snout length, head width, tail length and width, and length of upper jaw tooth series and vomerine tooth series. Genetically, this species is separated from all other congeners by substantial genetic distances in mitochondrial DNA sequences. Key words: China; DNA bar-coding; New species; Pachytriton; Pet trade INTRODUCTION After these specimens were obtained from two pet shops in Japan in 2007, we tried to The salamandrid genus Pachytriton Bou- discover their origin by visiting China every lenger, 1878, occurs in eastern and southeast- year to collect specimens in the wild, but with- ern China (Fei et al., 2006), and currently out success. -
Notophthalmus Perstriatus) Version 1.0
Species Status Assessment for the Striped Newt (Notophthalmus perstriatus) Version 1.0 Striped newt eft. Photo credit Ryan Means (used with permission). May 2018 U.S. Fish and Wildlife Service Region 4 Jacksonville, Florida 1 Acknowledgements This document was prepared by the U.S. Fish and Wildlife Service’s North Florida Field Office with assistance from the Georgia Field Office, and the striped newt Species Status Assessment Team (Sabrina West (USFWS-Region 8), Kaye London (USFWS-Region 4) Christopher Coppola (USFWS-Region 4), and Lourdes Mena (USFWS-Region 4)). Additionally, valuable peer reviews of a draft of this document were provided by Lora Smith (Jones Ecological Research Center) , Dirk Stevenson (Altamaha Consulting), Dr. Eric Hoffman (University of Central Florida), Dr. Susan Walls (USGS), and other partners, including members of the Striped Newt Working Group. We appreciate their comments, which resulted in a more robust status assessment and final report. EXECUTIVE SUMMARY This Species Status Assessment (SSA) is an in-depth review of the striped newt's (Notophthalmus perstriatus) biology and threats, an evaluation of its biological status, and an assessment of the resources and conditions needed to maintain species viability. We begin the SSA with an understanding of the species’ unique life history, and from that we evaluate the biological requirements of individuals, populations, and species using the principles of population resiliency, species redundancy, and species representation. All three concepts (or analogous ones) apply at both the population and species levels, and are explained that way below for simplicity and clarity as we introduce them. The striped newt is a small salamander that uses ephemeral wetlands and the upland habitat (scrub, mesic flatwoods, and sandhills) that surrounds those wetlands. -
Status and Protection of Globally Threatened Species in the Caucasus
STATUS AND PROTECTION OF GLOBALLY THREATENED SPECIES IN THE CAUCASUS CEPF Biodiversity Investments in the Caucasus Hotspot 2004-2009 Edited by Nugzar Zazanashvili and David Mallon Tbilisi 2009 The contents of this book do not necessarily reflect the views or policies of CEPF, WWF, or their sponsoring organizations. Neither the CEPF, WWF nor any other entities thereof, assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, product or process disclosed in this book. Citation: Zazanashvili, N. and Mallon, D. (Editors) 2009. Status and Protection of Globally Threatened Species in the Caucasus. Tbilisi: CEPF, WWF. Contour Ltd., 232 pp. ISBN 978-9941-0-2203-6 Design and printing Contour Ltd. 8, Kargareteli st., 0164 Tbilisi, Georgia December 2009 The Critical Ecosystem Partnership Fund (CEPF) is a joint initiative of l’Agence Française de Développement, Conservation International, the Global Environment Facility, the Government of Japan, the MacArthur Foundation and the World Bank. This book shows the effort of the Caucasus NGOs, experts, scientific institutions and governmental agencies for conserving globally threatened species in the Caucasus: CEPF investments in the region made it possible for the first time to carry out simultaneous assessments of species’ populations at national and regional scales, setting up strategies and developing action plans for their survival, as well as implementation of some urgent conservation measures. Contents Foreword 7 Acknowledgments 8 Introduction CEPF Investment in the Caucasus Hotspot A. W. Tordoff, N. Zazanashvili, M. Bitsadze, K. Manvelyan, E. Askerov, V. Krever, S. Kalem, B. Avcioglu, S. Galstyan and R. Mnatsekanov 9 The Caucasus Hotspot N. -
Title Unmasking Pachytriton Labiatus (Amphibia: Urodela: Salamandridae)
Unmasking Pachytriton labiatus (Amphibia: Urodela: Title Salamandridae), with Description of a New Species of Pachytriton from Guangxi, China Nishikawa, Kanto; Jiang, Jian-Ping; Matsui, Masafumi; Mo, Author(s) Yun-Ming Citation Zoological Science (2011), 28(6): 453-461 Issue Date 2011-06 URL http://hdl.handle.net/2433/216896 Right © 2011 Zoological Society of Japan Type Journal Article Textversion publisher Kyoto University ZOOLOGICAL SCIENCE 28: 453–461 (2011) ¤ 2011 Zoological Society of Japan Unmasking Pachytriton labiatus (Amphibia: Urodela: Salamandridae), with Description of a New Species of Pachytriton from Guangxi, China Kanto Nishikawa1*, Jian-Ping Jiang2, Masafumi Matsui1 and Yun-Ming Mo3 1Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu-cho, Sakyo-ku, Kyoto 606-8501, Japan 2Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China 3Natural History Museum of Guangxi, Nanning 530012, China Examination of the lectotype and paralectotypes of Pachytriton labiatus (Unterstein, 1930) from southern China revealed that the specimens do not represent a member of Pachytriton, but are identical with a newt of another genus, Paramesotriton ermizhaoi Wu et al., 2009 also described from southern China. We suggest that Pac. labiatus should be transferred to Paramesotriton as a senior synonym of Par. ermizhaoi. We compared the morphology of the northeastern and south- western groups of newts previously called Pac. “labiatus,” with special reference to age and sexual variations. As a result, we confirmed that the two groups are differentiated sufficiently to be treated as different species. In this report, we revive the name Pac. granulosus Chang, 1933 to refer to the northeastern group of Pac. -
EFFECTS of LATITUDE, SEASON, ELEVATION, and MICROHABITAT on FIELD BODY TEMPERATURES of NEOTROPICAL and TEMPERATE ZONE Salamandersl
Ecology, 63(6), 1982, pp. 1657-1664 © 1982 by the Ecological Society of America EFFECTS OF LATITUDE, SEASON, ELEVATION, AND MICROHABITAT ON FIELD BODY TEMPERATURES OF NEOTROPICAL AND TEMPERATE ZONE SALAMANDERSl MARTIN E. FEDER Department ofAnatomy and Committee on Evolutionary Biology, The University of Chicago, Chicago, Illinois 60637 USA, and Museum of Vertebrate Zoology, University of California, Berkeley, California 94720 USA AND JAMES F. LYNCH Chesapeake Bay Center for Environmental Studies, Smithsonian Institution, P.O. Box 28, Edgewater, Maryland 21037 USA, and Museum of Vertebrate Zoology, University of California, Berkeley, California 94720 USA Abstract. We analyzed field body temperatures of neotropical salamanders (Feder et al. 1982b) to examine existing generalizations about salamander thermal ecology, which have been based almost entirely upon data for temperate zone species. Our findings can be summarized as follows: 1) Behavioral thermoregulation in the field is evidently uncommon among the vast majority of tropical and temperate salamander species. Body temperatures of tropical salamanders closely parallel seasonal and altitudinal changes in the thermal environment. 2) Body temperatures of salamanders show a complex relationship with latitude. Temperate zone species experience lower minimum temperatures than neotropical salamanders, but there are no consistent latitudinal trends in maximum body temperatures. Tropical plethodontids and ambysto matids show similar rates of decline in mean body temperature with increasing elevation, but am bystomatid temperatures are significantly warmer than plethodontid temperatures at the same ele vation. 3) Variation in body temperature is greater seasonally for temperate salamanders than tropical salamanders. At a given time or locality, however, variation in field body temperature among members of a population is similar for tropical and temperate salamanders. -
Zootaxa, a New Species of Paramesotriton (Caudata
Zootaxa 1775: 51–60 (2008) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2008 · Magnolia Press ISSN 1175-5334 (online edition) A new species of Paramesotriton (Caudata: Salamandridae) from Guizhou Province, China HAITAO ZHAO1, 2, 5, JING CHE2,5, WEIWEI ZHOU2, YONGXIANG CHEN1, HAIPENG ZHAO3 & YA-PING ZHANG2 ,4 1Department of Environment and Life Science, Bijie College, Guizhou 551700, China 2State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming 650223, China 3School of Life Science, Southwest University, Chongqing 400715, China 4Corresponding authors. E-mail: [email protected] 5 These authors contributed equally to this work. Abstract We describe a new species of salamander, Paramesotriton zhijinensis, from Guizhou Province, China. The generic allo- cation of the new species is based on morphological and molecular characters. In morphology, it is most similar to Paramesotriton chinensis but differs in having distinct gland emitting a malodorous secretion (here named scent gland), a postocular stripe, and two non-continuous, dorsolateral stripes on the dorsolateral ridges. Furthermore, neoteny was observed in most individuals of the new species. This has not been previously reported to occur in any other species of Paramesotriton. Analysis of our molecular data suggests that this species a third major evolutionary lineage in the genus Paramesotriton. Key words: Caudata; Salamandridae; Paramesotriton zhijinensis; new species; scent gland; Guizhou; China Introduction Guizhou Province, located in the southwestern mountainous region of China, is known for its rich amphibian faunal diversity (Liu and Hu 1961). During recent surveys of the Guizhou herpetofauna (July, September, and November, 2006; January and September, 2007), we collected salamanders superficially resembling Parame- sotriton chinensis (Gray). -
Across Watersheds in the Klamath Mountains
Diversity 2013, 5, 657-679; doi:10.3390/d5030657 OPEN ACCESS diversity ISSN 1424-2818 www.mdpi.com/journal/diversity Article Genetic Diversity of Black Salamanders (Aneides flavipunctatus) across Watersheds in the Klamath Mountains Sean B. Reilly 1,*, Mitchell F. Mulks 2, Jason M. Reilly 3, W. Bryan Jennings 4, and David B. Wake 1 1 Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, 3101 Valley Life Sciences Building, Berkeley, CA 94720-3160, USA; E-Mail: [email protected] 2 Department of Ecology and Evolutionary Biology, University of California, 1156 High Street, Santa Cruz, CA 95064, USA; E-Mail: [email protected] 3 Bureau of Land Management, Medford Interagency Office, Medford, OR 97504, USA; E-Mail: [email protected] 4 Museu Nacional, Departamento de Vertebrados, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ 20940-040, Brazil; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-510-642-3567; Fax: +1-510-643-8238. Received: 31 May 2013; in revised form: 2 August 2013 / Accepted: 8 August 2013 / Published: 29 August 2013 Abstract: Here we characterize the genetic structure of Black Salamanders (Aneides flavipunctatus) in the Klamath Mountains of northwestern California and southwestern Oregon using mitochondrial and nuclear DNA sequences. We hypothesized that the Sacramento, Smith, Klamath, and Rogue River watersheds would represent distinct genetic populations based on prior ecological results, which suggest that Black Salamanders avoid high elevations such as the ridges that separate watersheds. Our mitochondrial results revealed two major lineages, one in the Sacramento River watershed, and another containing the Klamath, Smith, and Rogue River watersheds. -
Variations in Tetrodotoxin Levels in Populations of Taricha Granulosa
www.nature.com/scientificreports OPEN Variations in tetrodotoxin levels in populations of Taricha granulosa are expressed in the morphology of their cutaneous glands Pedro Luiz Mailho-Fontana1*, Carlos Jared1, Marta Maria Antoniazzi1, Juliana Mozer Sciani 2, Daniel Carvalho Pimenta 1, Amber N. Stokes3, Taran Grant4, Edmund D. Brodie III5 & Edmund D. Brodie Jr.6 Tetrodotoxin (TTX), one of the most toxic substances in nature, is present in bacteria, invertebrates, fshes, and amphibians. Marine organisms seem to bioaccumulate TTX from their food or acquire it from symbiotic bacteria, but its origin in amphibians is unclear. Taricha granulosa can exhibit high TTX levels, presumably concentrated in skin poison glands, acting as an agent of selection upon predatory garter snakes (Thamnophis). This co-evolutionary arms race induces variation in T. granulosa TTX levels, from very high to undetectable. Using morphology and biochemistry, we investigated diferences in toxin localization and quality between two populations at the extremes of toxicity. TTX concentration within poison glands is related to the volume of a single cell type in which TTX occurs exclusively in distinctive secretory granules, suggesting a relationship between granule structure and chemical composition. TTX was detected in mucous glands in both populations, contradicting the general understanding that these glands do not secrete defensive chemicals and expanding currently held interpretations of amphibian skin gland functionality. Skin secretions of the two populations difered in low-mass molecules and proteins. Our results demonstrate that interpopulation variation in TTX levels is related to poison gland morphology. Tetrodotoxin (TTX) is one of the most toxic and well-studied but still mysterious natural products. -
Calotriton Asper)
Amphibia-Reptilia (2014) DOI:10.1163/15685381-00002921 Life history trait differences between a lake and a stream-dwelling population of the Pyrenean brook newt (Calotriton asper) Neus Oromi1,∗, Fèlix Amat2, Delfi Sanuy1, Salvador Carranza3 Abstract. The Pyrenean brook newt (Calotriton asper) is a salamandrid that mostly lives in fast running and cold mountain- streams, although some populations are also found in lakes. In the present work, we report in detail on the occurrence of facultative paedomorphosis traits in a population from a Pyrenean high altitude lake. We compare its morphology, life history traits and mitochondrial DNA variation with a nearby lotic metamorphic population. Our results indicate that the lacustrine newts are smaller and present a less developed sexual dimorphism, smooth skin, and that 53% of the adults retain gills at different degrees of development, but not gill slits. Although both populations and sexes have the same age at sexual maturity (four years), the lacustrine population presents higher longevity (12 and 9 years for males and females, respectively) than the one living in the stream (8 and 9 years). The variation on the climatic conditions at altitudinal scale is probably the main cause of the differences in life history traits found between the two populations. The food availability, which could to be limiting in the lacustrine population, is another factor that can potentially affect body size. These results are congruent with the significant mitochondrial DNA genetic isolation between populations, probably a consequence of the lack of juvenile dispersal. We found low cytochrome b variability and significant genetic structuring in the lake population that is very remarkably considering the short distance to the nearby stream population and the whole species’ pattern.