THE MUSCULOSKELETAL SYSTEM the TOPICS in MUSCULOSKELETA SYSTEM A
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Digitalcommons@UNMC Agranulocytosis
University of Nebraska Medical Center DigitalCommons@UNMC MD Theses Special Collections 5-1-1935 Agranulocytosis Gordon A. Gunn University of Nebraska Medical Center This manuscript is historical in nature and may not reflect current medical research and practice. Search PubMed for current research. Follow this and additional works at: https://digitalcommons.unmc.edu/mdtheses Part of the Medical Education Commons Recommended Citation Gunn, Gordon A., "Agranulocytosis" (1935). MD Theses. 386. https://digitalcommons.unmc.edu/mdtheses/386 This Thesis is brought to you for free and open access by the Special Collections at DigitalCommons@UNMC. It has been accepted for inclusion in MD Theses by an authorized administrator of DigitalCommons@UNMC. For more information, please contact [email protected]. AGRANULOOYTOSIS ,- Senior Thesis by GOrdon .M.. Gunn INTRODUCTION Fifteen years ago the medioal profession new nothing of the disease spoken of in this paper as agranulocytosis. Since Schultz, in 1922, gave an accurate description of a fulminat ing case, agranulocytosis has oomettoClOCo.'UPy more and more prominence in the medical field. Today, the literature is fairly teeming with accounts of isolated cases of all descriptions. Added to this a confus ing nomenclature, varied classifications, and heterogeneous forms of treatment; and the large question of whether it is a disease entity, a group of diseases, or only a symptom complex, and some idea may be garnered as to the progress made. Time is a most important factor in diagnosis of this disease, and the prognosis at best is grave. The treatment has gone through the maze of trials as that of any other new disease; there must be a cause and so there must be some specific treatment. -
Organs of the Immune System
ORGANS OF THE IMMUNE SYSTEM BY MRS. N .MAKANDI ORGANS OF THE IMMUNE SYSTEM Major organs of the immune system are bone marrow, thymus, spleen and lymph nodes. These organs produce lymphocytes required to destroy bacteria, virus, tumor cells, etc. NB// The function of the immune system is protecting the body from parasitic, bacterial, viral, fungal infections and from the growth of tumor cells. • Organs of the immune system make cells that either contribute in the immune response or act as sites for the immune function. There are two groups of immune system organs. • Primary (central) organs where immature lymphocytes develop – Thymus – Bone marrow • Secondary (peripheral) organs --tissues where antigen is localized so that it can be effectively exposed to mature lymphocytes – Lymph nodes – Spleen – MALT (Mucosal-Associated Lymphoid Tissue) • GALT (Gut-Associated Lymphoid Tissue) • BALT (Bronchial/Tracheal-Associated Lymphoid Tissue) • NALT (Nose-Associated Lymphoid Tissue) • VALT (Vulvovaginal-Associated Lymphoid Tissue) Primary (central) lymphoid organs Bone marrow • All the cells of the human immune system are formed in the bone marrow, found within the bones, by a process called hematopoiesis. • The process of hematopoiesis involves differentiation of bone-marrow derived stem cells either into mature cells of the immune system or precursor of cells which move out of the bone marrow and continue their maturation elsewhere. • The bone marrow is responsible for the production of important immune system cells like B cells, granulocytes, natural killer cells and immature thymocytes. It also produces red blood cells and platelets • Bone marrow is the site of B cell maturation. • The site of B cell maturation in birds is the bursa of Fabricius, after which B cells are named. -
Synovial Joints Permit Movements of the Skeleton
8 Joints Lecture Presentation by Lori Garrett © 2018 Pearson Education, Inc. Section 1: Joint Structure and Movement Learning Outcomes 8.1 Contrast the major categories of joints, and explain the relationship between structure and function for each category. 8.2 Describe the basic structure of a synovial joint, and describe common accessory structures and their functions. 8.3 Describe how the anatomical and functional properties of synovial joints permit movements of the skeleton. © 2018 Pearson Education, Inc. Section 1: Joint Structure and Movement Learning Outcomes (continued) 8.4 Describe flexion/extension, abduction/ adduction, and circumduction movements of the skeleton. 8.5 Describe rotational and special movements of the skeleton. © 2018 Pearson Education, Inc. Module 8.1: Joints are classified according to structure and movement Joints, or articulations . Locations where two or more bones meet . Only points at which movements of bones can occur • Joints allow mobility while preserving bone strength • Amount of movement allowed is determined by anatomical structure . Categorized • Functionally by amount of motion allowed, or range of motion (ROM) • Structurally by anatomical organization © 2018 Pearson Education, Inc. Module 8.1: Joint classification Functional classification of joints . Synarthrosis (syn-, together + arthrosis, joint) • No movement allowed • Extremely strong . Amphiarthrosis (amphi-, on both sides) • Little movement allowed (more than synarthrosis) • Much stronger than diarthrosis • Articulating bones connected by collagen fibers or cartilage . Diarthrosis (dia-, through) • Freely movable © 2018 Pearson Education, Inc. Module 8.1: Joint classification Structural classification of joints . Fibrous • Suture (sutura, a sewing together) – Synarthrotic joint connected by dense fibrous connective tissue – Located between bones of the skull • Gomphosis (gomphos, bolt) – Synarthrotic joint binding teeth to bony sockets in maxillae and mandible © 2018 Pearson Education, Inc. -
Abstracts of the Nurses Group EBMT 2006
Abstracts of the Nurses Group EBMT 2006 and so decreases levels of anxiety and improves clinical Supportive care outcomes (Audit Commission 1993). Bone Marrow Transplantation (BMT) has been described as a procedure associated with isolation of the patient, prolonged N922 hospitalizations, rapid fluctuations in medical conditions, Nursing aspects in patient-information frequent and often life-threatening infections, and graft-versus- G. Rother, C. Weßler, N. Reebehn host disease (GvHD). UK-SH, Campus Kiel (Kiel,D) It is a complex process with immediate as well as long-term effects, which may permanently impair quality of life and can In addition to the information supplied by physicians there is affect morbidity and mortality. Achieving a level of also a need for explaining the nursing aspects to the patients. understanding of what is involved can be a bewildering Both sides are important to minimize fear, to create an proposition for many patients and their carers, and in itself can atmosphere of confidence and to help the patient complete present obstacles to informed consent and subsequent post- their treatment successfully. transplant expectations. A stay on the BMT-unit is not like any other time in hospital. The Seven Steps is a project which evolved through the need Lots of questions arise before admission and during the stay to meet our patients’ demand for accurate and clear written and patients often are left with a huge amount of uncertainty literature to support and compliment verbal description. The about what to do or not to do. During the preparations at the result is a book, which divides the bone marrow transplant outpatient clinic physicians inform their patients thoroughly journey into 7 clear steps, which provide a high level of detail about the medical side of the transplantation process but they yet with a strong patient focus. -
Latin Language and Medical Terminology
ODESSA NATIONAL MEDICAL UNIVERSITY Department of foreign languages Latin Language and medical terminology TextbookONMedU for 1st year students of medicine and dentistry Odessa 2018 Authors: Liubov Netrebchuk, Tamara Skuratova, Liubov Morar, Anastasiya Tsiba, Yelena Chaika ONMedU This manual is meant for foreign students studying the course “Latin and Medical Terminology” at Medical Faculty and Dentistry Faculty (the language of instruction: English). 3 Preface Textbook “Latin and Medical Terminology” is designed to be a comprehensive textbook covering the entire curriculum for medical students in this subject. The course “Latin and Medical Terminology” is a two-semester course that introduces students to the Latin and Greek medical terms that are commonly used in Medicine. The aim of the two-semester course is to achieve an active command of basic grammatical phenomena and rules with a special stress on the system of the language and on the specific character of medical terminology and promote further work with it. The textbook consists of three basic parts: 1. Anatomical Terminology: The primary rank is for anatomical nomenclature whose international version remains Latin in the full extent. Anatomical nomenclature is produced on base of the Latin language. Latin as a dead language does not develop and does not belong to any country or nation. It has a number of advantages that classical languages offer, its constancy, international character and neutrality. 2. Clinical Terminology: Clinical terminology represents a very interesting part of the Latin language. Many clinical terms came to English from Latin and people are used to their meanings and do not consider about their origin. -
Human Anatomy and Physiology
LECTURE NOTES For Nursing Students Human Anatomy and Physiology Nega Assefa Alemaya University Yosief Tsige Jimma University In collaboration with the Ethiopia Public Health Training Initiative, The Carter Center, the Ethiopia Ministry of Health, and the Ethiopia Ministry of Education 2003 Funded under USAID Cooperative Agreement No. 663-A-00-00-0358-00. Produced in collaboration with the Ethiopia Public Health Training Initiative, The Carter Center, the Ethiopia Ministry of Health, and the Ethiopia Ministry of Education. Important Guidelines for Printing and Photocopying Limited permission is granted free of charge to print or photocopy all pages of this publication for educational, not-for-profit use by health care workers, students or faculty. All copies must retain all author credits and copyright notices included in the original document. Under no circumstances is it permissible to sell or distribute on a commercial basis, or to claim authorship of, copies of material reproduced from this publication. ©2003 by Nega Assefa and Yosief Tsige All rights reserved. Except as expressly provided above, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without written permission of the author or authors. This material is intended for educational use only by practicing health care workers or students and faculty in a health care field. Human Anatomy and Physiology Preface There is a shortage in Ethiopia of teaching / learning material in the area of anatomy and physicalogy for nurses. The Carter Center EPHTI appreciating the problem and promoted the development of this lecture note that could help both the teachers and students. -
1. Synarthrosis - Immovable
jAnatomy Lecture Notes Chapter 9 I. classification A. by function - 1. synarthrosis - immovable 2. amphiarthrosis - slightly movable 3. diarthrosis - freely movable B. by structure - material attaching bones together 1. fibrous -.dense c.t., no joint cavity a. suture - very thin, short fibers synostosis - ossification of fibrous c.t. in a suture joint b. syndesmosis - ligament (the longer the fibers the more movement is possible) c. gomphosis - periodontal ligament holds teeth in alveoli 2. cartilaginous - cartilage, no joint cavity a. synchondrosis - hyaline cartilage b. symphysis - fibrocartilage 3. synovial - joint capsule and ligaments II. structure of a synovial joint A. bone and articular cartilage (hyaline) • articular cartilage cushions bone ends by absorbing compression stress Strong/Fall 2008 page 1 jAnatomy Lecture Notes Chapter 9 B. articular capsule 1. fibrous capsule - dense irregular c.t.; holds bones together 2. synovial membrane - areolar c.t. with some simple squamous e.; makes synovial fluid C. joint cavity and synovial fluid 1. synovial fluid consists of: • fluid that is filtered from capillaries in the synovial membrane • glycoprotein molecules that are made by fibroblasts in the synovial membrane 2. fluid lubricates surface of bones inside joint capsule D. ligaments - made of dense fibrous c.t.; strengthen joint • capsular • extracapsular • intracapsular E. articular disc / meniscus - made of fibrocartilage; improves fit between articulating bones F. bursae - membrane sac enclosing synovial fluid found around some joints; cushion ligaments, muscles, tendons, skin, bones G. tendon sheath - elongated bursa that wraps around a tendon Strong/Fall 2008 page 2 jAnatomy Lecture Notes Chapter 9 III. movements at joints flexion extension abduction adduction circumduction rotation inversion eversion protraction retraction supination pronation elevation depression opposition dorsiflexion plantar flexion gliding Strong/Fall 2008 page 3 jAnatomy Lecture Notes Chapter 9 IV. -
Bone Marrow.Pdf
Libyan International Medical University Faculty of Pharmacy Academic Year 2019-2020 OBJECTIVES 1. Define bone marrow 2. Illustrate where the bone marrow is found 3. Describe the components of bone marrow 4. Describe the types of bone marrow 5. Explain the functions of bone marrow What is Bone Marrow? ■ Bone marrow, also called myeloid tissue, is the soft, highly vascular and flexible connective tissue within bone cavities which serve as the primary site of new blood cell production or hematopoiesis. Where is the Bone Marrow found? ■ In a newborn baby's bones exclusively contain hematopoietically active "red" marrow, and there is a progressive conversion towards "yellow" marrow with age. ■ In adults, red marrow is found mainly in the central skeleton, such as the pelvis, sternum, cranium, ribs, vert ebrae and scapulae, and variably found in the proximal epiphyseal ends of long bones such as the femur and humerus. What are the components of Bone Marrow? ■ The bone marrow is composed of both cellular and non-cellular components and is structurally divided into vascular and non-vascular regions. ■ The non-vascular section of bone marrow is composed of hemopoietic cells of various lineages and maturity, packed between fat cells, thin bands of bony tissue (trabeculae), collagen fibers, fibroblasts and dendritic cells. This is where hematopoiesis takes place. ■ The vascular section contains blood vessels that supply the bone with nutrients and transport blood stem cells and formed mature blood cells away into circulation. ■ Ultrastructural studies show hemopoietic cells cluster around the vascular sinuses where they mature, before they eventually are discharged into the blood. -
Hematopoietic Stem Cells with High Proliferative Potential: ASSAY of THEIR CONCENTRATION in MARROW by the FREQUENCY and DURATION of CURE of W/Wv MICE
Hematopoietic Stem Cells with High Proliferative Potential: ASSAY OF THEIR CONCENTRATION IN MARROW BY THE FREQUENCY AND DURATION OF CURE OF W/Wv MICE Dane R. Boggs, … , Lora A. Gress, Don R. Canfield J Clin Invest. 1982;70(2):242-253. https://doi.org/10.1172/JCI110611. This study was designed to approach two primary questions concerning hematopoietic stem cells (HSC) in mice: what is the concentration of HSC with extensive proliferative potential in marrow, and how long can an HSC continue to function in an intact animal? The assay system was the W/Wv mouse, a mouse with an inherited HSC defect, reflected in a reduction in all myeloid tissue and most particularly in a macrocytic anemia. A single chromosomally marked HSC will reconstitute the defective hematopoietic system of the W/Wv. The concentration of HSC in normal littermate (+/+) marrow was assayed by limiting dilution calculation using cure of W/Wv as an end point (correction of anemia and erythrocytes' macrocytosis) and found to be ∼10/105. This is significantly less than spleen colony forming cell (CFU-S) concentration: ∼220/105 in +/+ and ranging from 50 to 270/105 in various other studies. Blood values were studied at selected intervals for as long as 26 mo. Of 24 initially cured mice, which were observed for at least 2 yr, 75% remained cured. However, of all cured mice, 17 lost the cure, returning to a macrocytic anemic state. Cured mice had normal numbers of nucleated and granulocytic cells per humerus and a normal concentration of CFU-S. However, cure of secondary W/Wv recipients by this marrow was inefficient compared with the original +/+ […] Find the latest version: https://jci.me/110611/pdf Hematopoietic Stem Cells with High Proliferative Potential ASSAY OF THEIR CONCENTRATION IN MARROW BY THE FREQUENCY AND DURATION OF CURE OF W/WV MICE DANE R. -
2020 Health Science Core
Title 7: Education K-12 Part 57: Mississippi Secondary Curriculum Frameworks in Career and Technical Education, Health Science, Health Science Core Mississippi Secondary Curriculum Frameworks in Career and Technical Education, Health Science 2020 Health Science C o r e Program CIP: 51.00000 – Health Services/Allied Health/Health Sciences, General Direct inquiries to Instructional Design Specialist Program Coordinator Research and Curriculum Unit Office of Career and Technical Education P.O. Drawer DX Mississippi Department of Education Mississippi State, MS 39762 P.O. Box 771 662.325.2510 Jackson, MS 39205 601.359.3974 Published by Office of Career and Technical Education Research and Curriculum Unit Mississippi Department of Education Mississippi State University Jackson, MS 39205 Mississippi State, MS 39762 The Research and Curriculum Unit (RCU), located in Starkville, as part of Mississippi State University (MSU), was established to foster educational enhancements and innovations. In keeping with the land-grant mission of MSU, the RCU is dedicated to improving the quality of life for Mississippians. The RCU enhances intellectual and professional development of Mississippi students and educators while applying knowledge and educational research to the lives of the people of the state. The RCU works within the contexts of curriculum development and revision, research, assessment, professional development, and industrial training. 1 Table of Contents Acknowledgments.......................................................................................................................... -
JOURNAL of CANCER a Continuation of the Journal of Cancer Research
THE AMERICAN JOURNAL OF CANCER A Continuation of The Journal of Cancer Research VOLUMEXXXVII SEPTEMBER,1939 NUMBER1 MYELOID LEUKEMIA AND NON-MALIGNANT EXTRAMEDULLARY MYELOPOIESIS IN MICE' W. A. BARNES, M.D., AND I. E. SISMAN, M.D. (From the Department of Pathology, Cornell University Medical College, New York) Lymphatic leukemia of mice has been extensively studied by many investi- gators (cf. 1, 2). The anatomical changes are well known and their differ- entiation from non-leukemic processes offers little or no difficulty. Myeloid leukemia is in most stocks of mice much less frequent than lymphoid leukemia (cf. Emile-Weil and Bousser, 1; Opie, 3). In the Slye stock, however, Simonds found 39 cases of myeloid and 28 of lymphatic leukemia in the first 15,000 autopsies. In our Stock Ak lymphoid leukemia is very common but myeloid leukemia is rare. Tn Stock Rf, on the other hand, myeloid leukemia occurs frequently but lymphoid leukemia is unusual. In Stock S both types are found, as well as atypical forms. It is not possible from the literature to give exact figures for the incidence of myeloid leukemia because, thus far, it has not been sharply separated from non-malignant extramedullary myelo- poiesis. Simonds (4), who first extensively studied leukemia in mice, states: I' It was necessary to differentiate myelogenous leukemia in mice from an inflammatory leukocytosis. In the latter condition, a focus of acute infection could frequently be found in some organ, such as pneumonia, an abscess or a pyelitis. In such infections the blood was frequently remarkably rich in nucleated cells and these might almost equal the number seen in myelogenous leukemia. -
Connections of Bones
Connections of bones Reinitz László Z. Arthrologia generales- general arthrology Classification based on the freedom of movement • Synarthrosis [Articulationes fibrosae] • limited movement, connection through connective tissue • Amphiarthrosis • limited movement • narrow articular gap • may be through cartilage or ligaments • art. carpometacarpea • Diarthrosis – [Articulationes synoviales] • unlimited movement • (Synsarcosis) • connection via muscles Synarthrosis [Articulationes fibrosae] • No joint gap • Synostosis - ossification • Ru McIII-IV. • Gomphosis – penetration • alveolus-tooth • Suturae - suture • Sutura serrata – saw suture • Ossa parietalia • Sutura foliata – leaf suture • Sutura frontonasalis • Sutura squamosa –squamosal suture • Sutura squamosofrontalis • Sutura plana – flat suture • Sutura internasalis • Syndesmosis – through connective tissue, ligament • Car: radius-ulna Amphiarthrosis [Articulationes cartilagineae] • minimal joint gap • able to move in every directions • but those are very limited • Art. carpometacarpea • Synchondrosis • hyalin cartilage • Art. sternocostalis • Symphysis • fibrous cartilage • Symphysis pelvis Diarthrosis [Articulationes synovialis] • Joint gap • Free movement • General description of joints [drawing] • [video] • Ligaments of joints • Ligg. Intracapsularia – part of the joint capsule • Ligg. Extracapsularia – outside the joint capsule • Ligg. Intercapsularia - within the joint cavity • If the surfaces do not match (incongruent surfaces) • Cartilage supplement • discus – separates the joint