Periodic Comet Shoemaker-Levy 9 Collides with Jupiter

Total Page:16

File Type:pdf, Size:1020Kb

Periodic Comet Shoemaker-Levy 9 Collides with Jupiter ED 374 016 SE 055'069' TITLE Periodic Comet Shoemaker-Levy 9 Collides with Jupiter. Background Material for Science Teachers. INSTITUTION Jet Propulsion Lab., Pasadena, Calif. PUB DATE 94 NOTE 28p.; Several figures based on images taken from spacecraft have marginal legibility. PUB TYPE Guides Classroom Use Teaching Guides (For Teacher) (052) EDRS PRICE MF01/PCO2 Plus Postage. DESCRIPTORS *Astronomy; Elementary Secondary Education; *Science Education; Space Sciences; Teaching Guides IDENTIFIERS *Comets; *Jupiter (Planet) ABSTR,77 In July of 1994, fragments of Comet Shoemaker-Levy collided-with Jupiter. This document has been provided to better inform students of the work that will be done by scientists and others involved in the study of this event. This document offers some background material on Jupiter, comets, what has and possibly will happen, and how scientists propose to take advantage of the impact events. The following sections are included: (1) What is A Comet?; (2) The Motion of Comets; .(3) The Fragmentation of Comets; (4) The Discovery and Early Study of Shoemaker-Levy 9;(5) The Planet Jupiter;(6) The Final Orbit of Shoemaker-Levy 9;(7) The Collisions; (8) How Can These Impacts and Their Consequences Be Studied?; and (9) What Do Scientists Expect to Learn from All of This? (ZWH) *********************************************************************A* Reproductions supplied by EDRS are the best that can be made from the original docuMent. * *********************************************************************** to O tt -tu Periodic CometShoemaker-Levy 9 U.S. DEPARTMENT OF EDUCATION 01 lice et Educational Research andtaiprovemeni Collides with Jupiter EDUCATIONAL RESOURCES INFORMATION CENTER IERICI 1..Zsdocument has been reproduced as pined Iron, the person or organization onginatrrig it 0 Minor changes have been madeto improve reproduction quality Points of view or opinions stated in this doCu. rent do not necessarily represent offidial Background Material for Science OERI position or policy Teachers 2 BEST COPY AVAILABLE or a period of about six days centered on July 19, Stupendous as these collisions will be, they will occur on the F1994, fragments of Comet Shoemaker-Levy 9 are far side of a body half a billion miles from Earth. There will expected to collide with Jupiter, the solar system's largest be no display yisible to the general public, not even a display_ planet. No such event has ever before been available for as obvious as a faint terrestrial meteor. Amateur astrono- study. The energy released by the larger fragments during mers may note a few seconds of brightening of the inner impact will be more than 10,000 times the energy released satellites of Jupiter during the impacts, and they might by a 100-megaton hydrogen bomb! Unfortunately for observe minor changes in the lovian cloud structure during observers, the collisions will occur on the. night side of the days following the impacts. The real value of this most Jupiter, which also will be the back side as seen from Earth. unusual event will come from scientific studies of the The collisions can still be studied. in many ways, nevertheless, comet's composition, of the imp& ihenomena-themselves, by spacecraft more advantageously located, by light of the. and of the response of a planetary at..losphere and mag- collisions reflected from Jupiter's satellites, and by the effects netosphere to such a series of "insults." of the impacts upon the Jovian atmosphere. (The impact This booklet offers some background material on Jupiter, sites will rotate into view from Earth about 20 minutes after comets, what has and possibly will happen, and how each collision.) scientists propose to take advantage of the impact events. R Cover Comet Shoemaker-Levy 9 is expected to collide with Jupiter in July 1994. From this historic event, scientist hope to learn more about comet, Jupiter, and the physics of high ve- locity planetary impacts. s a Comet? Comets are small, fragile, irregularly Comets, course,ust obey the same universal laws of shaped bodies composed of a mixture of non-volatile grains motion a do all o, er bodies. Where the orbits ofplanets and frozen gases. They usually follow highly elongated paths around t e Sun are nearly circular, however, theorbits of around the Sun. Most become visible,even in telescopes, comets re quite elongated. Nearly 100 known cometshave only when.they get near enough to the Sun for the Sun's ra- period (the time it takes them to makeone complete trip diation to start subliming the volatile gases, which in turn arou d the Sun) five to seven Earth years in length. Their far- blow away small bits of the solid material. These materials thest point from the Sun (their aphelion) isnear Jupiter'S or- expand into an enormous escaping atmosphere called the bit, with the closest point (perihelion) being muchnearer to coma, which becomes far bigger than a planet, and they are Earth. A few comets like Halley have their aphelionsbeyond forced back into long tails of dust andgas by radiation and Neptune (which is six times as far from the Sunas Jupiter). charged particles flowing from the Sun. Comets are cold Other comets come from much farther outyet, and it may bodies, and we see them only because the gases in their co- take them thousands or even hundreds of thousands of mae and tails fluoresce in sunlight (somewhat akin to a fluo- years to make one comp,ete orbit around the Sun. In all rescent light) and because of sunlight reflected from the cases, if a comet approaches near to Jupiter, it is strongly at- solids. Comets are regular members of the solar system fam- tracted by the gravitational pull of that giantamong planets, ily, gravitationally bound to the Sun.They are generally be- and its orbit is perturbed (changed), sometimesradically. lieved to be made of material, originally inthe outer part of This is part of what happened to Shoemaker-Levy9. (See the solar system, that didn't get. incorporated into the plan- Sections 2 and 4 for more details.) ets leftover debris, if you will. It is thevery fact that they are thought to be composed of such unchanged "primitive" The nucleus of a comet, which is its solid, persistingpart, has material that makes them extremely interesting to scientists been called an icy conglomerate, a dirty snowball,and other who wish to learn about conditions duringthe earliest pe- colorful but even less accurate descriptions.Certainly a riod of the solar system. comet nucleus contains silicates akin to some ordinary Earth rocks in composition, probably mostly invery small grains Comets are very small in size relative to planets. Their aver- and pieces. Perhaps the grains are "glued" togetherinto age diameters usually range from 750 m or less to about larger pieces by the frozen gases. A nucleusappears to in- 20 km. Recently, evidence has been foundfor much larger clude complex carbon compounds and perhapssome free distant comets, perhaps having diameters of300 km or carbon, which make it very black in color. Most notably,at more, but these sizes are still small compared to planets. least when young, it contains many frozengases, the most Planets are usually more or less spherical in shape, usually common being ordinary water. In the low pressure condi- bulging slightly at the. equator. Comets are irregular in tions of space, water sublimes, that is, itgoes directly from shape, with their longest dimension often twice the shortest. solid to gas just like dry ice does on Earth. Water probably (See Appendix A, Table 3.) The best evidence suggests that makes up 75-80% of the volatile material inmost comets. comets are very fragile. Their tensile strength (the stress they Other common ices are carbon monoxide (CO), carbondiox- can take without being pulledapart) appears to be only about ide (CO2), methane (CH4), ammonia (NH3), and formalde- 1,000 dynes/cm2 (about 2 Ibift.2). You could take a big hyde(H2C0). Volatiles and solids appear to be fairly well piece of cometary material and simply pull it in two with your mixed throughout the nucleus of anew comet approaching bare hands, something likea poorly compacted snowball. the Sun for the first time. As a cometages from many trips 4 What Is a Comet? 1 clo5e to the Sun, there is evidence that it loses most of its the glare of the coma. A great deal was learned when the ices, or at least those ices anywhere near the nucleus sur- European Space Agency, the Soviet Union, and the Japanese face, and becomes just a very fragile old "rock" in appear- sent spacecraft to fly by Comet Halley in 1986. For the first ance, indistinguishable at a distance from an asteroid. time, actual images of an active nucleuswere obtained (see Figure 1) and the composition Of the dust andgases flowing A comet nucleus is small, so its gravitational pull is very from it was directly measured. Early in thenext century the weak. You could run and jump completely off of it (if you Europeans plan to send a spacecraft called Rosetta toren- could get traction). The escape velocity is only about 1 m/s dezvous with a comet and watch it closely fora long period (compared to 11 km/s on Earth). As a result, the escaping of time. Even this sophisticated mission is not likelyto tell gases and the small solid particles (dust) that they drag with scientists a great deal about the interior structure of comets, them never fall back to the nucleus surface. Radiation pres- however. Therefore, the opportunity to reconstruct the sure, the pressure of sunlight, forces the dust particles back events that.occurred when Shoemaker-Levy 9 split and to into a dust tail in the direction opposite to the Sun.
Recommended publications
  • SPECIAL Comet Shoemaker-Levy 9 Collides with Jupiter
    SL-9/JUPITER ENCOUNTER - SPECIAL Comet Shoemaker-Levy 9 Collides with Jupiter THE CONTINUATION OF A UNIQUE EXPERIENCE R.M. WEST, ESO-Garching After the Storm Six Hectic Days in July eration during the first nights and, as in other places, an extremely rich data The recent demise of comet Shoe­ ESO was but one of many profes­ material was secured. It quickly became maker-Levy 9, for simplicity often re­ sional observatories where observations evident that infrared observations, es­ ferred to as "SL-9", was indeed spectac­ had been planned long before the critical pecially imaging with the far-IR instru­ ular. The dramatic collision of its many period of the "SL-9" event, July 16-22, ment TIMMI at the 3.6-metre telescope, fragments with the giant planet Jupiter 1994. It is now clear that practically all were perfectly feasible also during day­ during six hectic days in July 1994 will major observatories in the world were in­ time, and in the end more than 120,000 pass into the annals of astronomy as volved in some way, via their telescopes, images were obtained with this facility. one of the most incredible events ever their scientists or both. The only excep­ The programmes at most of the other predicted and witnessed by members of tions may have been a few observing La Silla telescopes were also successful, this profession. And never before has a sites at the northernmost latitudes where and many more Gigabytes of data were remote astronomical event been so ac­ the bright summer nights and the very recorded with them.
    [Show full text]
  • KAREN J. MEECH February 7, 2019 Astronomer
    BIOGRAPHICAL SKETCH – KAREN J. MEECH February 7, 2019 Astronomer Institute for Astronomy Tel: 1-808-956-6828 2680 Woodlawn Drive Fax: 1-808-956-4532 Honolulu, HI 96822-1839 [email protected] PROFESSIONAL PREPARATION Rice University Space Physics B.A. 1981 Massachusetts Institute of Tech. Planetary Astronomy Ph.D. 1987 APPOINTMENTS 2018 – present Graduate Chair 2000 – present Astronomer, Institute for Astronomy, University of Hawaii 1992-2000 Associate Astronomer, Institute for Astronomy, University of Hawaii 1987-1992 Assistant Astronomer, Institute for Astronomy, University of Hawaii 1982-1987 Graduate Research & Teaching Assistant, Massachusetts Inst. Tech. 1981-1982 Research Specialist, AAVSO and Massachusetts Institute of Technology AWARDS 2018 ARCs Scientist of the Year 2015 University of Hawai’i Regent’s Medal for Research Excellence 2013 Director’s Research Excellence Award 2011 NASA Group Achievement Award for the EPOXI Project Team 2011 NASA Group Achievement Award for EPOXI & Stardust-NExT Missions 2009 William Tylor Olcott Distinguished Service Award of the American Association of Variable Star Observers 2006-8 National Academy of Science/Kavli Foundation Fellow 2005 NASA Group Achievement Award for the Stardust Flight Team 1996 Asteroid 4367 named Meech 1994 American Astronomical Society / DPS Harold C. Urey Prize 1988 Annie Jump Cannon Award 1981 Heaps Physics Prize RESEARCH FIELD AND ACTIVITIES • Developed a Discovery mission concept to explore the origin of Earth’s water. • Co-Investigator on the Deep Impact, Stardust-NeXT and EPOXI missions, leading the Earth-based observing campaigns for all three. • Leads the UH Astrobiology Research interdisciplinary program, overseeing ~30 postdocs and coordinating the research with ~20 local faculty and international partners.
    [Show full text]
  • Astronomy Unusually High Magnetic Fields in the Coma of 67P/Churyumov-Gerasimenko During Its High-Activity Phase C
    Astronomy Unusually high magnetic fields in the coma of 67P/Churyumov-Gerasimenko during its high-activity phase C. Goetz, B. Tsurutani, Pierre Henri, M. Volwerk, E. Béhar, N. Edberg, A. Eriksson, R. Goldstein, P. Mokashi, H. Nilsson, et al. To cite this version: C. Goetz, B. Tsurutani, Pierre Henri, M. Volwerk, E. Béhar, et al.. Astronomy Unusually high mag- netic fields in the coma of 67P/Churyumov-Gerasimenko during its high-activity phase. Astronomy and Astrophysics - A&A, EDP Sciences, 2019, 630, pp.A38. 10.1051/0004-6361/201833544. hal- 02401155 HAL Id: hal-02401155 https://hal.archives-ouvertes.fr/hal-02401155 Submitted on 9 Dec 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A&A 630, A38 (2019) Astronomy https://doi.org/10.1051/0004-6361/201833544 & © ESO 2019 Astrophysics Rosetta mission full comet phase results Special issue Unusually high magnetic fields in the coma of 67P/Churyumov-Gerasimenko during its high-activity phase C. Goetz1, B. T. Tsurutani2, P. Henri3, M. Volwerk4, E. Behar5, N. J. T. Edberg6, A. Eriksson6, R. Goldstein7, P. Mokashi7, H. Nilsson4, I. Richter1, A. Wellbrock8, and K.
    [Show full text]
  • Early Observations of the Interstellar Comet 2I/Borisov
    geosciences Article Early Observations of the Interstellar Comet 2I/Borisov Chien-Hsiu Lee NSF’s National Optical-Infrared Astronomy Research Laboratory, Tucson, AZ 85719, USA; [email protected]; Tel.: +1-520-318-8368 Received: 26 November 2019; Accepted: 11 December 2019; Published: 17 December 2019 Abstract: 2I/Borisov is the second ever interstellar object (ISO). It is very different from the first ISO ’Oumuamua by showing cometary activities, and hence provides a unique opportunity to study comets that are formed around other stars. Here we present early imaging and spectroscopic follow-ups to study its properties, which reveal an (up to) 5.9 km comet with an extended coma and a short tail. Our spectroscopic data do not reveal any emission lines between 4000–9000 Angstrom; nevertheless, we are able to put an upper limit on the flux of the C2 emission line, suggesting modest cometary activities at early epochs. These properties are similar to comets in the solar system, and suggest that 2I/Borisov—while from another star—is not too different from its solar siblings. Keywords: comets: general; comets: individual (2I/Borisov); solar system: formation 1. Introduction 2I/Borisov was first seen by Gennady Borisov on 30 August 2019. As more observations were conducted in the next few days, there was growing evidence that this might be an interstellar object (ISO), especially its large orbital eccentricity. However, the first astrometric measurements do not have enough timespan and are not of same quality, hence the high eccentricity is yet to be confirmed. This had all changed by 11 September; where more than 100 astrometric measurements over 12 days, Ref [1] pinned down the orbit elements of 2I/Borisov, with an eccentricity of 3.15 ± 0.13, hence confirming the interstellar nature.
    [Show full text]
  • Planning a Mission to the Lunar South Pole
    Lunar Reconnaissance Orbiter: (Diviner) Audience Planning a Mission to Grades 9-10 the Lunar South Pole Time Recommended 1-2 hours AAAS STANDARDS Learning Objectives: • 12A/H1: Exhibit traits such as curiosity, honesty, open- • Learn about recent discoveries in lunar science. ness, and skepticism when making investigations, and value those traits in others. • Deduce information from various sources of scientific data. • 12E/H4: Insist that the key assumptions and reasoning in • Use critical thinking to compare and evaluate different datasets. any argument—whether one’s own or that of others—be • Participate in team-based decision-making. made explicit; analyze the arguments for flawed assump- • Use logical arguments and supporting information to justify decisions. tions, flawed reasoning, or both; and be critical of the claims if any flaws in the argument are found. • 4A/H3: Increasingly sophisticated technology is used Preparation: to learn about the universe. Visual, radio, and X-ray See teacher procedure for any details. telescopes collect information from across the entire spectrum of electromagnetic waves; computers handle Background Information: data and complicated computations to interpret them; space probes send back data and materials from The Moon’s surface thermal environment is among the most extreme of any remote parts of the solar system; and accelerators give planetary body in the solar system. With no atmosphere to store heat or filter subatomic particles energies that simulate conditions in the Sun’s radiation, midday temperatures on the Moon’s surface can reach the stars and in the early history of the universe before 127°C (hotter than boiling water) whereas at night they can fall as low as stars formed.
    [Show full text]
  • Interstellar Comet 2I/Borisov
    Interstellar comet 2I/Borisov Piotr Guzik1*, Michał Drahus1*, Krzysztof Rusek2, Wacław Waniak1, Giacomo Cannizzaro3,4, Inés Pastor-Marazuela5,6 1 Astronomical Observatory, Jagiellonian University, ul. Orla 171, 30-244 Kraków, Poland 2 AGH University of Science and Technology, al. Mickiewicza 30, Kraków 30-059, Poland 3 SRON, Netherlands Institute for Space Research, Sorbonnelaan, 2, NL-3584CA Utrecht, the Netherlands 4 Department of Astrophysics/IMAPP, Radboud University, P.O. Box 9010, 6500 GL Nijmegen, the Netherlands 5 Anton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands 6 ASTRON, Netherlands Institute for Radio Astronomy, Oude Hoogeveensedijk 4, 7991 PD Dwingeloo, The Netherlands * These authors contributed equally to this work. Interstellar comets penetrating through the Solar System were anticipated for decades1,2. The discovery of non-cometary 1I/‘Oumuamua by Pan-STARRS was therefore a huge surprise and puzzle. Furthermore, its physical properties turned out to be impossible to reconcile with Solar System objects3-5, which radically changed our view on interstellar minor bodies. Here, we report the identification of a new interstellar object which has an evidently cometary appearance. The body was identified by our data mining code in publicly available astrometric data. The data clearly show significant systematic deviation from what is expected for a parabolic orbit and are consistent with an enormous orbital eccentricity of 3.14 ± 0.14. Images taken by the William Herschel Telescope and Gemini North telescope show an extended coma and a faint, broad tail – the canonical signatures of cometary activity. The observed g’ and r’ magnitudes are equal to 19.32 ± 0.02 and 18.69 ± 0.02, respectively, implying g’-r’ color index of 0.63 ± 0.03, essentially the same as measured for the native Solar System comets.
    [Show full text]
  • Initial Characterization of Interstellar Comet 2I/Borisov
    Initial characterization of interstellar comet 2I/Borisov Piotr Guzik1*, Michał Drahus1*, Krzysztof Rusek2, Wacław Waniak1, Giacomo Cannizzaro3,4, Inés Pastor-Marazuela5,6 1 Astronomical Observatory, Jagiellonian University, Kraków, Poland 2 AGH University of Science and Technology, Kraków, Poland 3 SRON, Netherlands Institute for Space Research, Utrecht, the Netherlands 4 Department of Astrophysics/IMAPP, Radboud University, Nijmegen, the Netherlands 5 Anton Pannekoek Institute for Astronomy, University of Amsterdam, Amsterdam, the Netherlands 6 ASTRON, Netherlands Institute for Radio Astronomy, Dwingeloo, the Netherlands * These authors contributed equally to this work; email: [email protected], [email protected] Interstellar comets penetrating through the Solar System had been anticipated for decades1,2. The discovery of asteroidal-looking ‘Oumuamua3,4 was thus a huge surprise and a puzzle. Furthermore, the physical properties of the ‘first scout’ turned out to be impossible to reconcile with Solar System objects4–6, challenging our view of interstellar minor bodies7,8. Here, we report the identification and early characterization of a new interstellar object, which has an evidently cometary appearance. The body was discovered by Gennady Borisov on 30 August 2019 UT and subsequently identified as hyperbolic by our data mining code in publicly available astrometric data. The initial orbital solution implies a very high hyperbolic excess speed of ~32 km s−1, consistent with ‘Oumuamua9 and theoretical predictions2,7. Images taken on 10 and 13 September 2019 UT with the William Herschel Telescope and Gemini North Telescope show an extended coma and a faint, broad tail. We measure a slightly reddish colour with a g′–r′ colour index of 0.66 ± 0.01 mag, compatible with Solar System comets.
    [Show full text]
  • Carbon Monoxide in Jupiter After Comet Shoemaker-Levy 9
    ICARUS 126, 324±335 (1997) ARTICLE NO. IS965655 Carbon Monoxide in Jupiter after Comet Shoemaker±Levy 9 1 1 KEITH S. NOLL AND DIANE GILMORE Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, Maryland 21218 E-mail: [email protected] 1 ROGER F. KNACKE AND MARIA WOMACK Pennsylvania State University, Erie, Pennsylvania 16563 1 CAITLIN A. GRIFFITH Northern Arizona University, Flagstaff, Arizona 86011 AND 1 GLENN ORTON Jet Propulsion Laboratory, Pasadena, California 91109 Received February 5, 1996; revised November 5, 1996 for roughly half the mass. In high-temperature shocks, Observations of the carbon monoxide fundamental vibra- most of the O is converted to CO (Zahnle and MacLow tion±rotation band near 4.7 mm before and after the impacts 1995), making CO one of the more abundant products of of the fragments of Comet Shoemaker±Levy 9 showed no de- a large impact. tectable changes in the R5 and R7 lines, with one possible By contrast, oxygen is a rare element in Jupiter's upper exception. Observations of the G-impact site 21 hr after impact atmosphere. The principal reservoir of oxygen in Jupiter's do not show CO emission, indicating that the heated portions atmosphere is water. The Galileo Probe Mass Spectrome- of the stratosphere had cooled by that time. The large abun- ter found a mixing ratio of H OtoH of X(H O) # 3.7 3 dances of CO detected at the millibar pressure level by millime- 2 2 2 24 P et al. ter wave observations did not extend deeper in Jupiter's atmo- 10 at P 11 bars (Niemann 1996).
    [Show full text]
  • Interstellar Comet 2I/Borisov Exhibits a Structure Similar to Native Solar System Comets⋆
    Mon. Not. R. Astron. Soc. 000, 1–5 (201X) Printed 4 April 2020 (MN LATEX style file v2.2) Interstellar Comet 2I/Borisov exhibits a structure similar to native Solar System comets⋆ F. Manzini1†, V. Oldani1, P. Ochner2,3, and L.R.Bedin2 1Stazione Astronomica di Sozzago, Cascina Guascona, I-28060 Sozzago (Novara), Italy 2INAF-Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122 Padova, Italy 3Department of Physics and Astronomy-University of Padova, Via F. Marzolo 8, I-35131 Padova, Italy Letter: Accepted 2020 April 1. Received 2020 April 1; in original form 2019 November 22. ABSTRACT We processed images taken with the Hubble Space Telescope (HST) to investigate any morphological features in the inner coma suggestive of a peculiar activity on the nucleus of the interstellar comet 2I/Borisov. The coma shows an evident elongation, in the position angle (PA) ∼0◦-180◦ direction, which appears related to the presence of a jet originating from a single active source on the nucleus. A counterpart of this jet directed towards PA ∼10◦ was detected through analysis of the changes of the inner coma morphology on HST images taken in different dates and processed with different filters. These findings indicate that the nucleus is probably rotating with a spin axis projected near the plane of the sky and oriented at PA ∼100◦-280◦, and that the active source is lying in a near-equatorial position. Subsequent observations of HST allowed us to determine the direction of the spin axis at RA = 17h20m ±15◦ and Dec = −35◦ ±10◦. Photometry of the nucleus on HST images of 12 October 2019 only span ∼7 hours, insufficient to reveal a rotational period.
    [Show full text]
  • Comets and the Origin of Life from N.J
    540 Nature Vol. 288 11 December 1980 been cloned in Stanford and is being used base pair substitution in this region and by premature transcription; but that these for the analysis of this entire region of the a factor of two in the abudance of their early transcripts are not translated and, genome by S. Beckendorf (University of mRNAs. indeed, decay as development gets under California, Berkeley) and for detailed The egg shell protein genes, under study way. Only at the appropriate develop­ studies of the gene itself by M. Muskavitch by A. Spradling (Carnegie Institution, mental stage several hours later does (Stanford). A surprising result is that the Washington) and in F. C. Kafatos' transcription resume to produce mRNAs transcript of SGS-4 differs in size in laboratory (Harvard) also surprised us for that are subsequently translated. different strains of Drosophila. This they are amplified in the tissue in which What is the meaning of this? It implies results, it would appear, from the fact that they are expressed. Spradling has found some relationship between amplification within the coding sequence there is a 21 that the amount of DNA amplified extends and early transcription and also indicates base pair sequence whose repetition at least 30 kb on each side of the genes the existence of a translational control at frequency can vary between different themselves, but the degree of amplification the early developmental stage. SGS-4 alleles. Although nothing is known falls off, from a peak of some 60 fold, in Like all good meetings, at the end there of the chemistry of the protein this must both directions away from the coding were far more questions than answers.
    [Show full text]
  • Closing the Gap Between Ground Based and In-Situ Observations of Cometary Dust Activity: Investigating Comet 67P to Gain a Deeper Understanding of Other Comets
    Closing the gap between ground based and in-situ observations of cometary dust activity: Investigating comet 67P to gain a deeper understanding of other comets. Raphael Marschall & Oleksandra Ivanova et al. Abstract When cometary dust particles are ejected from the surface they are accelerated because of the surrounding gas flow from sublimating ices. As these particles travel millions of kilometres from their origin into the solar system they produce the magnificent tails commonly associated with comets. During their long journey the dust particles transition through different regimes of changing dominant forces such as gas drag, cometary gravity, solar radiation pressure, and solar gravity. The transition and link between the different regimes is to this day poorly understood. There are two main reasons for this. Firstly, the problem covers a vast range in spatial and temporal scales that need to be matched taking into account multiple transitions of the force regime. Furthermore, observational data covering these large spatial and temporal scales for at least one comet and thus characterising it in great detail has been lacking until recently. For comet 67P/Churyumov-Gerasimenko (hereafter 67P) a small number of large scale struc- tures in the outer dust coma and tail have been found from ground based observations. Con- versely ESA's Rosetta mission has shown many small scale structures defining the innermost coma close to the nucleus surface. This disconnect between the observations on these different scales has yet to be understood and explained. Solving this problem thus requires an interdisciplinary approach. This ISSI team shall bring together experts of the recent observational data from ground and in-situ of comet 67P as well as theorists that are able to model the dynamical processes over these different scales.
    [Show full text]
  • South Pole-Aitken Basin
    Feasibility Assessment of All Science Concepts within South Pole-Aitken Basin INTRODUCTION While most of the NRC 2007 Science Concepts can be investigated across the Moon, this chapter will focus on specifically how they can be addressed in the South Pole-Aitken Basin (SPA). SPA is potentially the largest impact crater in the Solar System (Stuart-Alexander, 1978), and covers most of the central southern farside (see Fig. 8.1). SPA is both topographically and compositionally distinct from the rest of the Moon, as well as potentially being the oldest identifiable structure on the surface (e.g., Jolliff et al., 2003). Determining the age of SPA was explicitly cited by the National Research Council (2007) as their second priority out of 35 goals. A major finding of our study is that nearly all science goals can be addressed within SPA. As the lunar south pole has many engineering advantages over other locations (e.g., areas with enhanced illumination and little temperature variation, hydrogen deposits), it has been proposed as a site for a future human lunar outpost. If this were to be the case, SPA would be the closest major geologic feature, and thus the primary target for long-distance traverses from the outpost. Clark et al. (2008) described four long traverses from the center of SPA going to Olivine Hill (Pieters et al., 2001), Oppenheimer Basin, Mare Ingenii, and Schrödinger Basin, with a stop at the South Pole. This chapter will identify other potential sites for future exploration across SPA, highlighting sites with both great scientific potential and proximity to the lunar South Pole.
    [Show full text]