Chimera: a Mission of Discovery to the First Centaur

Total Page:16

File Type:pdf, Size:1020Kb

Chimera: a Mission of Discovery to the First Centaur EPSC Abstracts Vol. 13, EPSC-DPS2019-1094-1, 2019 EPSC-DPS Joint Meeting 2019 c Author(s) 2019. CC Attribution 4.0 license. Chimera: A Mission of Discovery to the First Centaur Walter Harris (1), Laura Woodney (2), Geronimo Villanueva (3) and the Chimera Science team. (1) University of Arizona, USA, (2) California State University San Bernardino, USA, (3) Goddard Space Flight Center, USA ([email protected]) Abstract planet migration sent them into cold storage. Centaurs are chimeric objects, with properties in common with Chimera is a mission concept to visit the highly active both TNOs and JFCs. Understanding their structure, Centaur, 29P/Schwassmann-Wachmann 1 (SW1), chemistry, and processes that drive their activity are which has been submitted to the NASA 2019 call for key to understanding the evolution of icy Discovery mission proposals. Chimera will study planetesimals and how the planetesimals we observe evolution, chemistry, and mechanisms driving activity today, especially the most accessible JFCs, inform us of an icy planetesimal beyond Jupiter. New Horizons about the origin of the solar system. taught us about the most primitive type of icy planetesimal and many missions from Giotto to Rosetta have visited highly evolved comets: Chimera will explore the evolutionary middle ground between Trans Neptunian Objects (TNOs) and Jupiter Family Comets (JFCs) (Figure 1). Stardust Deep Space-1 Giotto/Vega New Horizons Rosetta Figure 2: The modern family of icy planetesimals. Chimera Deep Impact EPOXI Stardust-NExT Lucy 2. Why SW1? While ~20% of Centaurs are known to be at least Figure 1: The mission legacy to which Chimera will sporadically active [1], SW1 stands out in multiple contribute. ways. Discovered during an outburst in 1927, SW1 was the first object other than the giant planets found 1. Why Centaurs? to occupy a heliocentric orbit entirely beyond Jupiter. Its persistent coma and photometric variability while Comets, Centaurs and TNOs are believed to be in a near-circular orbit at 6 AU was considered cryogenically preserved samples of the gas and grains enigmatic, making it a favorite target of study. From of the proto-solar nebula out of which the solar system the resulting 90-year observational baseline, we now formed. Having been dynamically perturbed to large know that SW1 maintains a near-constant background heliocentric distances early in the history of the solar level of activity in all phases of its orbit. This system, their composition and structure retain quiescent activity is frequently interrupted by large information that can be used to quantify the conditions outbursts that brighten by 1-5 magnitudes [2]. The and mixing in the disk from which they formed. modern outburst cadence is ~7 events/year with little evidence of seasonal variability (Figure 3). The Centaurs themselves exist in a relatively short dynamical phase (Figure 2): they have been disturbed The persistence and magnitude of SW1’s activity is out of the scattered disk of the Kuiper Belt back into greater than that observed from any other Centaur and the region between Jupiter and Neptune where they comparable to that observed from similar-sized long likely originally formed. From here, interactions with period comets (LPCs) at the same heliocentric the giant planets can either scatter them out of the solar distance (Figure 4). Combined with the known long- system or inwards to become the JFCs. It is in the term consistency of its activity, this makes SW1 Centaur region that these objects develop nascent uniquely positioned to address the most fundamental activity, modifying them for the first time since giant A Gateway to thequestions Centaurs andof theplanetesimal Secrets of Small-Bodyformation, Formation volatile References composition, and evolution. nation of activity, size, evolutionary state, and ac- [1] Jewitt, D.: The Active Centaurs, The Astronomical Journal, Volume 137, Issue 5, pp. 4296-4312, 2009. cessibility. From orbit, the sub-surface character- 11 Nearly Constant Activity istics of this object can be probed by studying the Observations 12 [2] Miles, R.: Discrete sources of cryovolcanism on the structures exposed by mass wasting and during e 13 d nucleus of Comet 29P/Schwassmann-Wachmann and their tu outbursts, from mapping geologic processes (e.g. i n 14 origin, Icarus, Volume 272, pp. 387-413, 2016. g slope failures) indicative of cohesion, friction, a M 15 s or near-surface degradation, and through radar u e [3] Wierzchos, K., Womack, M. and Sarid, G.: Carbon l c 16 sampling of outer surface layering, porosity, and u Monoxide in the Distantly Active Centaur (60558) N dielectric properties. For a sufficiently massive 17 174P/Echeclus at 6 au, The Astronomical Journal, Volume object, radio science can further determine the 18 155, Number 5, pp. 230-243, 2017. mass to high precision (<0.1%), measure the rate 19 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 of mass loss, and obtain detailed measurements Year . of gravity field perturbations resulting from the CM093 Figure D-7: Historical rate of outbursts on SW1. interior mass distribution. Figure 3: A decade of outburst detections from SW1. The Astronomical Journal, 153:230 (8pp), 2017 May Wierzchos, Womack, & Sarid D.1.1.3 Determine the Afect, Timing, and Period = 57.708 d Source Source Source Source Source Source Implications of Evolutionary Processes ‘b’ ‘c’ ‘d’ ‘e’ ‘f’ ‘a’ 2010-2014 Te Centaurs are chimeras: evolutionary bridg- season es between the KBOs and JFCs. 2006-2010 If we are to understand what end state plan- season 2002-2006 etesimals such as JFCs and Trojan Asteroids tell season us about the origin of the solar system, we must understand the evolutionary processes they have 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 undergone since they first formed. As orbits of the Rotational Phase of Nucleus CM094 icy planetesimals dynamically evolve, variation in Figure D-8: Identifcation of outburst sites as a function of sur- solar heating drives the onset, type, and rate of gas face phase from rotational debias. production. Orbital Evolution of 29P/SW1 For most of the history of the solar system 8.0 7.5 2019 these objects, whether in the cold storage of the 7.0 1975 (au) Q Oort Cloud or the Kuiper belt, have experienced 6.52 Figure 3. Specific production rates, Q(CO)/D , for distant comets and Centaurs. The solid line is a fit to data for Hale–Bopp, assuming Q CO=´3.5 1029 r- 2, and q, 6.0 () diameter DHale–Bopp=60 km; values for Chiron and 29P are plotted assuming production rates from Womack et al. (2017) and DChiron=218 km and D29P = 60 km. very little change. Galactic-cosmic-ray irradiation a, 5.5 2038 – – This plot shows that, when adjustedFigure for surface area4: andThe heliocentric area distance,-averaged Echeclus (D Echeclusproduction=65 km) and Chironrate producefrom∼10 50 times less CO than Hale causes chemical alteration to a depth ofBopp, only a proxy for4-6 a relatively unprocessed5.0 comet. Upper limits to specific production rates for other Centaurs were calculated from Q(CO) upper limits and diameters provided in Drahus et al. (2016), and showSW1 that1900 29P is is larger the only CO-rich1950 than Centaur that found of2000 to date.other All Centaurs Centaurs 2050 with values below[ 3 ] .2100 the Hale–Bopp line are considered to m (Stazzula and Johnson, 1991). Whenshow athey reduced COare activity level. Date (years) dynamically disturbed into the region between 14 Last Deep Jupiter Next Deep Jupiter 12 fi layers with little to no accessible10 volatileClose species Encounter surviving selection effect,Close Encounter because only signi cant limits have been made Jupiter and Neptune, some new Centaurs(e.g., Meech and & Svoren 3.2004 ;Summary Prialnik (au) et al. 2004). Whenand we Conclusionsto date only for Centaurs with diameters greater than 65 km. Q look at gas activity measurements, depletion8 of volatile species, We point out that 29P, the most CO prolific Centaur, is on the LPCs begin to develop persistent comae from a q, 6 in terms of bulk compositionThe 2013 ratios a, 4 may decadal not be functionally survey identifiedsmall size forthe Centaurs Centaurs with a diameteras an of ∼60 km. It will be type of continuous activity (often referreddistinct from to thoseas mechanisms of2 mantling or desiccation. very useful to obtain more constraining Q(CO) measurements However, we suggest thatimportant CO may be present 1500target at higher for 2000 levels,future exploration. on 2500 smaller Centaurs. 3000 Chimera It may also 3500 will be helpful to extend this quiescent) that is distinct from water sublima- fi at deeper sub-surface layers, but suppressed in detectable Dateanalysis (years) to other comets; however,CM082 we were unable to nd any tion (Section D.1.2.2). Tey also experienceemissions. spo- deliver a capable suite of remoteother distant sensing comet Q instruments(CO) measurements beyond 4 au which Small bodies in theto outer SW1 solar that system will present characteriz a real hade independentlyits activity, determined searchQ(CO for) and diameters. radic outbursts: sudden, explosive releaseschallenge inof determining a Figure compositional D-9: Forward trends. Unlike and thebackwardAlthough projection Centaurs of are the thought SW1 to shareor- a common origin in large amounts of gas and entrained dust.growing chemicalTese databasebitsignatures forthe comets shows( Cochranof stable evolutionary et al.behavior2015), over theprocessing, Kuipera 1200 Belt, year the measure well-known span (below). differentthe outgassing behavior the more distant and less active Centaurs lack sufficient in Chiron and 29P has been attributed to the differences in typically last for tens of minutes to a fewinformation, days and either fromEvolutioncomposition surface reintoflectance andvolatiles or out from of gasandSW1's icescomposition low on eccentricity the and surface evolution orbit historyand during (inDe Sanctis et al.
Recommended publications
  • Gnc 2021 Abstract Book
    GNC 2021 ABSTRACT BOOK Contents GNC Posters ................................................................................................................................................... 7 Poster 01: A Software Defined Radio Galileo and GPS SW receiver for real-time on-board Navigation for space missions ................................................................................................................................................. 7 Poster 02: JUICE Navigation camera design .................................................................................................... 9 Poster 03: PRESENTATION AND PERFORMANCES OF MULTI-CONSTELLATION GNSS ORBITAL NAVIGATION LIBRARY BOLERO ........................................................................................................................................... 10 Poster 05: EROSS Project - GNC architecture design for autonomous robotic On-Orbit Servicing .............. 12 Poster 06: Performance assessment of a multispectral sensor for relative navigation ............................... 14 Poster 07: Validation of Astrix 1090A IMU for interplanetary and landing missions ................................... 16 Poster 08: High Performance Control System Architecture with an Output Regulation Theory-based Controller and Two-Stage Optimal Observer for the Fine Pointing of Large Scientific Satellites ................. 18 Poster 09: Development of High-Precision GPSR Applicable to GEO and GTO-to-GEO Transfer ................. 20 Poster 10: P4COM: ESA Pointing Error Engineering
    [Show full text]
  • Rosetta Craft Makes Historic Comet Rendezvous European Space Agency's Comet-Chasing Mission Arrives After 10-Year Journey
    NATURE | NEWS Rosetta craft makes historic comet rendezvous European Space Agency's comet-chasing mission arrives after 10-year journey. Elizabeth Gibney 06 August 2014 ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA Comet 67P/Churyumov–Gerasimenko, as seen by Rosetta from a distance of 285 kilometres. No one can deny that it was an epic trip. The European Space Agency's comet-chasing Rosetta spacecraft has arrived at its quarry, after launching more than a decade ago and travelling 6.4 billion kilometres through the Solar System. That makes it the first spacecraft to rendezvous with a comet, and takes the mission a step closer to its next, more ambitious goal of making the first ever soft landing on a comet. Speaking from mission control in Darmstadt, Germany, Matt Taylor, Rosetta project scientist for the European Space Agency (ESA), called the space mission “the sexiest there’s ever been”. Rosetta is now within 100 kilometres of its target, comet 67P/Churyumov–Gerasimenko (or 67P for short), which in July was discovered to be shaped like a rubber duck. After a six-minute thruster burn, at 11:29 a.m. local time on 6 August, ESA scientists confirmed that Rosetta had moved into the same orbit around the Sun as the comet. Rosetta is now moving at a walking pace relative to the motion of 67P — though both are hurtling through space at 15 kilometres per second. Unlike NASA’s Deep Impact and Stardust craft, and ESA’s Giotto mission, which flew by their target comets at high speed, Rosetta will now stay with the comet, taking a ring-side seat as 67P approaches the Sun, and eventually swings around it in August 2015.
    [Show full text]
  • OSIRIS-Rex, Returning the Asteroid Sample
    OSIRIS-REx, Returning the Asteroid Sample Thomas Ajluni Timothy Linn William Willcockson ASRC Federal Space & Defense Lockheed Martin Space Systems Lockheed Martin Space Systems 7000 Muirkirk Meadows Drive Company, P.O. Box 179 Company, P.O. Box 179 Suite 100, Beltsville, MD 20705 Denver, CO 80201 Denver, CO 80201 301.286.1831 303-977-0659 303-977-5094 [email protected] [email protected] [email protected] David Everett Ronald Mink Joshua Wood NASA Goddard Space Flight NASA Goddard Space Flight Lockheed Martin Space Systems Center, 8800 Greenbelt Road Center, 8800 Greenbelt Road Company, P.O. Box 179 Greenbelt, MD 20771 Greenbelt, MD 20771 Denver, CO 80201 301.286.1596 301.286.3524 303-977-3199 [email protected] [email protected] [email protected] Abstract—This paper addresses the technical aspects of the sample return system for the upcoming Origins, Spectral x attitude control Interpretation, Resource Identification, and Security-Regolith x propulsion Explorer (OSIRIS-REx) asteroid sample return mission. The x power overall mission design and current implementation are presented as an overview to establish a context for the x thermal control technical description of the reentry and landing segment of the x telecommunications mission. x command and data handling x structural support to ensure successful rendezvous The prime objective of the OSIRIS-REx mission is to sample a with Bennu primitive, carbonaceous asteroid and to return that sample to Earth in pristine condition for detailed laboratory analysis. x characterization of Bennu’s properties Targeting the near-Earth asteroid Bennu, the mission launches x delivery of the sampler to the surface, and return of in September 2016 with an Earth reentry date of September the spacecraft to the vicinity of the Earth 24, 2023.
    [Show full text]
  • Dust Environment and Dynamical History of a Sample of Short-Period Comets II
    A&A 571, A64 (2014) Astronomy DOI: 10.1051/0004-6361/201424331 & c ESO 2014 Astrophysics Dust environment and dynamical history of a sample of short-period comets II. 81P/Wild 2 and 103P/Hartley 2 F. J. Pozuelos1;3, F. Moreno1, F. Aceituno1, V. Casanova1, A. Sota1, J. J. López-Moreno1, J. Castellano2, E. Reina2, A. Climent2, A. Fernández2, A. San Segundo2, B. Häusler2, C. González2, D. Rodriguez2, E. Bryssinck2, E. Cortés2, F. A. Rodriguez2, F. Baldris2, F. García2, F. Gómez2, F. Limón2, F. Tifner2, G. Muler2, I. Almendros2, J. A. de los Reyes2, J. A. Henríquez2, J. A. Moreno2, J. Báez2, J. Bel2, J. Camarasa2, J. Curto2, J. F. Hernández2, J. J. González2, J. J. Martín2, J. L. Salto2, J. Lopesino2, J. M. Bosch2, J. M. Ruiz2, J. R. Vidal2, J. Ruiz2, J. Sánchez2, J. Temprano2, J. M. Aymamí2, L. Lahuerta2, L. Montoro2, M. Campas2, M. A. García2, O. Canales2, R. Benavides2, R. Dymock2, R. García2, R. Ligustri2, R. Naves2, S. Lahuerta2, and S. Pastor2 1 Instituto de Astrofísica de Andalucía (CSIC), Glorieta de la Astronomía s/n, 18008 Granada, Spain e-mail: [email protected] 2 Amateur Association Cometas-Obs, Spain 3 Universidad de Granada-Phd Program in Physics and Mathematics (FisyMat), 18071 Granada, Spain Received 3 June 2014 / Accepted 5 August 2014 ABSTRACT Aims. This paper is a continuation of the first paper in this series, where we presented an extended study of the dust environment of a sample of short-period comets and their dynamical history. On this occasion, we focus on comets 81P/Wild 2 and 103P/Hartley 2, which are of special interest as targets of the spacecraft missions Stardust and EPOXI.
    [Show full text]
  • Chondrule-Like Material in Wild 2: a New Insight from Impact Experiments of Chondrule Fragments on Stardust Analogue Al Foil
    52nd Lunar and Planetary Science Conference 2021 (LPI Contrib. No. 2548) 1925.pdf CHONDRULE-LIKE MATERIAL IN WILD 2: A NEW INSIGHT FROM IMPACT EXPERIMENTS OF CHONDRULE FRAGMENTS ON STARDUST ANALOGUE AL FOIL. M. Van Ginneken1 and P. J. Wozniakiewicz1, 1Centre for Astrophysics and Planetary Science, School of Physical Sciences, University of Kent, United Kingdom ([email protected]; [email protected]) Introduction: NASA’s Stardust mission was the shape of craters depends mainly on the physical first mission to bring back to Earth material from a properties of the impactor [19]. Solid grains or dense celestial body, i.e. the Jupiter Family Comet (JFC) consolidated aggregates similar to chondrule fragments 81P/Wild 2 (hereafter Wild 2) [1]. Cometary dust was will result in bowl-shaped craters, the depth of which captured via impact into a collector that was deployed depending on the density of the material, whereas loose during a fly-by through the coma of Wild 2 at a relative aggregates of submicron particles result in complex speed of 6 km s-1. The collector consisted of silica features. Simulation of Stardust impacts using silicate aerogel secured into a metal frame by aluminum 1100 grains have shown that about 50% of silicate dominated foil (hereafter Al foil). A major result of the mission was impactors are retained as residue, which can be analysed the discovery that, contrary to expectations, Wild 2 was and provide precious chemical information [20]. not predominantly composed of presolar grains and low Studies of residues in a small (ø < 10 µm) or large temperature outer solar nebula material, but rather high (ø > 10 µm) craters on Stardust foil have shown that temperature (>>1000 °C) material typical of primitive these can give information on the bulk chemistry of the meteorites [1 - 3].
    [Show full text]
  • List of Missions Using SPICE (PDF)
    1/7/20 Data Restorations Selected Past Users Current/Pending Users Examples of Possible Future Users Apollo 15, 16 [L] Magellan [L] Cassini Orbiter NASA Discovery Program Mariner 2 [L] Clementine (NRL) Mars Odyssey NASA New Frontiers Program Mariner 9 [L] Mars 96 (RSA) Mars Exploration Rover Lunar IceCube (Moorehead State) Mariner 10 [L] Mars Pathfinder Mars Reconnaissance Orbiter LunaH-Map (Arizona State) Viking Orbiters [L] NEAR Mars Science Laboratory Luna-Glob (RSA) Viking Landers [L] Deep Space 1 Juno Aditya-L1 (ISRO) Pioneer 10/11/12 [L] Galileo MAVEN Examples of Users not Requesting NAIF Help Haley armada [L] Genesis SMAP (Earth Science) GOLD (LASP, UCF) (Earth Science) [L] Phobos 2 [L] (RSA) Deep Impact OSIRIS REx Hera (ESA) Ulysses [L] Huygens Probe (ESA) [L] InSight ExoMars RSP (ESA, RSA) Voyagers [L] Stardust/NExT Mars 2020 Emmirates Mars Mission (UAE via LASP) Lunar Orbiter [L] Mars Global Surveyor Europa Clipper Hayabusa-2 (JAXA) Helios 1,2 [L] Phoenix NISAR (NASA and ISRO) Proba-3 (ESA) EPOXI Psyche Parker Solar Probe GRAIL Lucy EUMETSAT GEO satellites [L] DAWN Lunar Reconnaissance Orbiter MOM (ISRO) Messenger Mars Express (ESA) Chandrayan-2 (ISRO) Phobos Sample Return (RSA) ExoMars 2016 (ESA, RSA) Solar Orbiter (ESA) Venus Express (ESA) Akatsuki (JAXA) STEREO [L] Rosetta (ESA) Korean Pathfinder Lunar Orbiter (KARI) Spitzer Space Telescope [L] [L] = limited use Chandrayaan-1 (ISRO) New Horizons Kepler [L] [S] = special services Hayabusa (JAXA) JUICE (ESA) Hubble Space Telescope [S][L] Kaguya (JAXA) Bepicolombo (ESA, JAXA) James Webb Space Telescope [S][L] LADEE Altius (Belgian earth science satellite) ISO [S] (ESA) Armadillo (CubeSat, by UT at Austin) Last updated: 1/7/20 Smart-1 (ESA) Deep Space Network Spectrum-RG (RSA) NAIF has or had project-supplied funding to support mission operations, consultation for flight team members, and SPICE data archive preparation.
    [Show full text]
  • EPOXI COMET ENCOUNTER FACT SHEET Nov
    EPOXI COMET ENCOUNTER FACT SHEET Nov. 2, 2010 Quick Facts Flyby Spacecraft Dimensions: 3.3 meters (10.8 feet) long, 1.7 meters (5.6 feet) wide, and 2.3 meters (7.5 feet) high Weight: 601 kilograms (1,325 pounds) at launch, consisting of 517 kilograms (1,140 pounds) spacecraft and 84 kilograms (185 pounds) fuel. On 10/25/10 there was 4 kilograms (8.8 pounds) of fuel remaining. Power: 2.8-meter-by-2.8-meter (9-foot-by-9 foot) solar panel providing up to 750 watts, depending on distance from sun. Power storage via small, 16-amp- hourrechargeable nickel hydrogen battery Comet Hartley 2 Nucleus shape: Elongated Nucleus size (estimated): About 2.2 kilometers (1.4 miles) long Nucleus mass: Roughly 280 million metric tons Nucleus rotation period: About 18 hours Nucleus composition: Water ice, carbon dioxide ice, silicate dust Mission Launch: Jan. 12, 2005 Launch site: Cape Canaveral Air Force Station, Florida Launch vehicle: Delta II 7925 with Star 48 upper stage Impact with Tempel 1: 10:52 p.m. PDT July 3, 2005 (1:52 a.m. EDT July 4, 2005) Earth-comet distance at time of impact: 133.6 million kilometers (83 million miles) Total distance traveled by spacecraft from Earth to Tempel 1: 431 million kilometers (268 million miles) Flyby of Hartley 2: About 10 a.m. EDT or 7 a.m. PDT Nov. 4, 2010 Additional distance traveled by spacecraft to Hartley 2: About 4.6 billion kilometers (2.9 billion miles) Program Cost of Deep Impact: $267 million total (not including launch vehicle), consisting of $252 million spacecraft development and $15 million mission operations Cost of EPOXI extended mission: $42 million, for operations from 2007 to end of project at the end of fiscal year 2011.
    [Show full text]
  • Space Sector Brochure
    SPACE SPACE REVOLUTIONIZING THE WAY TO SPACE SPACECRAFT TECHNOLOGIES PROPULSION Moog provides components and subsystems for cold gas, chemical, and electric Moog is a proven leader in components, subsystems, and systems propulsion and designs, develops, and manufactures complete chemical propulsion for spacecraft of all sizes, from smallsats to GEO spacecraft. systems, including tanks, to accelerate the spacecraft for orbit-insertion, station Moog has been successfully providing spacecraft controls, in- keeping, or attitude control. Moog makes thrusters from <1N to 500N to support the space propulsion, and major subsystems for science, military, propulsion requirements for small to large spacecraft. and commercial operations for more than 60 years. AVIONICS Moog is a proven provider of high performance and reliable space-rated avionics hardware and software for command and data handling, power distribution, payload processing, memory, GPS receivers, motor controllers, and onboard computing. POWER SYSTEMS Moog leverages its proven spacecraft avionics and high-power control systems to supply hardware for telemetry, as well as solar array and battery power management and switching. Applications include bus line power to valves, motors, torque rods, and other end effectors. Moog has developed products for Power Management and Distribution (PMAD) Systems, such as high power DC converters, switching, and power stabilization. MECHANISMS Moog has produced spacecraft motion control products for more than 50 years, dating back to the historic Apollo and Pioneer programs. Today, we offer rotary, linear, and specialized mechanisms for spacecraft motion control needs. Moog is a world-class manufacturer of solar array drives, propulsion positioning gimbals, electric propulsion gimbals, antenna positioner mechanisms, docking and release mechanisms, and specialty payload positioners.
    [Show full text]
  • Stardust Sample Return
    National Aeronautics and Space Administration Stardust Sample Return Press Kit January 2006 www.nasa.gov Contacts Merrilee Fellows Policy/Program Management (818) 393-0754 NASA Headquarters, Washington DC Agle Stardust Mission (818) 393-9011 Jet Propulsion Laboratory, Pasadena, Calif. Vince Stricherz Science Investigation (206) 543-2580 University of Washington, Seattle, Wash. Contents General Release ............................................................................................................... 3 Media Services Information ……………………….................…………….................……. 5 Quick Facts …………………………………………..................………....…........…....….. 6 Mission Overview …………………………………….................……….....……............…… 7 Recovery Timeline ................................................................................................ 18 Spacecraft ………………………………………………..................…..……...........……… 20 Science Objectives …………………………………..................……………...…..........….. 28 Why Stardust?..................…………………………..................………….....………............... 31 Other Comet Missions .......................................................................................... 33 NASA's Discovery Program .................................................................................. 36 Program/Project Management …………………………........................…..…..………...... 40 1 2 GENERAL RELEASE: NASA PREPARES FOR RETURN OF INTERSTELLAR CARGO NASA’s Stardust mission is nearing Earth after a 2.88 billion mile round-trip journey
    [Show full text]
  • Planetary Science
    Mission Directorate: Science Theme: Planetary Science Theme Overview Planetary Science is a grand human enterprise that seeks to discover the nature and origin of the celestial bodies among which we live, and to explore whether life exists beyond Earth. The scientific imperative for Planetary Science, the quest to understand our origins, is universal. How did we get here? Are we alone? What does the future hold? These overarching questions lead to more focused, fundamental science questions about our solar system: How did the Sun's family of planets, satellites, and minor bodies originate and evolve? What are the characteristics of the solar system that lead to habitable environments? How and where could life begin and evolve in the solar system? What are the characteristics of small bodies and planetary environments and what potential hazards or resources do they hold? To address these science questions, NASA relies on various flight missions, research and analysis (R&A) and technology development. There are seven programs within the Planetary Science Theme: R&A, Lunar Quest, Discovery, New Frontiers, Mars Exploration, Outer Planets, and Technology. R&A supports two operating missions with international partners (Rosetta and Hayabusa), as well as sample curation, data archiving, dissemination and analysis, and Near Earth Object Observations. The Lunar Quest Program consists of small robotic spacecraft missions, Missions of Opportunity, Lunar Science Institute, and R&A. Discovery has two spacecraft in prime mission operations (MESSENGER and Dawn), an instrument operating on an ESA Mars Express mission (ASPERA-3), a mission in its development phase (GRAIL), three Missions of Opportunities (M3, Strofio, and LaRa), and three investigations using re-purposed spacecraft: EPOCh and DIXI hosted on the Deep Impact spacecraft and NExT hosted on the Stardust spacecraft.
    [Show full text]
  • The Power of Sample Return Missions - Stardust and Hayabusa
    The Molecular Universe Proceedings IAU Symposium No. 280, 2011 c International Astronomical Union 2011 Jos´e Cernicharo & Rafael Bachiller, eds. doi:10.1017/S174392131102504X The Power of Sample Return Missions - Stardust and Hayabusa Scott A. Sandford1 1 Astrophysics Branch, NASA-Ames Research Center, Mail Stop 245-6, Moffett Field, CA 94035 USA email: [email protected] Abstract. Sample return missions offer opportunities to learn things about other objects in our Solar System (and beyond) that cannot be determined by observations using in situ spacecraft. This is largely because the returned samples can be studied in terrestrial laboratories where the analyses are not limited by the constraints - power, mass, time, precision, etc. - imposed by normal spacecraft operations. In addition, the returned samples serve as a scientific resource that is available far into the future; the study of the samples can continue long after the original spacecraft mission is finished. This means the samples can be continually revisited as both our scientific understanding and analytical techniques improve with time. These advantages come with some additional difficulties, however. In particular, sample return missions must deal with the additional difficulties of proximity operations near the objects they are to sample, and they must be capable of successfully making a round trip between the Earth and the sampled object. Such missions therefore need to take special precautions against unique hazards and be designed to successfully complete relatively extended mission durations. Despite these difficulties, several recent missions have managed to successfully complete sam- ple returns from a number of Solar System objects. These include the Stardust mission (samples from Comet 81P/Wild 2), the Hayabusa mission (samples from asteroid 25143 Itokawa), and the Genesis mission (samples of solar wind).
    [Show full text]
  • Planetary Science Update & Perspectives on Venus Exploration
    Planetary Science Update & Perspectives on Venus Exploration Presentation at VEXAG James L. Green Director, Planetary Science Division May 6, 2008 1 Outline • FY09 Presidents Budget • Venus exploration opportunities: – Plans for next New Frontiers – Plans for next Discovery – Plans for SALMON – R&A opportunities 2 BUDGET BY SCIENCE THEME 3 Planetary Division 4 Planetary Division 5 What Changed, What’s the Same What Changed: • Initiated an Outer Planets Flagship (OPF) study activity joint with ESA/JAXA. • Lunar Science Research augmented to include a series of small lunar spacecraft. • Augments and enhances R&A to return more results from Planetary missions. • Discovery Program: Includes the recently selected MoOs (EPOXI and Stardust-NExT), adds Aspera-3 2nd extension (ESA/Mars Express), and selected GRAIL. • Preserves critical ISP work FY08 thru FY10, but deletes outyear activities in favor of more critical R&A and RPS enhancements. • Completes the Advanced Stirling RPS development and prepares for flight demonstration. • Mars Scout 2011 delayed to 2013 due to conflict of interest discovered during proposal evaluation. • Direction to the Mars Program to study Mars Sample Return (MSR) as a next decade goal • Expands US participation on the ESA/ExoMars mission by funding the potential selection of BOTH candidate U.S. instruments and EDL support. What’s the Same: • Discovery Program: MESSENGER, Dawn, Mars Express/Aspera-3, Chandraayn/MMM • New Frontiers Program: Juno and New Horizons • Mars Program: Odyssey, MER, MRO, Phoenix, MSL • Research
    [Show full text]