Set Theory, Type Theory and the Future of Proof Verification Software
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Linear Type Theory for Asynchronous Session Types
JFP 20 (1): 19–50, 2010. c Cambridge University Press 2009 19 ! doi:10.1017/S0956796809990268 First published online 8 December 2009 Linear type theory for asynchronous session types SIMON J. GAY Department of Computing Science, University of Glasgow, Glasgow G12 8QQ, UK (e-mail: [email protected]) VASCO T. VASCONCELOS Departamento de Informatica,´ Faculdade de Ciencias,ˆ Universidade de Lisboa, 1749-016 Lisboa, Portugal (e-mail: [email protected]) Abstract Session types support a type-theoretic formulation of structured patterns of communication, so that the communication behaviour of agents in a distributed system can be verified by static typechecking. Applications include network protocols, business processes and operating system services. In this paper we define a multithreaded functional language with session types, which unifies, simplifies and extends previous work. There are four main contributions. First is an operational semantics with buffered channels, instead of the synchronous communication of previous work. Second, we prove that the session type of a channel gives an upper bound on the necessary size of the buffer. Third, session types are manipulated by means of the standard structures of a linear type theory, rather than by means of new forms of typing judgement. Fourth, a notion of subtyping, including the standard subtyping relation for session types (imported into the functional setting), and a novel form of subtyping between standard and linear function types, which allows the typechecker to handle linear types conveniently. Our new approach significantly simplifies session types in the functional setting, clarifies their essential features and provides a secure foundation for language developments such as polymorphism and object-orientation. -
1 Elementary Set Theory
1 Elementary Set Theory Notation: fg enclose a set. f1; 2; 3g = f3; 2; 2; 1; 3g because a set is not defined by order or multiplicity. f0; 2; 4;:::g = fxjx is an even natural numberg because two ways of writing a set are equivalent. ; is the empty set. x 2 A denotes x is an element of A. N = f0; 1; 2;:::g are the natural numbers. Z = f:::; −2; −1; 0; 1; 2;:::g are the integers. m Q = f n jm; n 2 Z and n 6= 0g are the rational numbers. R are the real numbers. Axiom 1.1. Axiom of Extensionality Let A; B be sets. If (8x)x 2 A iff x 2 B then A = B. Definition 1.1 (Subset). Let A; B be sets. Then A is a subset of B, written A ⊆ B iff (8x) if x 2 A then x 2 B. Theorem 1.1. If A ⊆ B and B ⊆ A then A = B. Proof. Let x be arbitrary. Because A ⊆ B if x 2 A then x 2 B Because B ⊆ A if x 2 B then x 2 A Hence, x 2 A iff x 2 B, thus A = B. Definition 1.2 (Union). Let A; B be sets. The Union A [ B of A and B is defined by x 2 A [ B if x 2 A or x 2 B. Theorem 1.2. A [ (B [ C) = (A [ B) [ C Proof. Let x be arbitrary. x 2 A [ (B [ C) iff x 2 A or x 2 B [ C iff x 2 A or (x 2 B or x 2 C) iff x 2 A or x 2 B or x 2 C iff (x 2 A or x 2 B) or x 2 C iff x 2 A [ B or x 2 C iff x 2 (A [ B) [ C Definition 1.3 (Intersection). -
Mathematics 144 Set Theory Fall 2012 Version
MATHEMATICS 144 SET THEORY FALL 2012 VERSION Table of Contents I. General considerations.……………………………………………………………………………………………………….1 1. Overview of the course…………………………………………………………………………………………………1 2. Historical background and motivation………………………………………………………….………………4 3. Selected problems………………………………………………………………………………………………………13 I I. Basic concepts. ………………………………………………………………………………………………………………….15 1. Topics from logic…………………………………………………………………………………………………………16 2. Notation and first steps………………………………………………………………………………………………26 3. Simple examples…………………………………………………………………………………………………………30 I I I. Constructions in set theory.………………………………………………………………………………..……….34 1. Boolean algebra operations.……………………………………………………………………………………….34 2. Ordered pairs and Cartesian products……………………………………………………………………… ….40 3. Larger constructions………………………………………………………………………………………………..….42 4. A convenient assumption………………………………………………………………………………………… ….45 I V. Relations and functions ……………………………………………………………………………………………….49 1.Binary relations………………………………………………………………………………………………………… ….49 2. Partial and linear orderings……………………………..………………………………………………… ………… 56 3. Functions…………………………………………………………………………………………………………… ….…….. 61 4. Composite and inverse function.…………………………………………………………………………… …….. 70 5. Constructions involving functions ………………………………………………………………………… ……… 77 6. Order types……………………………………………………………………………………………………… …………… 80 i V. Number systems and set theory …………………………………………………………………………………. 84 1. The Natural Numbers and Integers…………………………………………………………………………….83 2. Finite induction -
The Beauty, Power and Future of Mathematics I Am Thrilled and at The
The Beauty, Power and Future of Mathematics I am thrilled and at the same time humble to be honored by the Doctor Honoris Causa of the University Politehnica of Bucharest. Romania is a country with a very excellent tradition of mathematics at the very best. When I was in high school in Hong Kong, I read with care an elementary book by Popa with lucid explanation and colorful illustrations of basic mathematical concepts. During my undergraduate studies at Sir George Williams University in Montreal, a professor introduced me to Barbu’s works on nonlinear differential and integral equations. I should also mention that he introduced me to the book on linear partial differential operators by Hörmander. When I was a graduate student at the University of Toronto working under the supervision of Professor Atkinson, I learned Fredholm operators from him and the works of Foias and Voiculescu from the operator theory group. I was also influenced by the school of harmonic analysts led by E. M. Stein at Princeton. When I was a visiting professor at the University of California at Irvine, I learned from Martin Schechter of the works of Foias on nonlinear partial differential equations. This education path of mine points clearly to the influence of Romanian mathematics on me, the importance of knowing in depth different but related fields and my life‐long works on pseudo‐differential operators and related topics in mathematics and quantum physics. I chose to specialize in mathematics when I was in grade 10 at Kowloon Technical School in Hong Kong dated back to 1967, not least inspired by an inspiring teacher. -
A Taste of Set Theory for Philosophers
Journal of the Indian Council of Philosophical Research, Vol. XXVII, No. 2. A Special Issue on "Logic and Philosophy Today", 143-163, 2010. Reprinted in "Logic and Philosophy Today" (edited by A. Gupta ans J.v.Benthem), College Publications vol 29, 141-162, 2011. A taste of set theory for philosophers Jouko Va¨an¨ anen¨ ∗ Department of Mathematics and Statistics University of Helsinki and Institute for Logic, Language and Computation University of Amsterdam November 17, 2010 Contents 1 Introduction 1 2 Elementary set theory 2 3 Cardinal and ordinal numbers 3 3.1 Equipollence . 4 3.2 Countable sets . 6 3.3 Ordinals . 7 3.4 Cardinals . 8 4 Axiomatic set theory 9 5 Axiom of Choice 12 6 Independence results 13 7 Some recent work 14 7.1 Descriptive Set Theory . 14 7.2 Non well-founded set theory . 14 7.3 Constructive set theory . 15 8 Historical Remarks and Further Reading 15 ∗Research partially supported by grant 40734 of the Academy of Finland and by the EUROCORES LogICCC LINT programme. I Journal of the Indian Council of Philosophical Research, Vol. XXVII, No. 2. A Special Issue on "Logic and Philosophy Today", 143-163, 2010. Reprinted in "Logic and Philosophy Today" (edited by A. Gupta ans J.v.Benthem), College Publications vol 29, 141-162, 2011. 1 Introduction Originally set theory was a theory of infinity, an attempt to understand infinity in ex- act terms. Later it became a universal language for mathematics and an attempt to give a foundation for all of mathematics, and thereby to all sciences that are based on mathematics. -
Chapter 1 Logic and Set Theory
Chapter 1 Logic and Set Theory To criticize mathematics for its abstraction is to miss the point entirely. Abstraction is what makes mathematics work. If you concentrate too closely on too limited an application of a mathematical idea, you rob the mathematician of his most important tools: analogy, generality, and simplicity. – Ian Stewart Does God play dice? The mathematics of chaos In mathematics, a proof is a demonstration that, assuming certain axioms, some statement is necessarily true. That is, a proof is a logical argument, not an empir- ical one. One must demonstrate that a proposition is true in all cases before it is considered a theorem of mathematics. An unproven proposition for which there is some sort of empirical evidence is known as a conjecture. Mathematical logic is the framework upon which rigorous proofs are built. It is the study of the principles and criteria of valid inference and demonstrations. Logicians have analyzed set theory in great details, formulating a collection of axioms that affords a broad enough and strong enough foundation to mathematical reasoning. The standard form of axiomatic set theory is denoted ZFC and it consists of the Zermelo-Fraenkel (ZF) axioms combined with the axiom of choice (C). Each of the axioms included in this theory expresses a property of sets that is widely accepted by mathematicians. It is unfortunately true that careless use of set theory can lead to contradictions. Avoiding such contradictions was one of the original motivations for the axiomatization of set theory. 1 2 CHAPTER 1. LOGIC AND SET THEORY A rigorous analysis of set theory belongs to the foundations of mathematics and mathematical logic. -
Issue 73 ISSN 1027-488X
NEWSLETTER OF THE EUROPEAN MATHEMATICAL SOCIETY Feature History Interview ERCOM Hedgehogs Richard von Mises Mikhail Gromov IHP p. 11 p. 31 p. 19 p. 35 September 2009 Issue 73 ISSN 1027-488X S E European M M Mathematical E S Society Geometric Mechanics and Symmetry Oxford University Press is pleased to From Finite to Infinite Dimensions announce that all EMS members can benefit from a 20% discount on a large range of our Darryl D. Holm, Tanya Schmah, and Cristina Stoica Mathematics books. A graduate level text based partly on For more information please visit: lectures in geometry, mechanics, and symmetry given at Imperial College www.oup.co.uk/sale/science/ems London, this book links traditional classical mechanics texts and advanced modern mathematical treatments of the FORTHCOMING subject. Differential Equations with Linear 2009 | 460 pp Algebra Paperback | 978-0-19-921291-0 | £29.50 Matthew R. Boelkins, Jack L Goldberg, Hardback | 978-0-19-921290-3 | £65.00 and Merle C. Potter Explores the interplaybetween linear FORTHCOMING algebra and differential equations by Thermoelasticity with Finite Wave examining fundamental problems in elementary differential equations. This Speeds text is accessible to students who have Józef Ignaczak and Martin completed multivariable calculus and is appropriate for Ostoja-Starzewski courses in mathematics and engineering that study Extensively covers the mathematics of systems of differential equations. two leading theories of hyperbolic October 2009 | 464 pp thermoelasticity: the Lord-Shulman Hardback | 978-0-19-538586-1 | £52.00 theory, and the Green-Lindsay theory. Oxford Mathematical Monographs Introduction to Metric and October 2009 | 432 pp Topological Spaces Hardback | 978-0-19-954164-5 | £70.00 Second Edition Wilson A. -
A General Framework for the Semantics of Type Theory
A General Framework for the Semantics of Type Theory Taichi Uemura November 14, 2019 Abstract We propose an abstract notion of a type theory to unify the semantics of various type theories including Martin-L¨oftype theory, two-level type theory and cubical type theory. We establish basic results in the semantics of type theory: every type theory has a bi-initial model; every model of a type theory has its internal language; the category of theories over a type theory is bi-equivalent to a full sub-2-category of the 2-category of models of the type theory. 1 Introduction One of the key steps in the semantics of type theory and logic is to estab- lish a correspondence between theories and models. Every theory generates a model called its syntactic model, and every model has a theory called its internal language. Classical examples are: simply typed λ-calculi and cartesian closed categories (Lambek and Scott 1986); extensional Martin-L¨oftheories and locally cartesian closed categories (Seely 1984); first-order theories and hyperdoctrines (Seely 1983); higher-order theories and elementary toposes (Lambek and Scott 1986). Recently, homotopy type theory (The Univalent Foundations Program 2013) is expected to provide an internal language for what should be called \el- ementary (1; 1)-toposes". As a first step, Kapulkin and Szumio (2019) showed that there is an equivalence between dependent type theories with intensional identity types and finitely complete (1; 1)-categories. As there exist correspondences between theories and models for almost all arXiv:1904.04097v2 [math.CT] 13 Nov 2019 type theories and logics, it is natural to ask if one can define a general notion of a type theory or logic and establish correspondences between theories and models uniformly. -
Surviving Set Theory: a Pedagogical Game and Cooperative Learning Approach to Undergraduate Post-Tonal Music Theory
Surviving Set Theory: A Pedagogical Game and Cooperative Learning Approach to Undergraduate Post-Tonal Music Theory DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Angela N. Ripley, M.M. Graduate Program in Music The Ohio State University 2015 Dissertation Committee: David Clampitt, Advisor Anna Gawboy Johanna Devaney Copyright by Angela N. Ripley 2015 Abstract Undergraduate music students often experience a high learning curve when they first encounter pitch-class set theory, an analytical system very different from those they have studied previously. Students sometimes find the abstractions of integer notation and the mathematical orientation of set theory foreign or even frightening (Kleppinger 2010), and the dissonance of the atonal repertoire studied often engenders their resistance (Root 2010). Pedagogical games can help mitigate student resistance and trepidation. Table games like Bingo (Gillespie 2000) and Poker (Gingerich 1991) have been adapted to suit college-level classes in music theory. Familiar television shows provide another source of pedagogical games; for example, Berry (2008; 2015) adapts the show Survivor to frame a unit on theory fundamentals. However, none of these pedagogical games engage pitch- class set theory during a multi-week unit of study. In my dissertation, I adapt the show Survivor to frame a four-week unit on pitch- class set theory (introducing topics ranging from pitch-class sets to twelve-tone rows) during a sophomore-level theory course. As on the show, students of different achievement levels work together in small groups, or “tribes,” to complete worksheets called “challenges”; however, in an important modification to the structure of the show, no students are voted out of their tribes. -
Basic Concepts of Set Theory, Functions and Relations 1. Basic
Ling 310, adapted from UMass Ling 409, Partee lecture notes March 1, 2006 p. 1 Basic Concepts of Set Theory, Functions and Relations 1. Basic Concepts of Set Theory........................................................................................................................1 1.1. Sets and elements ...................................................................................................................................1 1.2. Specification of sets ...............................................................................................................................2 1.3. Identity and cardinality ..........................................................................................................................3 1.4. Subsets ...................................................................................................................................................4 1.5. Power sets .............................................................................................................................................4 1.6. Operations on sets: union, intersection...................................................................................................4 1.7 More operations on sets: difference, complement...................................................................................5 1.8. Set-theoretic equalities ...........................................................................................................................5 Chapter 2. Relations and Functions ..................................................................................................................6 -
Applied Mathematics for Database Professionals
7451FM.qxd 5/17/07 10:41 AM Page i Applied Mathematics for Database Professionals Lex de Haan and Toon Koppelaars 7451FM.qxd 5/17/07 10:41 AM Page ii Applied Mathematics for Database Professionals Copyright © 2007 by Lex de Haan and Toon Koppelaars All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior written permission of the copyright owner and the publisher. ISBN-13: 978-1-59059-745-3 ISBN-10: 1-59059-745-1 Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1 Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark. Lead Editor: Jonathan Gennick Technical Reviewers: Chris Date, Cary Millsap Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jonathan Gennick, Jason Gilmore, Jonathan Hassell, Chris Mills, Matthew Moodie, Jeffrey Pepper, Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh Project Manager: Tracy Brown Collins Copy Edit Manager: Nicole Flores Copy Editor: Susannah Davidson Pfalzer Assistant Production Director: Kari Brooks-Copony Production Editor: Kelly Winquist Compositor: Dina Quan Proofreader: April Eddy Indexer: Brenda Miller Artist: April Milne Cover Designer: Kurt Krames Manufacturing Director: Tom Debolski Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor, New York, NY 10013. -
Dependable Atomicity in Type Theory
Dependable Atomicity in Type Theory Andreas Nuyts1 and Dominique Devriese2 1 imec-DistriNet, KU Leuven, Belgium 2 Vrije Universiteit Brussel, Belgium Presheaf semantics [Hof97, HS97] are an excellent tool for modelling relational preservation prop- erties of (dependent) type theory. They have been applied to parametricity (which is about preservation of relations) [AGJ14], univalent type theory (which is about preservation of equiv- alences) [BCH14, Hub15], directed type theory (which is about preservation of morphisms) and even combinations thereof [RS17, CH19]. Of course, after going through the endeavour of con- structing a presheaf model of type theory, we want type-theoretic profit, i.e. we want internal operations that allow us to write cheap proofs of the `free' theorems [Wad89] that follow from the preservation property concerned. While the models for univalence, parametricity and directed type theory are all just cases of presheaf categories, approaches to internalize their results do not have an obvious common ances- tor (neither historically nor mathematically). Cohen et al. [CCHM16] have used the final type extension operator Glue to prove univalence. In previous work with Vezzosi [NVD17], we used Glue and its dual, the initial type extension operator Weld, to internalize parametricity to some extent. Before, Bernardy, Coquand and Moulin [BCM15, Mou16] have internalized parametricity using completely different `boundary filling’ operators Ψ (for extending types) and Φ (for extending func- tions). Unfortunately, Ψ and Φ have so far only been proven sound with respect to substructural (affine-like) variables of representable types (such as the relational or homotopy interval I). More 1 recently, Licata et al. [LOPS18] have exploited the fact that the homotopyp interval I is atomic | meaning that the exponential functor (I ! xy) has a right adjoint | in order to construct a universe of Kan-fibrant types from a vanilla Hofmann-Streicher universe [HS97] internally.