Geology.Gsapubs.Org on May 2, 2011

Total Page:16

File Type:pdf, Size:1020Kb

Geology.Gsapubs.Org on May 2, 2011 Downloaded from geology.gsapubs.org on May 2, 2011 Geology Seismically imaged relict slab from the 55 Ma Siletzia accretion to the northwest United States Brandon Schmandt and Eugene Humphreys Geology 2011;39;175-178 doi: 10.1130/G31558.1 Email alerting services click www.gsapubs.org/cgi/alerts to receive free e-mail alerts when new articles cite this article Subscribe click www.gsapubs.org/subscriptions/ to subscribe to Geology Permission request click http://www.geosociety.org/pubs/copyrt.htm#gsa to contact GSA Copyright not claimed on content prepared wholly by U.S. government employees within scope of their employment. Individual scientists are hereby granted permission, without fees or further requests to GSA, to use a single figure, a single table, and/or a brief paragraph of text in subsequent works and to make unlimited copies of items in GSA's journals for noncommercial use in classrooms to further education and science. This file may not be posted to any Web site, but authors may post the abstracts only of their articles on their own or their organization's Web site providing the posting includes a reference to the article's full citation. GSA provides this and other forums for the presentation of diverse opinions and positions by scientists worldwide, regardless of their race, citizenship, gender, religion, or political viewpoint. Opinions presented in this publication do not reflect official positions of the Society. Notes © 2011 Geological Society of America Downloaded from geology.gsapubs.org on May 2, 2011 Seismically imaged relict slab from the 55 Ma Siletzia accretion to the northwest United States Brandon Schmandt and Eugene Humphreys Department of Geological Sciences, University of Oregon, Eugene, Oregon 97403, USA ABSTRACT depth from 30 km at 60–90 km depth, to 65 km Teleseismic tomography images a large high-velocity “curtain” extending vertically beneath at >820 km depth. The method was described the ca. 50 Ma Challis magmatic trend to maximum depths of 230–600 km. We interpret this in detail in Schmandt and Humphreys (2010b). structure as subducted Farallon ocean lithosphere that stalled with the ca. 55 Ma accretion of Resolution tests demonstrate excellent recovery the Siletzia microplate to North America within the Columbia Embayment, and we consider of structures with length scales ≥70 km, with the regional tectonic implications. The abrupt switch ca. 53 Ma from Laramide thrusting and typical peak amplitude recovery of 70%–80% magmatic quiescence to extension and vigorous magmatism in the northwestern United States for VP and 60%–70% for VS (Fig. DR1 in the 1 is evidence for foundering of the fl at-subducting Farallon slab. To account for the imaged GSA Data Repository ). VP resolution is slightly curtain, foundering apparently occurred by rollback after Siletzia accretion terminated sub- better than VS resolution in the Pacifi c North- duction within the Columbia Embayment. The magnitude of the high seismic velocity curtain west as a result of 150 additional short-period is approximately that expected for 20–50 m.y. old ocean lithosphere that stalled in the upper stations (Fig. 1), a greater number of high- mantle ca. 50 Ma. We suggest that the stalled slab became nearly neutrally buoyant as a result quality teleseismic P arrivals, and shorter wave- of removal of its basaltic crust, the melting of which likely contributed to the short-lived vigor length sampling of teleseismic P arrivals. of Challis magmatism. After Siletzia accretion, normal dip Cascadia subduction initiated west Figures 1 and 2 show three distinctive high- of Siletzia, evidenced by arc volcanism in Oregon and Washington beginning ca. 45–40 Ma, velocity structures beneath the Pacifi c North- while continued quiescence of the Sierra Nevada arc suggests persistence of fl at subduction to west. A prominent, relatively small and approx- the south. Kinematically, this requires a tear in the subducted Farallon slab near the latitude imately elliptical body is imaged below the of southern Oregon. We propose that north to south propagation of this torn slab edge propa- source area of the Columbia River fl ood basalts gated the ignimbrite fl are-up across what now is the northern Basin and Range and ended the in northeast Oregon (Fig. DR2). This structure Laramide orogeny. may owe its creation to basalt depletion or lithospheric delamination (Hales et al., 2005). INTRODUCTION the western United States by inverting 248,000 A second high-velocity feature is the slab- New western United States seismic images P and 84,000 S relative traveltime residuals of like structure beneath the Cascade Arc, which enabled by EarthScope’s USArray provide teleseismic earthquakes observed by USAr- must be the steeply dipping subducted Juan de for the fi rst time high-resolution information ray and more than 1700 additional stations Fuca slab. The subject of this paper is the high- on upper mantle structure over a large area of (Schmandt and Humphreys, 2010a). The inver- velocity curtain extending vertically from the continent. In this paper we discuss the Pacifi c sion uses recent advances in western U.S. crust base of North America lithosphere to depths Northwest portion of our recent tomographic models (Yang et al., 2008; Gilbert and Flesch, of ~230 km beneath eastern Washington and models (Schmandt and Humphreys, 2010a) to 2009) to better isolate the mantle component of 450–600 km beneath northern Idaho and west- focus on a prominent but previously unresolved residual times and three-dimensional frequency- ernmost Montana (Figs. 1 and 2). Several recent “curtain” of high-velocity mantle extending dependent sensitivity kernels to map residuals tomography studies using USArray data found a vertically from beneath central Idaho to near (measured in multiple frequency bands) into large volume of vertically elongated high-veloc- the eastern edge of the Cascades in northern velocity structure. Horizontal node spacing is ity mantle in this region (e.g., Roth et al., 2008; Washington and extending down to depths of 40 km within the footprint of the USArray, and Sigloch et al., 2008; Burdick et al., 2009; Tian 230–600 km (Figs. 1 and 2). The only plausible vertical node spacing increases gradually with et al., 2009; Xue and Allen, 2010), although not explanation for this large volume of high-veloc- ity mantle is recently subducted ocean litho- 230 km 230 km sphere. We address here the seismic, tectonic, A B C and magmatic evidence that this structure is 48° subducted Farallon slab abandoned in the upper mantle during the ca. 55 Ma accretion of Silet- zia, which we defi ne as the fragment of Farallon lithosphere that fi lled the Columbia Embayment 44° in the Eocene. We then consider the seismic and geodynamic plausibility that ocean lithosphere VP VS & & subducted in the early Cenozoic did not lose 236° 240° 244° 248° - 2.7 0 2.7% - 4 0 4% its seismic contrast or sink into the Earth. We Figure 1. A: Regional topography and stations used in our study. Blue indicates stations then discuss the implications of this structure for used for P and S data; red indicates short-period stations used only for P data. Backarc early Cenozoic tectonic evolution of the western area underlain by Siletzia is well approximated by low-lying Columbia basin (see Fig. 2). United States. B: P-wave velocity variations. C: S-wave velocity variations. PACIFIC NORTHWEST TOMOGRAPHY 1GSA Data Repository item 2011073, supplemental fi gures, is available online at www.geosociety.org/ We created high-resolution P-wave (VP) and pubs/ft2011.htm, or on request from [email protected] or Documents Secretary, GSA, P.O. Box 9140, S-wave (VS) images of the upper mantle beneath Boulder, CO 80301, USA. © 2011 Geological Society of America. For permission to copy, contact Copyright Permissions, GSA, or [email protected]. GEOLOGY,Geology, February February 2011; 2011 v. 39; no. 2; p. 175–178; doi: 10.1130/G31558.1; 2 fi gures; Data Repository item 2011073. 175 Downloaded from geology.gsapubs.org on May 2, 2011 as a feature distinct from the smaller anomaly ish Columbia ca. 48 Ma (Gehrels et al., 2009) Other factors contributing to the expected beneath northeast Oregon. Our better resolution and Challis magmatism waned 48–45 Ma seismic contrast of the slab with the astheno- in this area is a result of data from 30 stations (Gasch nig et al., 2009). Subsequently, magma- sphere include effects caused by dehydration in the Wallowa Mountains array. Based on the tism swept west across Oregon (the Clarno vol- upon formation of lithosphere at the spreading excellent recovery of input structure in synthetic canics, ca. 45–40 Ma; Retallack et al., 2000) and center and seismic anisotropy, although we have tests (Fig. DR1), we consider the high-velocity the Cascade arc initiated ca. 45–40 Ma (Fig. 2A; little knowledge about either of these properties. curtain and its separation from the Wallowa Christiansen and Yeats, 1992) as a response to For the effects of water, if we assume a 50 km Mountains anomaly to be robust features. The outward stepping of subduction required by thickness of dehydrated slab to be seismically maximum depth of the curtain being in the Siletzia accretion. faster by an amount equivalent to tempera- transition zone beneath northern Idaho is sup- This geologic record supports a history in ture decrease of 100 ºC (Karato, 2003), it can δ ported by receiver function results indicating which Farallon slab subducted fl at against North increase the expected imaged velocities by VP δ a spatially correlated upward defl ection of the America during the Laramide and fell away = 0.6% and VS = 1.0%. If ocean lithosphere 410 km discontinuity and no strong defl ection shortly after Siletzia accretion, at the time of anisotropy is preserved upon subduction and of the 660 km discontinuity (Eagar et al., 2010).
Recommended publications
  • Geologic History of Siletzia, a Large Igneous Province in the Oregon And
    Geologic history of Siletzia, a large igneous province in the Oregon and Washington Coast Range: Correlation to the geomagnetic polarity time scale and implications for a long-lived Yellowstone hotspot Wells, R., Bukry, D., Friedman, R., Pyle, D., Duncan, R., Haeussler, P., & Wooden, J. (2014). Geologic history of Siletzia, a large igneous province in the Oregon and Washington Coast Range: Correlation to the geomagnetic polarity time scale and implications for a long-lived Yellowstone hotspot. Geosphere, 10 (4), 692-719. doi:10.1130/GES01018.1 10.1130/GES01018.1 Geological Society of America Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Downloaded from geosphere.gsapubs.org on September 10, 2014 Geologic history of Siletzia, a large igneous province in the Oregon and Washington Coast Range: Correlation to the geomagnetic polarity time scale and implications for a long-lived Yellowstone hotspot Ray Wells1, David Bukry1, Richard Friedman2, Doug Pyle3, Robert Duncan4, Peter Haeussler5, and Joe Wooden6 1U.S. Geological Survey, 345 Middlefi eld Road, Menlo Park, California 94025-3561, USA 2Pacifi c Centre for Isotopic and Geochemical Research, Department of Earth, Ocean and Atmospheric Sciences, 6339 Stores Road, University of British Columbia, Vancouver, BC V6T 1Z4, Canada 3Department of Geology and Geophysics, University of Hawaii at Manoa, 1680 East West Road, Honolulu, Hawaii 96822, USA 4College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, 104 CEOAS Administration Building, Corvallis, Oregon 97331-5503, USA 5U.S. Geological Survey, 4210 University Drive, Anchorage, Alaska 99508-4626, USA 6School of Earth Sciences, Stanford University, 397 Panama Mall Mitchell Building 101, Stanford, California 94305-2210, USA ABSTRACT frames, the Yellowstone hotspot (YHS) is on southern Vancouver Island (Canada) to Rose- or near an inferred northeast-striking Kula- burg, Oregon (Fig.
    [Show full text]
  • Brief Overview of North American Cordilleran Geology by Cin-Ty Lee Topography Map of North America
    Brief overview of North American Cordilleran geology by Cin‐Ty Lee Note: make sure to take notes as I will talk or sketch on the board many things that are not presented explicitly in these slides Topography map of North America Topography map How does the NthNorth AiAmerican Cor dillera fit itinto a glbllobal contt?text? Dickinson 2004 P‐wave tomography: Seismic structure beneath western USA Burdick et al. 2008 Crustal provinces of North America (Laurentia) ‐Proterozoic and Archean terranes were already assembled by 1.6 Ga Hoffman, 1988 Crustal provinces in southwestern USA Hoffman, 1988 Bennett and DePaolo, 1987 Some examples of tectonic margins for your reference Dickinson and Snyder, 1978 1.1 Ga = Rodinia Super‐continent (Grenvillian age) Neo‐Proterozoic = Rodinia breaks up “western” margin of Laurentia represents a passive margin due to opening of the Panthalassan ocean 700‐400 Ma Western margin of Laurentia represents a passive margin Dickinson and Snyder, 1978 400‐250 Ma Passive margin is interrupted in Devonian times by the accretion of island arcs Antler and Sonoma orogenies Accretion of allochthonous terranes to the western margin of the NhNorth AiAmerican craton Antler/Sonoma orogenies result in the accretion of Paleozoic island arc terranes to western North America Permian Formation of Pangea “”“western” margin of NhNorth AiAmerica now didominate d by subduct ion zone 250‐50 Ma Subduction results in continued accretion of fringing island arcs and the generation of continental magmatic arcs Sierra Nevada batholith Sevier and
    [Show full text]
  • Hydrodynamic Mechanism for the Laramide Orogeny
    Hydrodynamic mechanism for the Laramide orogeny Craig H. Jones1, G. Lang Farmer1, Brad Sageman2, and Shijie Zhong3 1Department of Geological Sciences and CIRES (Cooperative Institute for Research in Environmental Science), University of Colo- rado at Boulder, 2200 Colorado Avenue, Boulder, Colorado 80309-0390, USA 2Department of Earth and Planetary Sciences, Northwestern University, 1850 Campus Drive, Evanston, Illinois 60208-2150, USA 3Department of Physics, University of Colorado at Boulder, 2000 Colorado Avenue, Boulder, Colorado 80309-0390, USA ABSTRACT INTRODUCTION subduction and attendant subduction erosion only affected only a narrow (~200 km) swath The widespread presumption that the Far- The Late Cretaceous to early Tertiary of oceanic lithosphere underthrusting present- allon plate subducted along the base of North Laramide orogeny that affected much of south- day southern California (Barth and Schneider- American lithosphere under most of the western North America was not only a major man, 1996; Saleeby, 2003). If so, why was the western United States and ~1000 km inboard mountain building event, but also coincided with shallowly subducting lithosphere so restricted from the trench has dominated tectonic stud- major shifts in the distribution of both igneous spatially, and how could such narrow “fl at-slab” ies of this region, but a number of variations activity and sedimentary depocenters. Despite produce the array of geologic features generally of this concept exist due to differences in the critical role the Laramide orogeny played in attributed to the Laramide orogeny throughout interpretation of some aspects of this orogeny. the geologic evolution of western North Amer- western North America? We contend that fi ve main characteristics are ica, its origin remains enigmatic (e.g., English To address these issues we explore in this central to the Laramide orogeny and must and Johnston, 2004).
    [Show full text]
  • Fate of the Cenozoic Farallon Slab from a Comparison of Kinematic Thermal Modeling with Tomographic Images
    Earth and Planetary Science Letters 204 (2002) 17^32 www.elsevier.com/locate/epsl Fate of the Cenozoic Farallon slab from a comparison of kinematic thermal modeling with tomographic images Christian Schmid Ã, Saskia Goes, Suzan van der Lee, Domenico Giardini Institute of Geophysics, ETH Ho«nggerberg (HPP), 8093 Zu«rich, Switzerland Received 28May 2002; received in revised form 11 September 2002; accepted 18September 2002 Abstract After more than 100 million years of subduction, only small parts of the Farallon plate are still subducting below western North America today. Due to the relatively young age of the most recently subducted parts of the Farallon plate and their high rates of subduction, the subducted lithosphere might be expected to have mostly thermally equilibrated with the surrounding North American mantle. However, images from seismic tomography show positive seismic velocity anomalies, which have been attributed to this subduction, in both the upper and lower mantle beneath North America. We use a three-dimensional kinematic thermal model based on the Cenozoic plate tectonic history to quantify the thermal structure of the subducted Farallon plate in the upper mantle and determine which part of the plate is imaged by seismic tomography. We find that the subducted Farallon lithosphere is not yet thermally equilibrated and that its thermal signature for each time of subduction is found to be presently detectable as positive seismic velocity anomalies by tomography. However, the spatially integrated positive seismic velocity anomalies in tomography exceed the values obtained from the thermal model for a rigid, continuous slab by a factor of 1.5 to 2.0.
    [Show full text]
  • Driving the Upper Plate Surface Deformation by Slab Rollback and Mantle Flow Pietro Sternai, Laurent Jolivet, Armel Menant, Taras Gerya
    Driving the upper plate surface deformation by slab rollback and mantle flow Pietro Sternai, Laurent Jolivet, Armel Menant, Taras Gerya To cite this version: Pietro Sternai, Laurent Jolivet, Armel Menant, Taras Gerya. Driving the upper plate surface defor- mation by slab rollback and mantle flow. Earth and Planetary Science Letters, Elsevier, 2014, 405, pp.110-118. 10.1016/j.epsl.2014.08.023. insu-01064803 HAL Id: insu-01064803 https://hal-insu.archives-ouvertes.fr/insu-01064803 Submitted on 17 Sep 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Driving the upper plate surface deformation by slab rollback and mantle flow Pietro Sternai*1, Laurent Jolivet1, Armel Menant1 and Taras Gerya2 1 Institut de Sciences de la Terre d’Orléans (ISTO) - University of Orléans, France 2 Institute of Geophysics - Swiss Federal Institute of Technology (ETH), Zürich, Switzerland *Correspondence to: [email protected] The relative contribution of crustal and mantle processes to surface deformation at convergent plate margins is still controversial. Conflicting models involving either extrusion mechanisms or slab rollback, in particular, were proposed to explain the surface strain and kinematics across the Tethyan convergent domain.
    [Show full text]
  • Origin of the Colorado Mineral Belt
    Origin and Evolution of the Sierra Nevada and Walker Lane themed issue Origin of the Colorado Mineral Belt Charles E. Chapin New Mexico Bureau of Geology and Mineral Resources, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801, USA ABSTRACT Laramide plutons (ca. 75–43 Ma) are mainly may have aided the rise of magma bodies into alkaline monzonites and quartz monzonites in the upper crust from batholiths at depth, but had The Colorado Mineral Belt (CMB) is a the northeastern CMB, but dominantly calc- no role in the generation of those batholiths. northeast-trending, ~500-km-long, 25–50-km- alkaline granodiorites in the central CMB. There is the crux of the enigma. wide belt of plutons and mining districts (Colo- Geochemical and isotopic studies indicate From several decades of fi eld work in the rado, United States) that developed within that CMB magmas were generated mainly states of Colorado, New Mexico, and Wyoming, an ~1200-km-wide Late Cretaceous–Paleo- in metasomatized Proterozoic intermediate I became aware of signifi cant differences in geo- gene magma gap overlying subhorizontally to felsic lower crustal granulites and mafi c logic features on opposite sides of the CMB. My subducted segments of the Farallon plate. rocks (± mantle). Late Eocene–Oligo cene roll- goal in this paper is to summarize these differ- Of the known volcanic gaps overlying fl at back magmatism superimposed on the CMB ences, integrate them with the regional tectonic slabs in subduction zones around the Pacifi c during waning of Laramide compression and geochronologic framework, and thereby Basin, none contains zones of magmatism (ca.
    [Show full text]
  • AN ABSTRACT of the THESIS of Sarah Ashley Bromley for the Degree of Master of Science in Geology Presented on June 7, 2011. Titl
    AN ABSTRACT OF THE THESIS OF Sarah Ashley Bromley for the degree of Master of Science in Geology presented on June 7, 2011. Title: Evolution and Inheritance of Cascadia Sub-arc Mantle Reservoirs Abstract approved: Anita L. Grunder Inheritance from pre-existing mantle domains and fluid and melt contributions from active subduction together produce the geochemical signatures of mantle-derived arc basalts. In this context, this work evaluates the evolution of Cascadia mantle sources by documenting the isotopic and compositional characteristics of primitive basalts along a transect across the Eocene-Oligocene Proto-Cascadia (EOPC) arc at ~44.5-45.5° N. Primitive EOPC flows, dikes, and sills are exposed across a ~300 km transect that includes the Oregon Coast Range in the Cascadia forearc, the Western Cascades, flanking the modern arc, and the John Day and Eastern Clarno formations east of the Cascades. Like the modern arc, EOPC was built upon accreted terranes of western North America and within the Columbia embayment, which is lithosphere of oceanic affinity that crops out as the Siletzia terrane in the forearc and extends beneath the arc to the backarc. Potential mantle source reservoirs for EOPC magmas include contributions from mantle domains related to pre-existing underlying terranes, distinct North America lithosphere, and depleted Pacific-like upper mantle. In addition, the geochemical characteristics of EOPC magmas have likely been overprinted by subduction processes. Major, trace element, and isotopic data from the EOPC reveal a heterogeneous mantle source that was variably influenced by subduction processes. In the forearc, the high field strength (HFSE) enriched basalts of the Oregon Coast Range represent low degree partial melts of a relatively enriched mantle source.
    [Show full text]
  • The American Cordillera: a Long Journey Through Time & Space
    The American Cordillera: A Long Journey Through Time & Space Part III:The North American Taphrogen Lecture 25: April 25, G. Zandt An overview of the collapse of the American Cordillera 1 Some of the Big Questions • What caused the extreme inboard migration of deformation and magmatism during the Laramide? [Flat Slab] • What caused the mid-Tertiary extensional collapse and ignimbrite flareup? [Slab Rollback] • Why is the extension and associated magmatisn separated into two domains with different spatial-temporal evolutions? • How did the Colorado Plateau escape significant deformation and magmatism during both periods? Major questions we want to address today. 2 North American Cordillera Topography is the first-order expression of orogeny, and high topography extends half way across the continent (>1000 km). And it remains high despite significant extension which normally leads to subsidence. 3 Western US today We will follow Dickinson (2002) in this review of the Cordilleran taphrogen. He follows Sengor in dividing the Basin and Range taphrogen into the Numic and Piman subtaphrogens. Black bodies are core complexes with arrows indicating direction of vergence (movement of upper plate). We will focus today on the relationship between the subtaphrogens and the Colorado Plateau–Laramide Rocky Mountains. Dickinson, W. R., The Basin and Range Province as a Composite Extensional Domain, Int. Geol. Rev., 44, 1-38, 2002. 4 The tectonic evolution of the Cordillera can be divided into 7 frames (Coney): 1) Formation of the continental margin in late Precambrian time and development of the Cordilleran passive margin. 2) Mid- to late Paleozoic brief orogenic events (Antler, Ancestral Rockies, Sonoma orogenies).
    [Show full text]
  • Download (4MB)
    Marine and Petroleum Geology 117 (2020) 104341 Contents lists available at ScienceDirect Marine and Petroleum Geology journal homepage: www.elsevier.com/locate/marpetgeo Review article A tectono-stratigraphic review of continental breakup on intraplate T continental margins and its impact on resultant hydrocarbon systems ∗ Tiago Alvesa, , Marcos Fetterb, Cathy Busbyc, Rogerio Gontijob, Tiago A. Cunhad, Nathalia H. Mattosa,e a 3D Seismic Lab – School of Earth and Ocean Sciences, Cardiff University – Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom b Petrobras-E&P, Av. República do Chile 65, Rio de Janeiro, 20031-912, Brazil c Department of Earth and Planetary Sciences, University of California, Davis, CA, 95616, USA d Integrated Geochemical Interpretation Ltd., The Granary, Hallsannery, Bideford, Devon, EX39 5HE, United Kingdom e Applied Geophysics Group, Institute of Geosciences - Universidade Estadual de Campinas Rua Carlos Gomes, 250 Campinas, 13083-855, Brazil ARTICLE INFO ABSTRACT Keywords: Intraplate Continental Margins comprise fully rifted areas of continents and cratons recording the tectonic events Continental margins associated with plate breakup and subsequent continental drift. In contrast to extensional basins, this tectonism Continental breakup post-dates the initial stages of continental rifting of tectonic plates and is specifically associated with the breakup Subsidence and ‘drifting’ of continents. Seismic and outcrop data from eight (8) Intraplate Continental Margins are reviewed Sedimentation in this work
    [Show full text]
  • Modeling, Visualizing, and Understanding Complex Tectonic Structures on the Surface and in the Sub-Surface Steven Wild Old Dominion University
    Old Dominion University ODU Digital Commons Physics Theses & Dissertations Physics Summer 2012 Modeling, Visualizing, and Understanding Complex Tectonic Structures on the Surface and in the Sub-Surface Steven Wild Old Dominion University Follow this and additional works at: https://digitalcommons.odu.edu/physics_etds Part of the Geophysics and Seismology Commons, and the Tectonics and Structure Commons Recommended Citation Wild, Steven. "Modeling, Visualizing, and Understanding Complex Tectonic Structures on the Surface and in the Sub-Surface" (2012). Doctor of Philosophy (PhD), dissertation, Physics, Old Dominion University, DOI: 10.25777/t010-ne93 https://digitalcommons.odu.edu/physics_etds/96 This Dissertation is brought to you for free and open access by the Physics at ODU Digital Commons. It has been accepted for inclusion in Physics Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. MODELING, VISUALIZING, AND UNDERSTANDING COMPLEX TECTONIC STRUCTURES ON THE SURFACE AND IN THE SUB-SURFACE by Steven Wild B.S. Physics June 1996, Baldwin-Wallace College M.S. Chemistry June 2000, Indiana University M.S. Physics June 2009, Old Dominion University A Dissertation Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY PHYSICS OLD DOMINION UNIVERSITY August 2012 Approved by; Declan De Paor (Co-Director) ABSTRACT MODELING, VISUALIZING, AND UNDERSTANDING COMPLEX TECTONIC STRUCTURES ON THE SURFACE AND IN THE SUB-SURFACE Steven Wild Old Dominion University, 2012 Co-Directors: Dr. Declan De Paor Dr. Jennifer Georgen Plate tectonics is a relatively new theory with many details of plate dynamics which remain to be worked out.
    [Show full text]
  • Kinematics Analysis of Laramide Deformation in North-Central New
    KINEMATICS ANALYSIS OF LARAMIDE DEFORMATION IN NORTH-CENTRAL NEW MEXICO ____________________________________________ A Thesis Presented to the Faculty of the Department of Earth and Atmospheric Sciences University of Houston ____________________________________________ In Partial Fulfillment Of the Requirements for the Degree Master of Science ____________________________________________ By Hongge Kan December 2012 KINEMATICS ANALYSIS OF LARAMIDE DEFORMATION IN NORTH-CENTRAL NEW MEXICO _______________________________________________ Hongge Kan APPROVED _______________________________________________ Dr. Alexander Robinson _______________________________________________ Dr. Michael Murphy _______________________________________________ Dr. Ran Zhang _______________________________________________ Dean, College of Natural Sciences and Mathematics ii ACKNOWLEDGEMENTS I express gratitude to Dr. Alexander Robinson for his direction and supervising this thesis. Dr. Robinson’s attitude towards knowledge and his patience to students taught me what a real geologist and professor is, and will influence me for the rest of my life. I also thank Dr. Murphy for his help and directions. I think he always brought much optimism and happiness to the people around him. I thank Dr. Zhang’s suggestion on my career and further study of Geology. I also appreciate my friends An Li and Yiduo Liu who always cared about my research and shared their sharp opinions with me. I am thankful for the support of my parents who never give up on me. iii KINEMATICS ANALYSIS
    [Show full text]
  • The Variable Lifespan of the Laramide Orogeny
    Location, location, location: The variable lifespan of the Laramide orogeny Peter Copeland1, Claire A. Currie2, Timothy F. Lawton3, and Michael A. Murphy1 1Department of Earth and Atmospheric Sciences, University of Houston, Houston, Texas 77204, USA 2Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1, Canada, 3Centro de Geociencias, Universidad Nacional Autónoma de México, Querétaro 76230, México ABSTRACT our boundary passes through the northwest edge The Laramide orogeny had a spatially variable lifespan, which we explain using a geody- of the classic Laramide province (DeCelles, namic model that incorporates onset and demise of flat-slab subduction. Laramide shortening 2004), we designate this line as the northwest and attendant uplift began in southeast California (USA) at ca. 90 Ma, swept to the northeast to margin of the region we consider below. arrive in the Black Hills of South Dakota (USA) at ca. 60 Ma, and concluded in South Dakota Figure 1B shows the age of the various phe- within ~10 m.y. During subsequent slab rollback, the areal extent of Laramide deformation nomena listed above versus distance along a decreased as the eastern edge of active deformation retreated to the southwest rapidly from line of projection, A-A′ (Fig. 1A), which has a ca. 55 to 45 Ma and more slowly from ca. 45 to 40 Ma, with deformation ultimately ceasing bearing of 045 and passes through the middle of in the southwestern part of the orogen at ca. 30 Ma. Geodynamic modeling of this process the classic Laramide province (DeCelles, 2004). suggests that changes in the strength of the North America plate and densification of the Far- This approach compresses the spatial complex- allon plate played important roles in controlling the areal extent of the Laramide orogen and ity of a continent-scale orogen onto a single line hence the lifespan of the orogenic event at any particular location in western North America.
    [Show full text]