Could Pannonian Region Be a Different Kind of Truffle Paradise?

Total Page:16

File Type:pdf, Size:1020Kb

Could Pannonian Region Be a Different Kind of Truffle Paradise? Truffle diversity and habitats in Balkan Penninsula and Pannonian region Dr Zaklina Marjanovic Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11030 Belgrade, Serbia, The truffle habitats have been widely described from traditional regions for centuries • Italy, hosting all European commercial truffle species, made Tuber magnatum famous as Tartufo Bianco D’alba or “Piedmont” • France has always been famous for truffe de Burgogne, or truffe du Périgord • The stories of truffles have been built in these two countries through many years of gastronomic history, with devotion and special attention • However, in past 20 years, the science and practice of truffles has grown enormously, providing much more realistic picture on their real occurrences in Europe The market has drastically changed • Spain has experienced enormous development in T. melanosporum plantations • T.aestivum/uncintum has been detected in almost all countries of Europe, but serious change in the market came with discovery of extremely productive areas in Hungary and eastern Balkan countries • T . magnatum is collected in Hungary and probably all Balkan countries, with the most significant amounts coming from Serbia and probably Romania (no official records) • It became clear that Balkan Peninsula and Pannonian region are probably different kind of truffle paradise Focus on Balkan peninsula and neighbouring regions Bonito et al 2013 We estimated that Tuber diverged from other genera in the early Cretaceous 156 Mya, and by end of the Cretaceous (65 Mya) most of its extant subgeneric lineages were present. Extant species in a number of Tuber clades can associate with angiosperms, Pinaceae, and parasitic orchid monocots (e.g. T. aestivum). Character state reconstructions indicate the most recent common ancestor to the Tuberaceae was likely an ectomycorrhizal symbiont of angiosperms. Based on our analyses, alveolate-reticulate ornamentation is the plesiomorphic (ancestral) condition for Tuber When T. Aestivum ancestor and T. magnatum were diversifying in Europe according to Bonito et al 2013 The fossil evidence suggests a predominantly tropical to subtropical climate throughout the Late Cretaceous. The first Late Cretaceous angiosperms were mostly weedy, pioneering shrubs. These were likely to have been of disturbed habitats in seasonally dry tropical or subtropical climates. The later angiosperms from the same period had long, slender leaves suggesting a predominantly tropical climate. http://palaeo.gly.bris.ac.uk/communication/willson/palaeoevidence.html Eocene T. aestivum T. melanosporum "Late Paleocene Thermal Maximum", was a time period with more than 5–8 °C warmer global average temperature rise across the even. Oligocene Very warm and humid climate, mostly coniferous ECM forests, only in the mountains, in lowlands AM forests… App. 15-13 MY ago… Last ice age map of Europe (from Bohn et al 2014) Refugiums for all European plants during ice ages Nowadays… Climate types in Europe (from Bohn et al 2014): IV Mediterranean; VI Continental ; VII dry steppe Serbia land use map from EEA Fruska gora Djerdap Tara Oaks vegetation map of Balkans Illyrian Mesian vegetation vegetation province province True truffles of Serbia (13 confirmed species + 3 so far moleculraly unconfirmed) • Tuber puberulum Berk. & Broome • Tuber rufum Pico f. rufum • Tuber rufum var. apiculatum E. Fisch. • Tuber rufum var. ferrugineum (Vittad.) Montecchi & Lazzari • Tuber rufum var. lucidum (Bonnet) Montecchi & Lazzari • Tuber rufum var. nitidum (Vittad.) • Tuber aestivum Vittad. Montecchi & Lazzari • Tuber borchii Vittad. • Tuber petrophilum (Milenkovic et al 2015) • Tuber brumale Vittad.s.l. • Tuber dryophyllum Vitt, • Tuber excavatum Vittad. • Tuber foetidum Vittad. • Tuber fulgens Quél. • Tuber macrosporum Vittad. • Tuber maculatum Vittad. • Tuber magnatum Vittad. • Tuber mesentericum Vittad. • Tuber oligospermum (Tul & Tul) Trappe Tuber pulchosporum (Polemis et al 2019) Generalist truffle species of Balkan Peninsula – detected in most environments where the soils are not acidic, and there are ECM hosts Tuber excavatum s.l. Tuber rufum s.l. Tuber aestivum Tuber brumale s.l. Tuber aestivum/ uncinatum – probably the best production in natural habitats (Serbian sandy soils with Tilia argentea, Romanian hilly regions) and plantations (Hungarian Jazsac region) • T. aestivum helps establishment of the young ECM trees in aerated neutral soils mostly in predominantly continental climate Generalists of hilly regions – very rare in Serbia, common in Hungary Tuber borchii Tuber puberulum Maljen mountain Specialised for forests on very alkaline soils in hills T. fulgens T. mesentericum T. oligospermum Loess hills in Panonian plain Gradac river gorge Jablanik mountain In special reservation mountain Tara only T. monosporum T. petrophilum Generalists of the reparian forests T. macrosporum T. maculatum T. foetidum Tuber magnatum specialist for specific reparian forests: The main characteristic of white truffle habitats in Serbia : • almost always in lowland forests exposed to some kind of fluvial activity – river banks (three dimensional movements) or ground water (mostly vertical movements); •wide alluvial plains always exposed to sedimentation from calcareous upland regions; •always connected to old, stable forests (Quercus robur, Populus sp, Carpinus betulus, Ulmus minor…) in borderline zones between Pannoninal region and Dinarides T. magnatum helps surviving of mature ECM trees in the climatic borderline zones (continental to Mediterranean) and borderline forests in hygromorphic neutral to alkaline soils Hungary Central Serbia North Serbia Istra, Croatia Somewhere near Croatian coast... T. melanosporum helps establishment of young trees in predominantly Mediterranean climates on poorly developed sceletogenous soils and high pH Some species present in neighbouring areas, but so far not officially recorded in Serbia Tuber melanosporum (Croatia) Tuber magentipunctatum Z. Merényi, I. Nagy, Stielow & Bratek, Persoonia, 38: 381 (2017). Hungary Tuber cryptobrumale Z. Merényi, T. Varga & Z. Bratek, Mycol Progr., 16 (6): 619 (2017) (Hungary and probably Serbia) Tuber panniferum Tul. & C. Tul (Greece) Probably new species of T. brumale s.l. from Serbia Apart from true truffles, app 50 of other species forming hypogeic sporocarps so far in Serbia (in Hungary much more due to the existance of people working on taxonomy). Gyromitra sp. Helvella sp. Helvelaceae, Balsamia vulgaris Discinaceae, Hydnotria tulasnei Desert truffles – special kind of symbiosis ectomycorrhiza with herbaceous plants, in Serbia one species of Terfeziaceae Terfezia arenaria Pezizaceae, Mattiralomyces terfezioides establishes very specific relation with Robinia pseudoacacia (black locust) roots (fabaceous tree that normally establishes arbuscular mycorrhiza) Peziza sp. The colonization of the roots by the septate hyphae of M. terfezioides was weak, particularly compared to the colonization by arbuscular–mycorrhizal fungi. Kovács, G., Jakucs, E., & Bagi, I. (2007). Identification of host plants and description of sclerotia of the truffle Mattirolomyces terfezioides. Mycological Progress, 6 1, 19-26. Pezizaceae, Pachyphloeus citrinus Pyrenomataceae, Genea fragrans, G. sphaerica, G. vagans.G. verrucosa Morchelaceae Fischerula macrospora Pyrenomataceae, Stephensia bombycina Common in conifer forests and / or acidic soils Ascomycotina, Tuberaceae Choiromyces meandriformis Boletales, Rhizopogon sp Ascomycotina , Elaphomycetaceae, E. aculeatus, E. anthracinus E.atropurpureus, E. granulatus, E. leveillei , E. maculatus, E. muricatus , E. papillatus Psylocybe sp. Hymenogaster populetorum Hymenogasteraceae, Hymenogaster albus Hymenogaster bulliardii Hymenogaster griseus Hymenogaster hessei Hymenogaster luteus Hymenogaster luteus var. subfuscus Hymenogaster lycoperdineus Hymenogaster niveus Hymenogaster muticus Hymenogaster citrinus Hymenogaster vulgaris Hymenogaster rehsteineri Hymenogaster bulliardii Phallomycetidae, Hysterangium clathroides, H. stoloniferum Gomphaceae, Gautieria morchelliformis Geastraceae, Schenella simplex Protected and rare Rusullales, Rusullaceae: Arcangeliella (Lactarius) stephensii Rusulales, Albatrellaceae, Leucogaster nudus Boletales, Rhizopogon vulgaris, R luteolus, R. roseolus Boletales, Octavianina asterosperma Boletales, Sclerogaster gastrosporioides S. hysterangioides Melanogaster ambiguus, M. broomeanus M. tuberiformis Some practical information The reality of truffle story in Serbia - trade still in the gray zone Total mushroom export from Serbia (data from Custom service) and allowed to collect (data from INCS) 25000000 20000000 15000000 mass (kg) value (Eur) 10000000 issued total (kg) 5000000 0 2004200520062007200820092010201120122013201420152016 Relationship between yearly quota and issued permissions for truffle species in kg 1,200 Tuber magnatum Pico quota 1,000 800 Tuber magnatum Pico issued 600 Tuber aestivum Vittad. quota 400 Tuber aestivum Vittad. issued 200 Tuber brumale Vittad. / Tuber 0 macrosoprum Vittad. quota 200520062007200820092010201120122013201420152016 Protection and conservation in Serbia do not exists…. Plantation trials Istria Serbia, T. aestivum trial T. melanosporum trials, first production in Balkan Peninsula in December 2018 The T. magnatum “plantation” Thank you for your attention! .
Recommended publications
  • Corylus Avellana
    Annals of Microbiology (2019) 69:553–565 https://doi.org/10.1007/s13213-019-1445-4 ORIGINAL ARTICLE Chinese white truffles shape the ectomycorrhizal microbial communities of Corylus avellana Mei Yang1 & Jie Zou2,3 & Chengyi Liu1 & Yujun Xiao1 & Xiaoping Zhang2,3 & Lijuan Yan4 & Lei Ye2 & Ping Tang1 & Xiaolin Li2 Received: 29 October 2018 /Accepted: 30 January 2019 /Published online: 14 February 2019 # Università degli studi di Milano 2019 Abstract Here, we investigated the influence of Chinese white truffle (Tuber panzhihuanense) symbioses on the microbial communities associated with Corylus avellana during the early development stage of symbiosis. The microbial communities associated with ectomycorrhizae, and associated with roots without T. panzhihuanense colonization, were determined via high-throughput sequencing of bacterial 16S rRNA genes and fungal ITS genes. Microbial community diversity was higher in the communities associated with the ectomycorrhizae than in the control treatment. Further, bacterial and fungal community structures were different in samples containing T. panzhihuanense in association with C. avellana compared to the control samples. In particular, the bacterial genera Rhizobium, Pedomicrobium,andHerbiconiux were more abundant in the ectomycorrhizae, in addition to the fungal genus Monographella. Moreover, there were clear differences in some physicochemical properties among the rhizosphere soils of the two treatments. Statistical analyses indicated that soil properties including exchangeable magnesium and exchange- able calcium prominently influenced microbial community structure. Lastly, inference of bacterial metabolic functions indicated that sugar and protein metabolism functions were significantly more enriched in the communities associated with the ectomycorrhizae from C. avellana mycorrhized with T. panzhihuanense compared to communities from roots of cultivated C.
    [Show full text]
  • Fungal Diversity in the Mediterranean Area
    Fungal Diversity in the Mediterranean Area • Giuseppe Venturella Fungal Diversity in the Mediterranean Area Edited by Giuseppe Venturella Printed Edition of the Special Issue Published in Diversity www.mdpi.com/journal/diversity Fungal Diversity in the Mediterranean Area Fungal Diversity in the Mediterranean Area Editor Giuseppe Venturella MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin Editor Giuseppe Venturella University of Palermo Italy Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Diversity (ISSN 1424-2818) (available at: https://www.mdpi.com/journal/diversity/special issues/ fungal diversity). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03936-978-2 (Hbk) ISBN 978-3-03936-979-9 (PDF) c 2020 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. Contents About the Editor .............................................. vii Giuseppe Venturella Fungal Diversity in the Mediterranean Area Reprinted from: Diversity 2020, 12, 253, doi:10.3390/d12060253 .................... 1 Elias Polemis, Vassiliki Fryssouli, Vassileios Daskalopoulos and Georgios I.
    [Show full text]
  • Current Status of Truffle Cultivation: Recent Results and Future Perspectives ______Alessandra Zambonelli1, Mirco Iotti1, Ian Hall2
    A. Zambonelli, M. Iotti, I. Hall Micologia Italiana vol. 44 (2015) ISSN 2465-311X DOI: 10.6092/issn.2465-311X/5593 Current status of truffle cultivation: recent results and future perspectives ________________________________________________________________________________ Alessandra Zambonelli1, Mirco Iotti1, Ian Hall2 1Department of Agricultural Science, Bologna University, viale Fanin 46, 40127 Bologna Italy 2 Truffles & Mushrooms (Consulting) Ltd, P.O. Box 268, Dunedin, New Zealand Correspondig Author M. Iotti e-mail: [email protected] Abstract In this review the current status of truffle cultivation in Europe and outside Europe is reported. While the cultivation of Tuber melanosporum (Périgord black truffle), Tuber aestivum (summer or Burgundy truffle) and Tuber borchii (bianchetto truffle) gave good results, only the Italian white truffle (Tuber magnatum), which is the most expensive, has yet to be successfully cultivated. In future a revolutionary approach to truffle cultivation would be the application of mycelial inoculation techniques for producing Tuber infected plants which will allow to select the fungal strains adapted to specific climatic, edaphic conditions and hosts. The new insights which will be gained by the extensive Tuber genome sequencing programme will also help to improve truffle cultivation techniques. Keywords: Tuber melanosporum; Tuber magnatum; Tuber borchii; Tuber aestivum; cultivation; mycelial inoculation Riassunto I tartufi sono funghi ascomiceti appartenenti all’ordine delle Pezizales anche se molti ricercatori considerano “veri tartufi” solo le specie apparteneti al genere Tuber, che comprende le specie di maggiore interesse gastronomico e commerciale quali Tuber melanosporum (tartufo nero pregiato), Tuber magnatum (tartufo bianco pregiato), Tuber aestivum (tartufo estivo o uncinato) e Tuber borchii (tartufo bianchetto). L’elevato valore economico di questi tartufi ha suscitato grande interesse riguardo la loro coltivazione fin dal lontano rinascimento.
    [Show full text]
  • <I>Tuber Petrophilum</I>, a New Truffle Species from Serbia
    ISSN (print) 0093-4666 © 2015. Mycotaxon, Ltd. ISSN (online) 2154-8889 MYCOTAXON http://dx.doi.org/10.5248/130.1141 Volume 130, pp. 1141–1152 October–December 2015 Tuber petrophilum, a new truffle species from Serbia Miroljub Milenković1, Tine Grebenc2, Miroslav Marković3 & Boris Ivančević4* 1Institute for Biological Research “Siniša Stanković” Bulevar despota Stefana 142, RS-11060 Belgrade, Serbia 2Slovenian Forestry Institute, Večna pot 2, SI-1000 Ljubljana, Slovenia 3Banatska 34, RS-26340 Bela Crkva, Serbia 4Natural History Museum, Njegoševa 51, RS-11000 Belgrade, Serbia * Correspondence to: [email protected] Abstract — Tuber petrophilum sp. nov., within the Tuber melanosporum lineage, is described from Mount Tara (western Serbia) based on morphological and ITS molecular data. It is recognizable by its minute ascomata that produce ovoid to ellipsoid to subfusiform spores bearing aculeate ornamentation. Among black truffles, the new species is distinguished by its irregularly roundish to subglobose ascomata not exceeding 1.6 cm in diameter, with a basal depression or cavity and peridium surface which appears as a thin semi-transparent layer while fresh. The species forms a monophyletic well-supported clade in Maximum Likelihood ITS phylogeny, closely related to Tuber brumale aggr. The distinctive feature of the new species lies in its specific and unique microhabitat, limited to humus-rich substrata accumulated as soil pockets in limestone rocks, commonly 20-100 cm above the continuous forest soil terraces. The species description is supplemented with macro- and micro-photographs, and a key to the species of the T. melanosporum lineage. Key words — biodiversity, ecology of truffles, hypogeous fungi, Tuberaceae Introduction On several occasions between 2004 and 2014, the first author with associates explored hypogeous fungi in the Tara National Park on Mount Tara, which is located in western Serbia on the edge of northeastern belt of the Dinaric Alps.
    [Show full text]
  • Truffle Farming in North America
    Examples of Truffle Cultivation Working with Riparian Habitat Restoration and Preservation Charles K. Lefevre, Ph.D. New World Truffieres, Inc. Oregon Truffle Festival, LLC What Are Truffles? • Mushrooms that “fruit” underground and depend on animals to disperse their spores • Celebrated delicacies for millennia • They are among the world’s most expensive foods • Most originate in the wild, but three valuable European species are domesticated and are grown on farms throughout the world What Is Their Appeal? • The likelihood of their reproductive success is a function of their ability to entice animals to locate and consume them • Produce strong, attractive aromas to capture attention of passing animals • Androstenol and other musky compounds French Truffle Production Trend 1900-2000 Driving Forces: • Phylloxera • Urbanization Current Annual U.S. Import volume: 15-20 tons Price Trend:1960-2000 The Human-Truffle Connection • Truffles are among those organisms that thrive in human- created environments • Urban migration and industrialization have caused the decline of truffles not by destroying truffle habitat directly, but by eliminating forms of traditional agriculture that created new truffle habitat • Truffles are the kind of disturbance-loving organisms that we can grow Ectomycorrhizae: Beneficial Symbiosis Between the Truffle Fungus and Host Tree Roots Inoculated Seedlings • Produced by five companies in the U.S. and Canada planting ~200 acres annually • ~3000 acres planted per year globally • Cultivated black truffle production now
    [Show full text]
  • Tuber Alcaracense Fungal Planet Description Sheets 447
    446 Persoonia – Volume 44, 2020 Tuber alcaracense Fungal Planet description sheets 447 Fungal Planet 1107 – 29 June 2020 Tuber alcaracense Ant. Rodr. & Morte, sp. nov. Etymology. Referring to Alcaraz mountain range, where the type speci- Typus. SPAIN, Albacete, Peñascosa, in calcareus soil, in Quercus ilex men was collected. subsp. ballota (Fagaceae) forest, 15 Feb. 2017, A. Rodríguez (holotype MUB Fung-971; ITS and LSU sequences GenBank MN810047 and MN953777, Classification — Tuberaceae, Pezizales, Pezizomycetes. MycoBank MB833685). Ascomata hypogeous, 1–4 cm, subglobose, covered with Additional material examined. SPAIN, Albacete, Vianos, in Quercus ilex brown-black pyramidal warts, 4–6-sided, 2–3(–4) mm across, subsp. ballota forest, 11 Jan. 2015, A. Rodríguez, MUB Fung-928; ITS sequence GenBank MN810046. 1–4 mm high, often depressed at the apex. Peridium 150–250 μm thick, pseudoparenchymatous, composed of subglobose, Notes — Tuber alcaracense is a black truffle of the aestivum angular cells, 10–20 μm diam, pale yellow and thin-walled in clade characterised by its brown-black warty peridium, brown the innermost layers, dark red-brown and with thicker walls in gleba marbled with thin white veins and reticulate-alveolate the outermost layers. Gleba firm, solid, white when immature, spores. It resembles Tuber mesentericum, but in addition to becoming dark brown at maturity, marbled with numerous, genetic differences it differs from T. mesentericum (Vittadini thin, white, meandering veins that do not change colour when 1831) by having a pleasant odour and lacking a basal cavity. exposed to the air. Pleasant odour. Asci inamyloid, 60–90 × 50–75 μm, walls thickened, 1–2 μm, ellipsoid to subglobose, with a short stalk, 10–35 × 5–7 μm, (1–)3–4(–5)-spored.
    [Show full text]
  • Unit-1 Introduction to the Art of Cookery
    Advance Food Production HM-102 UNIT-1 INTRODUCTION TO THE ART OF COOKERY STRUCTURE 1.1 Introduction 1.2 Objective 1.3 Culinary history 1.3.1 Culinary history of India 1.3.2 History of cooking 1.4 Modern haute kitchen 1.5 Nouvelle cuisine 1.6 Indian regional cuisine Check your progress-I 1.7 Popular international cuisine 1.7.1 French cuisine 1.7.2 Italian cuisine 1.7.3 Chinese cuisine 1.8 Aims and objectives of cooking 1.9 Principles of balanced diet 1.9.1 Food groups 1.10 Action of heat on food 1.10.1 Effects of cooking on different types of ingredients Check your progress-II 1.11 Summary 1.12 Glossary 1.13 Check your progress-1 answers 1.14 Check your progress-2 answers 1.15 Reference/bibliography 1.16 Terminal questions 1.1 INTRODUCTION Cookery is defined as a ―chemical process‖ the mixing of ingredients; the application and withdrawal of heat to raw ingredients to make it more easily digestible, palatable and safe for human consumption. Cookery is considered to be both an art and science. The art of cooking is ancient. The first cook was a primitive man, who had put a chunk of meat close to the fire, which he had lit to warm himself. He discovered that the meat heated in this way was not only tasty but it was also much easier to masticate. From this moment, in unrecorded past, cooking has evolved to reach the present level of sophistication. Humankind in the beginning ate to survive.
    [Show full text]
  • Spatial Distribution and Ecological Variation of Re-Discovered German Truffle Habitats
    fungal ecology 5 (2012) 591e599 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/funeco Spatial distribution and ecological variation of re-discovered German truffle habitats a, € b,c a d b Ulrich STOBBE *, Ulf BUNTGEN , Ludger SPROLL , Willy TEGEL , Simon EGLI , Siegfried FINKa aInstitute of Forest Botany and Tree Physiology, Albert-Ludwigs-University of Freiburg, 79085 Freiburg, Germany bSwiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland cOeschger Centre for Climate Change Research, 3013 Bern, Switzerland dInstitute for Forest Growth IWW, Albert-Ludwigs-University of Freiburg, 79085 Freiburg, Germany article info abstract Article history: Several truffle species (Tuber spp.) are highly prized by chefs and gourmets with some À Received 22 July 2011 commanding prices of up to V9.000 kg 1 on international markets. Their ecological drivers Revision received 5 December 2011 and geographical patterns, however, often remain a puzzle. Truffle species in Germany are Accepted 24 January 2012 classified as Very Rare or even Extinct on the national Red Lists, while historical literature Available online 28 March 2012 described their sporadic existence. Here we present evidence of seven Tuber species Corresponding editor: (T. aestivum, T. brumale, T. excavatum, T. fulgens, T. macrosporum, T. mesentericum, T. rufum), Anne Pringle discovered at 121 sites in Southwest Germany. The valuable Burgundy truffle (T. aestivum) occurred at 116 sites. An unexpected abundance of Tuber spp. associated with 13 potential Keywords: host plants along wide ecological gradients in a region far outside the traditional Mediter- Climate change ranean truffle foci in France, Italy and Spain, is likely indicative of possible responses to Cultivation potential climate change, and also suggests ample truffle cultivation potential north of the Alpine arc.
    [Show full text]
  • Ethnomycological Investigation in Serbia: Astonishing Realm of Mycomedicines and Mycofood
    Journal of Fungi Article Ethnomycological Investigation in Serbia: Astonishing Realm of Mycomedicines and Mycofood Jelena Živkovi´c 1 , Marija Ivanov 2 , Dejan Stojkovi´c 2,* and Jasmina Glamoˇclija 2 1 Institute for Medicinal Plants Research “Dr Josif Pancic”, Tadeuša Koš´cuška1, 11000 Belgrade, Serbia; [email protected] 2 Department of Plant Physiology, Institute for Biological Research “Siniša Stankovi´c”—NationalInstitute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia; [email protected] (M.I.); [email protected] (J.G.) * Correspondence: [email protected]; Tel.: +381-112078419 Abstract: This study aims to fill the gaps in ethnomycological knowledge in Serbia by identifying various fungal species that have been used due to their medicinal or nutritional properties. Eth- nomycological information was gathered using semi-structured interviews with participants from different mycological associations in Serbia. A total of 62 participants were involved in this study. Eighty-five species belonging to 28 families were identified. All of the reported fungal species were pointed out as edible, and only 15 of them were declared as medicinal. The family Boletaceae was represented by the highest number of species, followed by Russulaceae, Agaricaceae and Polypo- raceae. We also performed detailed analysis of the literature in order to provide scientific evidence for the recorded medicinal use of fungi in Serbia. The male participants reported a higher level of ethnomycological knowledge compared to women, whereas the highest number of used fungi species was mentioned by participants within the age group of 61–80 years. In addition to preserving Citation: Živkovi´c,J.; Ivanov, M.; ethnomycological knowledge in Serbia, this study can present a good starting point for further Stojkovi´c,D.; Glamoˇclija,J.
    [Show full text]
  • Tuber Mesentericum and Tuber Aestivum Truffles
    Article Tuber mesentericum and Tuber aestivum Truffles: New Insights Based on Morphological and Phylogenetic Analyses Giorgio Marozzi 1,* , Gian Maria Niccolò Benucci 2 , Edoardo Suriano 3, Nicola Sitta 4, Lorenzo Raggi 1 , Hovirag Lancioni 5, Leonardo Baciarelli Falini 1, Emidio Albertini 1 and Domizia Donnini 1 1 Department of Agricultural, Food and Environmental Science, University of Perugia, 06121 Perugia, Italy; [email protected] (L.R.); [email protected] (L.B.F.); [email protected] (E.A.); [email protected] (D.D.) 2 Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA; [email protected] 3 Via F.lli Mazzocchi 23, 00133 Rome, Italy; [email protected] 4 Loc. Farné 32, Lizzano in Belvedere, 40042 Bologna, Italy; [email protected] 5 Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-075-5856417 Received: 10 August 2020; Accepted: 8 September 2020; Published: 10 September 2020 Abstract: Tuber aestivum, one of the most sought out and marketed truffle species in the world, is morphologically similar to Tuber mesentericum, which is only locally appreciated in south Italy and north-east France. Because T. aestivum and T. mesentericum have very similar ascocarp features, and collection may occur in similar environments and periods, these two species are frequently mistaken for one another. In this study, 43 T. aestivum and T. mesentericum ascocarps were collected in Italy for morphological and molecular characterization. The morphological and aromatic characteristics of the fresh ascocarps were compared with their spore morphology.
    [Show full text]
  • Collections of Tuber Macrosporum from the Balkan Peninsula (Bulgaria and Greece)
    Collections of Tuber macrosporum from the Balkan Peninsula (Bulgaria and Greece) Melania GYOSHEVA Boris ASSYOV Giorgos KONSTANTINIDIS Dimitar STOYKOV Institute of Biodiversity and Institute of Biodiversity and 17 Aristidou St. Institute of Biodiversity and Ecosystem Research Ecosystem Research 51 100 Grevena Ecosystem Research Bulgarian Academy of Sciences Bulgarian Academy of Sciences West Macedonia, Greece Bulgarian Academy of Sciences 2 Gagarin St. 2 Gagarin St. [email protected] 2 Gagarin St. 1113 Sofia, Bulgaria 1113 Sofia, Bulgaria 1113 Sofia, Bulgaria [email protected] [email protected] [email protected] Ascomycete.org, 4 (4) : 75-78. Summary: Description of the first findings of Tuber macrosporum in Bulgaria and Greece, il- Août 2012 lustrated by photographs of macroscopic and microscopic features, including SEM-micropho- Mise en ligne le 16/08/2012 tographs. Keywords: Ascomycetes, Balkan mycota, Pezizales, truffle, Tuberaceae, Tuberales Résumé : description des premières récoltes de Tuber macrosporum de Bulgarie et de Grèce, illustrée par des photographies des caractères macroscopiques et microscopiques, y compris microphotographies au MEB. Mots-clés : ascomycètes, mycota des Balkans, Pezizales, truffe, Tuberaceae, Tuberales. Introduction graphed with JEOL JSM-5300 scanning electron microscope at 20 kV. Spores for the SEM-preparation were obtained The hypogeous mycota of the western parts of the Balkan from pieces of glebal tissues mounted on metal stubs with double-sided adhesive tape and sputter-coated with gold. Peninsula is still little known (GLAMOČLIJA et al., 1997; ZERVA- The identification was confirmed mostly by the use of the KIS et al., 1998, 1999; DIMITROVA & GYOSHEVA, 2008; SESLI & works of PEGLER et al. (1993), ASTIER (1998), MONTECCHI & SA- DENCHEV, 2008; DENCHEV & ASSYOV, 2010).
    [Show full text]
  • Morphological and Molecular Characterization of Tuber Oligospermum Mycorrhizas
    Vol. 8(29), pp. 4081-4087, 1 August, 2013 DOI: 10.5897/AJAR2013.7354 African Journal of Agricultural ISSN 1991-637X ©2013 Academic Journals Research http://www.academicjournals.org/AJAR Full Length Research Paper Morphological and molecular characterization of Tuber oligospermum mycorrhizas Siham Boutahir, Mirco Iotti, Federica Piattoni and Alessandra Zambonelli* Department of Agricultural Sciences, University of Bologna, via Fanin 46, 40127 Bologna, Italy. Accepted 22 July, 2013 Tuber oligospermum (Ascomycota) is an edible truffle growing in some Mediterranean countries. In Morocco, this truffle is regularly harvested and it is exported to Italy. Although T. oligospermum produces fruiting bodies of good quality, in Italy, it is fraudulently passed off as the most precious Italian white truffle (Tuber magnatum) and “bianchetto” truffle (Tuber borchii). In this work, a specific primer able to discriminate T. oligospermum from T. borchii and T. magnatum by multiplex polymerase chain reaction (PCR) assay was designed and tested for selective amplifications. Moreover, T. oligospermum ectomycorrhizas were obtained under greenhouse conditions by spore inoculation of Quercus robur seedlings and their morpho-anatomical characters were described and compared with those of T. borchii and T. magnatum. The degree of T. oligospermum root colonization was higher than that obtained for the other 2 truffle species but differences in mycorrhizal morphology were only found in terms of cystidia type and dimensions. Our results suggest that, T. oligospermum cultivation might represent an interesting agricultural activity for North African countries. Key words: Internal transcribed spacer (ITS), mycorrhizal morphotyping, molecular identification, Tuber oligospermum, Tuber borchii, Tuber magnatum, multiplex polymerase chain reaction (PCR). INTRODUCTION Hypogeous fungi belong to ascomycetes (the true truffle) Tuber asa Tul.
    [Show full text]