The Cultivation of Lactarius with Edible Mushrooms

Total Page:16

File Type:pdf, Size:1020Kb

The Cultivation of Lactarius with Edible Mushrooms IJM - Italian Journal of Mycology ISSN 2531-7342 - Vol. 50 (2021): 63-77 Journal homepage: https://italianmycology.unibo.it/ Review The cultivation of Lactarius with edible mushrooms Di Wang1, Jun Li Zhang2, Yun Wang3, Alessandra Zambonelli4, Ian R. Hall5*, Wei-Ping Xiong5 1 Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, 4# Shizishan Road, Chengdu, Sichuan, People’s Republic of China 610066 2 Tibet Academy of Agricultural and Animal Sciences 147 West Jingzhu Road, Lhasa, Tibet, People’s Republic of China 850032 3 Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, People’s Republic of China 650204 4 Department of Agricultural Science, University of Bologna, Via Fanin 44, 40127 Bologna, Italy 5 Truffles and Mushrooms (Consulting) Ltd, P.O. Box 268, Dunedin, New Zealand 9054 * Corresponding author e-mail: [email protected] - The arrangement of the authors is simply alphabetical first for the name of their counties followed by an alphabetical arrangement for their given names. ARTICLE INFO Received 13/5/2021; accepted 10/6/2021 https://doi.org/10.6092/issn.2531-7342/12908 Abstract From the early 1800s science virtually ignored the cultivation of edible mycorrhizal mushrooms other than the true truffles. The drought was finally broken by Nicole Poitou when she cultivatedLactarius deliciosus and Suillus granulatus in the Institut National de la Recherche Agronomique’s laboratories at Pont-de-la-Maye, France, in the mid-1970s. However, another 20 years were to pass before Yun Wang working at Invermay Agricultural Centre near Dunedin, New Zealand, was able to begin the routine cultivation of L. deliciosus. The purpose of this paper is to document the history of the cultivation of L. deliciosus in New Zealand since its introduction in the late 1990s, its spread back to Europe and its subsequent introduction into Yunnan, Tibet and Sichuan starting about 2014. Keywords saffron milk cap, cultivation, New Zealand, China, productivity Introduction The past 50 years has seen several revolutions in the way that plants have been produced for the cultivation of edible mycorrhizal mushrooms. The first method for truffles commonly referred to as “Talon’s Technique” (Hall and Zambonelli, 2012; Hall et al., 2007), dates back to the early 1800s and involves growing clean seedlings in the rooting zone of plants already mycorrhized with truffle or in soil known to have produced truffle in the past (Rocchia, 1995). However, the collapse in truffle production particularly in France between 1900 and 1960 (Hall and Zambonelli, 2012) led to calls for alternative methods for producing truffle mycorrhized plants. Three methods were forthcoming. That described by Palenzona (1969) for Tuber melanosporum Vittad., Tuber aestivum Vittad., and Tuber brumale Vittad. involved inoculating each plant with about 107 ascospores from blended truffles. Another method replaced spores with sections of root already mycorrhized with truffle (Chevalier and Grente, 1973) a method independently developed for inoculating plants with arbuscular mycorrhizal fungi (Hall, 1973, 1976). A third method employed pure cultures to inoculate clean seedlings Department of Agricultural and Food Science in partnership with the Italian Mycological Society (UMI). The journal is hosted and mantained by ABIS-AlmaDL. © 2021 The Authors. This work is licensed under CC BY 4.0 Wang et al. Italian Journal of Mycology 50 (2021): 63-77 https://doi.org/10.6092/issn.2531-7342/12908 (Chevalier 1972, 1973; Chevalier and Grente, 1973; Fontana and Palenzona, 1969). But by the end of the 1970s it was the first of these techniques that was to be generally adopted for the cultivation of truffles in Europe and by Hall in New Zealand in the mid-1980s (Hall et al., 2007; Murat, 2015). Sporal inocula have also been used in plantation forestry when it was found essential when plants were raised in soilless media in greenhouses, sufficient inocula could not be expected to blow in from surrounding vegetation, and when outplant sites were devoid of suitable ectomycorrhizal fungi. For example, in New Zealand a suspension of blended Rhizopogon roseolus (Corda) Th. Fr. in water is often sprayed onto plants in containerised Pinus radiata nurseries (Hall et al., 2003a; Visnovsky et al., 2010) and Rhizopogon parksii A.H. Sm. onto Douglas fir [Pseudotsuga menziesii (Mirb.) Franco] (Hall et al., 2019). Because ascospores and basidiospores are produced sexually there is the expectation that spores from, for example, Tuber borchii Vittad. truffles from the northern reaches of this species’ distribution, say near Edinburgh, are likely to be better adapted to the climatic conditions there than T. borchii from Sicily. So, when Christina Wedén successfully grew T. melanosporum on Gotland off the east coast of Sweden, way north of its natural distribution, it was with plants inoculated with truffles harvested from the northernmost distribution of T. melanosporum in France (Wedén et al., 2013). By the mid-1990s demand for truffle mycorrhized plants in New Zealand had increased and considerable income was being made from their production and sale by Crop & Food Research (Hall et al., 2007). Despite the commercial revenue from this, research funding was more or less reduced in line. So, Hall’s group needed new scientific and hopefully commercial challenges and decided to import Lactarius deliciosus (L.) Gray (saffron milk cap) (Figs 1a, b, c and d). This has an excellent flavour, international market appeal, and importantly, there was some pioneering work that had been published in France by Nicole Poitou and Jacques Delmas that goes back to the mid-1970s showing that it was possible to culture the fungus and get it to fruit in the field (Delmas, 1978; Poitou, 1978, 1982; Poitou et al., 1981, 1984, 1989). Our overlying logic for carrying out this work was because L. deliciosus is a mycorrhizal fungus there was the possibility of growing it as a secondary crop in New Zealand’s 1.6 million hectares of Pinus radiata D. Don forest (Berg, 2008). Also, because it forms mycorrhizas exclusively with pines, there was little chance that it would enter New Zealand’s native ectomycorrhizal beech forests and compete with the local mycorrhizal fungal flora, we were given permission by New Zealand Biosecurity to import it. In retrospect, perhaps we should have considered trying to import L. sanguifluus and L. vinosus as well which are more popular than L. deliciosus in some countries. In this paper we outline the initial introduction of L. deliciosus into New Zealand, subsequent production of its fruiting bodies, the expansion of research aimed at commercial production, and the establishment of several lines of research that emanated from those early days in Tibet, Sichuan and Yunnan. Whilst L. deliciosus is the species that ranks at the top of a list of the most desirable species alongside porcini (Boletus edulis Bull.: Fr sensu lato) and chanterelles (Cantharellus spp.), elsewhere in the world there are other species of Lactarius rated equally highly (Supplementary Table 1). Consequently, a commercial success with L. deliciosus on P. radiata was likely to create interest with other species of Lactarius and on other hosts elsewhere in the world as later outlined by Leonardi et al. (2017). We explore the literature on the edible species of Lactarius in the hope that it will shed light on the methods that have been used for their cultivation, what impediments have hobbled their production on commercial scales and, in particular, their cultivation out of season from the Northern Hemisphere like truffles are now being grown in the Southern Hemisphere (Hall et al. 2017a). Hopefully it might also shed light, in particular, on the cultivation of edible Lactarius throughout China. The techniques we describe here have worked for us but no doubt methods described by others may have some advantages (e.g. Poitou et al. 1984; Díaz et al. 2009; Wang et al. 2012, 2020). 64 Wang et al. Italian Journal of Mycology 50 (2021): 63-77 https://doi.org/10.6092/issn.2531-7342/12908 Fig 1 - Fruiting bodies of Lactaris deliciosus (a, b, c and d). Some of the first saffron milk mushrooms to be harvested by Hannes and Theres Krumenacher near Nelson, New Zealand (a) and by John and Portia Barnes from a Pinus radiata plantation near Castlemaine, Victoria, Australia (b) Bleeding an orange-coloured sap when the caps or stalks are damaged (c) which become green when exposed to the air (d). Hunan street vendor selling Lactarius hatsudake, a popular edible species particularly in China, Japan, Korea and eastern Russia (e). The poisonous brown roll rim (Paxillus involutus) (f) has been mistaken for the saffron milk cap but it has a different colour, it does not bleed an orange-coloured sap when damaged, it turns reddish-brown when cut and has a tightly involuted margin to the cap (g). In New Zealand, a country where mycophagy (mushroom eating) is not strong, the poisonous brown roll rim (Paxillus involutus (Batsch) Fr., Figs. 1f and g) has been mistaken for the saffron milk cap. There are also some poisonous Lactarius lookalikes such as the woolly milk cap (Lactarius torminosus (Schaeff.) Gray) (Hall et al., 2003b) and there are photos on the internet which show there is some justification for making such a mistake (e.g. https://en.wikipedia.org/wiki/Lactarius_torminosus). In China, plants raised in greenhouses and inoculated with Lactarius sect. Deliciosi (a section of the genus Lactarius) can be heavily infested by dipterous larvae which render their mushrooms 65 Wang et al. Italian Journal of Mycology 50 (2021): 63-77 https://doi.org/10.6092/issn.2531-7342/12908 inedible (Ran et al., 2019). It has been suggested that this is because the antifeedant properties of the mild-tasting latex of the group are relatively ineffective (Ran et al., 2019; Nuytinck, 2004-2005).
Recommended publications
  • Diversity and Phylogeny of Suillus (Suillaceae; Boletales; Basidiomycota) from Coniferous Forests of Pakistan
    INTERNATIONAL JOURNAL OF AGRICULTURE & BIOLOGY ISSN Print: 1560–8530; ISSN Online: 1814–9596 13–870/2014/16–3–489–497 http://www.fspublishers.org Full Length Article Diversity and Phylogeny of Suillus (Suillaceae; Boletales; Basidiomycota) from Coniferous Forests of Pakistan Samina Sarwar * and Abdul Nasir Khalid Department of Botany, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54950, Pakistan *For correspondence: [email protected] Abstract Suillus (Boletales; Basidiomycota) is an ectomycorrhizal genus, generally associated with Pinaceae. Coniferous forests of Pakistan are rich in mycodiversity and Suillus species are found as early appearing fungi in the vicinity of conifers. This study reports the diversity of Suillus collected during a period of three (3) years (2008-2011). From 32 basidiomata of Suillus collected, 12 species of this genus were identified. These basidiomata were characterized morphologically, and phylogenetically by amplifying and sequencing the ITS region of rDNA. © 2014 Friends Science Publishers Keywords: Moist temperate forests; PCR; rDNA; Ectomycorrhizae Introduction adequate temperature make the environment suitable for the growth of mushrooms in these forests. Suillus (Suillaceae, Basidiomycota, Boletales ) forms This paper described the diversity of Suillus (Boletes, ectomycorrhizal associations mostly with members of the Fungi) with the help of the anatomical, morphological and Pinaceae and is characterized by having slimy caps, genetic analyses as little knowledge is available from forests glandular dots on the stipe, large pore openings that are in Pakistan. often arranged radially and a partial veil that leaves a ring or tissue hanging from the cap margin (Kuo, 2004). This genus Materials and Methods is mostly distributed in northern temperate locations, although some species have been reported in the southern Sporocarp Collection hemisphere as well (Kirk et al ., 2008).
    [Show full text]
  • Fungi of North East Victoria Online
    Agarics Agarics Agarics Agarics Fungi of North East Victoria An Identication and Conservation Guide North East Victoria encompasses an area of almost 20,000 km2, bounded by the Murray River to the north and east, the Great Dividing Range to the south and Fungi the Warby Ranges to the west. From box ironbark woodlands and heathy dry forests, open plains and wetlands, alpine herb elds, montane grasslands and of North East Victoria tall ash forests, to your local park or backyard, fungi are found throughout the region. Every fungus species contributes to the functioning, health and An Identification and Conservation Guide resilience of these ecosystems. Identifying Fungi This guide represents 96 species from hundreds, possibly thousands that grow in the diverse habitats of North East Victoria. It includes some of the more conspicuous and distinctive species that can be recognised in the eld, using features visible to the Agaricus xanthodermus* Armillaria luteobubalina* Coprinellus disseminatus Cortinarius austroalbidus Cortinarius sublargus Galerina patagonica gp* Hypholoma fasciculare Lepista nuda* Mycena albidofusca Mycena nargan* Protostropharia semiglobata Russula clelandii gp. yellow stainer Australian honey fungus fairy bonnet Australian white webcap funeral bell sulphur tuft blewit* white-crowned mycena Nargan’s bonnet dung roundhead naked eye or with a x10 magnier. LAMELLAE M LAMELLAE M ■ LAMELLAE S ■ LAMELLAE S, P ■ LAMELLAE S ■ LAMELLAE M ■ ■ LAMELLAE S ■ LAMELLAE S ■ LAMELLAE S ■ LAMELLAE S ■ LAMELLAE S ■ LAMELLAE S ■ When identifying a fungus, try and nd specimens of the same species at dierent growth stages, so you can observe the developmental changes that can occur. Also note the variation in colour and shape that can result from exposure to varying weather conditions.
    [Show full text]
  • Mycomedicine: a Unique Class of Natural Products with Potent Anti-Tumour Bioactivities
    molecules Review Mycomedicine: A Unique Class of Natural Products with Potent Anti-tumour Bioactivities Rongchen Dai 1,†, Mengfan Liu 1,†, Wan Najbah Nik Nabil 1,2 , Zhichao Xi 1,* and Hongxi Xu 3,* 1 School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; [email protected] (R.D.); [email protected] (M.L.); [email protected] (W.N.N.N.) 2 Pharmaceutical Services Program, Ministry of Health, Selangor 46200, Malaysia 3 Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China * Correspondence: [email protected] (Z.X.); [email protected] (H.X) † These authors contributed equally to this work. Abstract: Mycomedicine is a unique class of natural medicine that has been widely used in Asian countries for thousands of years. Modern mycomedicine consists of fruiting bodies, spores, or other tissues of medicinal fungi, as well as bioactive components extracted from them, including polysaccha- rides and, triterpenoids, etc. Since the discovery of the famous fungal extract, penicillin, by Alexander Fleming in the late 19th century, researchers have realised the significant antibiotic and other medic- inal values of fungal extracts. As medicinal fungi and fungal metabolites can induce apoptosis or autophagy, enhance the immune response, and reduce metastatic potential, several types of mush- rooms, such as Ganoderma lucidum and Grifola frondosa, have been extensively investigated, and anti- cancer drugs have been developed from their extracts. Although some studies have highlighted the anti-cancer properties of a single, specific mushroom, only limited reviews have summarised diverse medicinal fungi as mycomedicine. In this review, we not only list the structures and functions of pharmaceutically active components isolated from mycomedicine, but also summarise the mecha- Citation: Dai, R.; Liu, M.; Nik Nabil, W.N.; Xi, Z.; Xu, H.
    [Show full text]
  • CZECH MYCOLOGY Publication of the Czech Scientific Society for Mycology
    CZECH MYCOLOGY Publication of the Czech Scientific Society for Mycology Volume 57 August 2005 Number 1-2 Central European genera of the Boletaceae and Suillaceae, with notes on their anatomical characters Jo s e f Š u t a r a Prosetická 239, 415 01 Tbplice, Czech Republic Šutara J. (2005): Central European genera of the Boletaceae and Suillaceae, with notes on their anatomical characters. - Czech Mycol. 57: 1-50. A taxonomic survey of Central European genera of the families Boletaceae and Suillaceae with tubular hymenophores, including the lamellate Phylloporus, is presented. Questions concerning the delimitation of the bolete genera are discussed. Descriptions and keys to the families and genera are based predominantly on anatomical characters of the carpophores. Attention is also paid to peripheral layers of stipe tissue, whose anatomical structure has not been sufficiently studied. The study of these layers, above all of the caulohymenium and the lateral stipe stratum, can provide information important for a better understanding of relationships between taxonomic groups in these families. The presence (or absence) of the caulohymenium with spore-bearing caulobasidia on the stipe surface is here considered as a significant ge­ neric character of boletes. A new combination, Pseudoboletus astraeicola (Imazeki) Šutara, is proposed. Key words: Boletaceae, Suillaceae, generic taxonomy, anatomical characters. Šutara J. (2005): Středoevropské rody čeledí Boletaceae a Suillaceae, s poznámka­ mi k jejich anatomickým znakům. - Czech Mycol. 57: 1-50. Je předložen taxonomický přehled středoevropských rodů čeledí Boletaceae a. SuiUaceae s rourko- vitým hymenoforem, včetně rodu Phylloporus s lupeny. Jsou diskutovány otázky týkající se vymezení hřibovitých rodů. Popisy a klíče k čeledím a rodům jsou založeny převážně na anatomických znacích plodnic.
    [Show full text]
  • Corylus Avellana
    Annals of Microbiology (2019) 69:553–565 https://doi.org/10.1007/s13213-019-1445-4 ORIGINAL ARTICLE Chinese white truffles shape the ectomycorrhizal microbial communities of Corylus avellana Mei Yang1 & Jie Zou2,3 & Chengyi Liu1 & Yujun Xiao1 & Xiaoping Zhang2,3 & Lijuan Yan4 & Lei Ye2 & Ping Tang1 & Xiaolin Li2 Received: 29 October 2018 /Accepted: 30 January 2019 /Published online: 14 February 2019 # Università degli studi di Milano 2019 Abstract Here, we investigated the influence of Chinese white truffle (Tuber panzhihuanense) symbioses on the microbial communities associated with Corylus avellana during the early development stage of symbiosis. The microbial communities associated with ectomycorrhizae, and associated with roots without T. panzhihuanense colonization, were determined via high-throughput sequencing of bacterial 16S rRNA genes and fungal ITS genes. Microbial community diversity was higher in the communities associated with the ectomycorrhizae than in the control treatment. Further, bacterial and fungal community structures were different in samples containing T. panzhihuanense in association with C. avellana compared to the control samples. In particular, the bacterial genera Rhizobium, Pedomicrobium,andHerbiconiux were more abundant in the ectomycorrhizae, in addition to the fungal genus Monographella. Moreover, there were clear differences in some physicochemical properties among the rhizosphere soils of the two treatments. Statistical analyses indicated that soil properties including exchangeable magnesium and exchange- able calcium prominently influenced microbial community structure. Lastly, inference of bacterial metabolic functions indicated that sugar and protein metabolism functions were significantly more enriched in the communities associated with the ectomycorrhizae from C. avellana mycorrhized with T. panzhihuanense compared to communities from roots of cultivated C.
    [Show full text]
  • Fungal Diversity in the Mediterranean Area
    Fungal Diversity in the Mediterranean Area • Giuseppe Venturella Fungal Diversity in the Mediterranean Area Edited by Giuseppe Venturella Printed Edition of the Special Issue Published in Diversity www.mdpi.com/journal/diversity Fungal Diversity in the Mediterranean Area Fungal Diversity in the Mediterranean Area Editor Giuseppe Venturella MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin Editor Giuseppe Venturella University of Palermo Italy Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Diversity (ISSN 1424-2818) (available at: https://www.mdpi.com/journal/diversity/special issues/ fungal diversity). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03936-978-2 (Hbk) ISBN 978-3-03936-979-9 (PDF) c 2020 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. Contents About the Editor .............................................. vii Giuseppe Venturella Fungal Diversity in the Mediterranean Area Reprinted from: Diversity 2020, 12, 253, doi:10.3390/d12060253 .................... 1 Elias Polemis, Vassiliki Fryssouli, Vassileios Daskalopoulos and Georgios I.
    [Show full text]
  • <I>Tuber Petrophilum</I>, a New Truffle Species from Serbia
    ISSN (print) 0093-4666 © 2015. Mycotaxon, Ltd. ISSN (online) 2154-8889 MYCOTAXON http://dx.doi.org/10.5248/130.1141 Volume 130, pp. 1141–1152 October–December 2015 Tuber petrophilum, a new truffle species from Serbia Miroljub Milenković1, Tine Grebenc2, Miroslav Marković3 & Boris Ivančević4* 1Institute for Biological Research “Siniša Stanković” Bulevar despota Stefana 142, RS-11060 Belgrade, Serbia 2Slovenian Forestry Institute, Večna pot 2, SI-1000 Ljubljana, Slovenia 3Banatska 34, RS-26340 Bela Crkva, Serbia 4Natural History Museum, Njegoševa 51, RS-11000 Belgrade, Serbia * Correspondence to: [email protected] Abstract — Tuber petrophilum sp. nov., within the Tuber melanosporum lineage, is described from Mount Tara (western Serbia) based on morphological and ITS molecular data. It is recognizable by its minute ascomata that produce ovoid to ellipsoid to subfusiform spores bearing aculeate ornamentation. Among black truffles, the new species is distinguished by its irregularly roundish to subglobose ascomata not exceeding 1.6 cm in diameter, with a basal depression or cavity and peridium surface which appears as a thin semi-transparent layer while fresh. The species forms a monophyletic well-supported clade in Maximum Likelihood ITS phylogeny, closely related to Tuber brumale aggr. The distinctive feature of the new species lies in its specific and unique microhabitat, limited to humus-rich substrata accumulated as soil pockets in limestone rocks, commonly 20-100 cm above the continuous forest soil terraces. The species description is supplemented with macro- and micro-photographs, and a key to the species of the T. melanosporum lineage. Key words — biodiversity, ecology of truffles, hypogeous fungi, Tuberaceae Introduction On several occasions between 2004 and 2014, the first author with associates explored hypogeous fungi in the Tara National Park on Mount Tara, which is located in western Serbia on the edge of northeastern belt of the Dinaric Alps.
    [Show full text]
  • In Colombia the Eurasian Fungus Amanita Muscaria Is Expanding Its Range Into Native, Tropical Quercus Humboldtii Forests
    Mycologia ISSN: 0027-5514 (Print) 1557-2536 (Online) Journal homepage: https://www.tandfonline.com/loi/umyc20 In Colombia the Eurasian fungus Amanita muscaria is expanding its range into native, tropical Quercus humboldtii forests Natalia Vargas, Susana C. Gonçalves, Ana Esperanza Franco-Molano, Silvia Restrepo & Anne Pringle To cite this article: Natalia Vargas, Susana C. Gonçalves, Ana Esperanza Franco-Molano, Silvia Restrepo & Anne Pringle (2019): In Colombia the Eurasian fungus Amanitamuscaria is expanding its range into native, tropical Quercushumboldtii forests, Mycologia, DOI: 10.1080/00275514.2019.1636608 To link to this article: https://doi.org/10.1080/00275514.2019.1636608 View supplementary material Published online: 13 Aug 2019. Submit your article to this journal Article views: 119 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=umyc20 MYCOLOGIA https://doi.org/10.1080/00275514.2019.1636608 In Colombia the Eurasian fungus Amanita muscaria is expanding its range into native, tropical Quercus humboldtii forests Natalia Vargasa, Susana C. Gonçalves b, Ana Esperanza Franco-Molanoc, Silvia Restrepoa, and Anne Pringle d,e aLaboratory of Mycology and Plant Pathology, Universidad de Los Andes, Bogotá, Colombia; bCentre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; cLaboratorio de Taxonomía y Ecología de Hongos, Universidad de Antioquia, Medellín, Colombia; dDepartment of Botany, University of Wisconsin–Madison, Madison, Wisconsin 53706; eDepartment of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin 53706 ABSTRACT ARTICLE HISTORY To meet a global demand for timber, tree plantations were established in South America during Received 22 October 2018 the first half of the 20th century.
    [Show full text]
  • Fungi of National Park Mavrovo
    Project “Protection, Economic Development and Promotion of Eco Tourism in Mavrovo National Park” Fungi of National Park Mavrovo Final Report Mitko Karadelev Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss Cyril and Methodius University, Skopje, Macedonia 1 Contents 1. Introduction 3 2. Review of Fungi Research in the Area 5 3. Inventory of Fungi Species in Mavrovo NP 7 3.1. Fungi Species from Mavrovo NP on European Fungi Red List 8 3.2. Fungi Species from Mavrovo NP on Preliminary Red List of Macedonia 14 3.3. Threatened Fungi Species from Mavrovo NP - Candidates for Listing in Appendix I of the Bern Convention 17 3.4. Threatened Fungi Species Included in ECCF Atlas of 50 Threatened European Species 18 3.5. Macrofungi Known Only from Mavrovo NP in Macedonia 20 3.6. New Fungi Species for Macedonia Recorded for the First Time from Mavrovo NP in 2009-2010 22 3.7. Species from Mavrovo NP with Globally Significant Status 29 3.8. Key Species from Mavrovo NP 30 4. Species and Habitat Analysis 34 4.1. Edible and Toxic Species in MNR 42 5. Conservation Problems 46 5.1. Gaps in Knowledge of Macromycetes 46 5.2. Fragility 47 6. Protection Measures 47 7. Prime Mushroom Areas 49 8. Recommendations 54 9. References 55 -------------------------------------------------------------------------------------------------- Annex I: List of Published Fungi Species from MNP Annex II: Full List of Recorded Fungi Species from MNP Annex III: List of New Species for MNP (Project Results) Annex IV: List of Edible and Poisonous Fungi in MNP Annex V: List of New Species for MK 2 1.
    [Show full text]
  • 2 the Numbers Behind Mushroom Biodiversity
    15 2 The Numbers Behind Mushroom Biodiversity Anabela Martins Polytechnic Institute of Bragança, School of Agriculture (IPB-ESA), Portugal 2.1 ­Origin and Diversity of Fungi Fungi are difficult to preserve and fossilize and due to the poor preservation of most fungal structures, it has been difficult to interpret the fossil record of fungi. Hyphae, the vegetative bodies of fungi, bear few distinctive morphological characteristicss, and organisms as diverse as cyanobacteria, eukaryotic algal groups, and oomycetes can easily be mistaken for them (Taylor & Taylor 1993). Fossils provide minimum ages for divergences and genetic lineages can be much older than even the oldest fossil representative found. According to Berbee and Taylor (2010), molecular clocks (conversion of molecular changes into geological time) calibrated by fossils are the only available tools to estimate timing of evolutionary events in fossil‐poor groups, such as fungi. The arbuscular mycorrhizal symbiotic fungi from the division Glomeromycota, gen- erally accepted as the phylogenetic sister clade to the Ascomycota and Basidiomycota, have left the most ancient fossils in the Rhynie Chert of Aberdeenshire in the north of Scotland (400 million years old). The Glomeromycota and several other fungi have been found associated with the preserved tissues of early vascular plants (Taylor et al. 2004a). Fossil spores from these shallow marine sediments from the Ordovician that closely resemble Glomeromycota spores and finely branched hyphae arbuscules within plant cells were clearly preserved in cells of stems of a 400 Ma primitive land plant, Aglaophyton, from Rhynie chert 455–460 Ma in age (Redecker et al. 2000; Remy et al. 1994) and from roots from the Triassic (250–199 Ma) (Berbee & Taylor 2010; Stubblefield et al.
    [Show full text]
  • Los Alamos National Laboratory
    LA-13385-MS Distribution and Diversity of Fungal Species in and Adjacent to the Los Alamos National Laboratory OF WS DOCUMBff S IWM* Tl Los Alamos NATIONAL LABORATORY Los Alamos National Laboratory is operated by the University of California for the United States Department of Energy under contract W-7405-ENC-36. An Affirmative Action/Equal Opportunity Employer This report was prepared as an account of work sponsored by an agency of the United States Government Neither The Regents of the University of California, the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by The Regents of the University of California, the United States Government, or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of The Regents of the University of California, the United States Government, or any agency thereof. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution,however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness. DISCLAIMER Portions of this document may be illegible electronic image products. Images are produced from the best available original document.
    [Show full text]
  • This File Was Created by Scanning the Printed
    FUNGAL ECOLOGY 4 (2011) 134-146 available at www.sciencedirect.com --" -.;" ScienceDirect jou rna I hom epage: www.elsevier.com/locate/fu n eco ELSEVIER Addressing uncertainty: How to conserve and manage rare or little-known fungi b Randy MOLINAa,*, Thomas R. HORTON , James M. TRAPPEa, Bruce G. MARCOr: aOregon State University, Department of Forest Ecosystems and Society, 321 Richardson Hall, Corvallis, OR 97331, USA b State University of New York, College of Environmental Science and Forestry, Department of Environmental and Forest Biology, 246 Illick Hall, 1 Forestry Drive, Syracuse, NY 13210, USA cUSDA Forest Service, Pacific Northwest Research Station, Portland Forestry Sciences Laboratory, 620 SW Main Street, Suite 400, Portland, OR 97205, USA ARTICLE INFO ABSTRACT Article history: One of thegreater challenges in conserving fungi comes from our incomplete knowledge of Received 8 March 2010 degree of rarity, risk status, and habitat requirements of most fungal species. We discuss Accepted 15 June 2010 approaches to immediately begin closing knowledge gaps, including: (1) harnessing Available online 15 September 2010 collective expert knowledge so that data from professional experiences (e.g., personal Corresponding editor: Anne Pringle collection and herbarium records) are better organized and made available to the broader mycological community; (2) thinking outside the mycology box by learning and borrowing Keywords: from conservation approaches to other taxonomic groups; (3) developing and testing Adaptive management hypothesis-driven habitat models for representative fungi to provide support for habitat Expert knowledge restoration and management; (4) framing ecological questions and conducting field Fungus conservation surveys and research more directly pertinent to conservation information needs; and (5) Habitat modeling providing adaptive management guidelines and strategies for resource managers to Species vs.
    [Show full text]