Scale Genetic Structure of Dysoxylum Malabaricum, a Late-Successional Canopy Tree Species in Disturbed Forest Patches in the Western Ghats, India

Total Page:16

File Type:pdf, Size:1020Kb

Scale Genetic Structure of Dysoxylum Malabaricum, a Late-Successional Canopy Tree Species in Disturbed Forest Patches in the Western Ghats, India Conserv Genet DOI 10.1007/s10592-016-0877-7 RESEARCH ARTICLE Fine- and local- scale genetic structure of Dysoxylum malabaricum, a late-successional canopy tree species in disturbed forest patches in the Western Ghats, India 1 2,3 4 3 Sofia Bodare • Gudasalamani Ravikanth • Sascha A. Ismail • Mohana Kumara Patel • 5 6 2,3,7 Ilaria Spanu • Ramesh Vasudeva • Ramanan Uma Shaanker • 5 1 1,8 Giovanni Giuseppe Vendramin • Martin Lascoux • Yoshiaki Tsuda Received: 20 December 2015 / Accepted: 6 August 2016 Ó Springer Science+Business Media Dordrecht 2016 Abstract Dysoxylum malabaricum (white cedar) is an structure at the landscape level (\50 km), regardless of age economically important tree species, endemic to the Wes- class, due to limited gene flow between forest patches. A tern Ghats, India, which is the world’s most densely pop- comparison of the distributions of size classes in the four ulated biodiversity hotspot. In this study, we used variation locations with published data from a more southern area, at ten nuclear simple sequence repeat loci to investigate showed that large trees (diameter at breast height, DBH, genetic diversity and fine scale spatial genetic structure [130 cm) are present in the southern sacred forests but not (FSGS) in seedlings and adults of D. malabaricum from in the northern forest reserves. This pattern is likely due to four forest patches in the northern part of the Western stronger harvesting pressure in the north compared to the Ghats. When genetic variation was compared between south, because in the north there are no cultural taboos seedlings and adults across locations, significant differ- regulating the extraction of natural resources. The impli- ences were detected in allelic richness, observed cations for forest conservation in this biodiversity hotspot heterozygosity, fixation index (FIS), and relatedness are discussed. (P \ 0.05). Reduced genetic diversity and increased relatedness at the seedling stage might be due to frag- Keywords Dysoxylum malabaricum Á Fragmentation Á mentation and disturbance. There was no FSGS at the adult Disturbance Á Land use Á Spatial genetic structure Á Western stage and FSGS was limited to shorter distance classes at Ghats the seedling stage. However, there was clear spatial genetic Electronic supplementary material The online version of this article (doi:10.1007/s10592-016-0877-7) contains supplementary material, which is available to authorized users. & Yoshiaki Tsuda 5 Institute of Biosciences and Bioresources, National Research [email protected] Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy 1 Program in Plant Ecology and Evolution, Department of 6 Department of Forest Biology, College of Forestry, Ecology and Genetics, Evolutionary Biology Centre, Uppsala University of Agricultural Sciences, Dharwad, Sirsi, ¨ University, Norbyvagen 18D, 75236 Uppsala, Sweden Karnataka 581401, India 2 Ashoka Trust for Research in Ecology and the Environment, 7 Department of Crop Physiology, University of Agricultural Royal Enclave, Srirampura, Jakkur Post, Bangalore, Sciences, Bangalore, Karnataka 560065, India Karnataka 560064, India 8 3 Present Address: Sugadaira Montane Research Center, School of Ecology and Conservation, University of University of Tsukuba, 1278-294 Sugadairakogen, Ueda, Agricultural Sciences, Bangalore, Karnataka 560065, India Nagano 386-2204, Japan 4 Ecosystem Management, Department of Environmental Systems Science, ETH Zu¨rich, Universita¨tsstrasse 16, 8092 Zurich, Switzerland 123 Conserv Genet Introduction (Wang et al. 2011). Although SGS can be affected by several factors, including colonization events and micro- Tropical forests harbor large amounts of biodiversity, but environmental selection, its main determinants are believed human activities over the last few decades have caused to be mating system, dispersal mode and adult density severe deforestation, fragmentation and disturbance (Vekemans and Hardy 2004). Moreover, as SGS patterns (Wright and Muller-Landau 2006; Abdullah and Nakagoshi are scale dependent, it is important to evaluate genetic 2007). As a consequence, many forests that were once structure at several geographic levels, i.e., broad scale (e.g. continuous now exist as isolated and disturbed patches or several hundred to thousands of kilometers), fine scale (e.g. meta-populations (Sork and Smouse 2006). Natural and over tens to several hundred meters) and also at an inter- artificial habitat disturbances, such as forest fires, tsunamis, mediate landscape scale (Manel et al. 2003; Tsuda et al. and land use, and their effects on the genetic diversity of 2010), to understand how SGS is formed over a species species are important topics in ecology and conservation distribution range. biology (Banks et al. 2013; Iwaizumi et al. 2013). In many Dysoxylum malabaricum Bedd. Ex C.DC. (white cedar) cases of habitat disturbance, decreases in genetic diversity is an economically important and endangered species, and increases in population differentiation are expected, endemic to the Western Ghats region of India, one of the especially when disturbances induce genetic drift and world’s eight hottest hotspots of biodiversity (Myers et al. restrict gene flow among populations (Vellend 2004; 2000) and by far the most densely human populated of the Evanno et al. 2009; Struebig et al. 2011). Currently, one of biodiversity hotspots (Cicotta et al. 2000). Dysoxylum the most prevalent environmental changes, especially in malabaricum is considered a sacred tree and is harvested tropical forests, is anthropogenic disturbance, including for religious purposes, including the construction of tem- land use change and deforestation, which results in loss of ples (Manjunath 2003), as well as for commercial and continuous habitat and the creation of smaller, spatially personal uses (Kumar 2009). While the degradation of isolated, forest fragments. While habitat loss and overhar- forests in the present study area has been occurring for vesting is an immediate threat to many forest tree species, about 200 years, the most severe usage has occurred more disturbance may also be detrimental to forest ecosystems in recently, e.g. from the forest reserves in Northern Kar- the long term. In particular, following disturbance late- nataka in the Western Ghats (Gokhale 2004). Over the last successional canopy species, which constitute a large few decades, overharvesting and land use have reduced and portion of the biomass and provide shade and habitat to fragmented the remaining populations; most notably the other species, are replaced by pioneer species, which may stock of juvenile and young adult individuals has been undermine the integrity of the ecosystem. Furthermore, reduced in some locations, with potential long-term effects recent studies demonstrate that both genetic and species on the reproductive success and survival of populations diversities can decrease following fragmentation and dis- (Shivanna et al. 2003; Ismail et al. 2014). In particular, the turbance (Vellend and Geber 2005; Evanno et al. 2009; species density in sacred groves and forest reserves dis- Struebig et al. 2011). Because genetic diversity is an tributed throughout the Western Ghats region is at risk integral part of biodiversity and the basis of a species’ (Boraiah et al. 2003; Gunaga et al. 2013). Sacred groves adaptive potential, it is important to assess the genetic and forest reserves have traditionally been sustainably diversity of late-successional trees to ensure their long term managed by local communities (Chandrakanth et al. 2004; persistence in disturbed tropical forests. The present study Tambat et al. 2005). However, in recent years, due to aims to address this problem by combining genetic and changes in socio-economic conditions and decreasing demographic approaches for investigating genetic diversity social norms regulating the extraction of natural resources and genetic structure across age classes. from these forests, they are now largely a source of income Measuring spatial genetic structure provides a way to and are exposed to non-sustainable harvesting (Tambat assess how pollen and seed flow changes over time. Spatial et al. 2005; Gunaga et al. 2013). As an old-growth and genetic structure (SGS) measures the nonrandom geo- large canopy tree depending on large birds for dispersal, D. graphical distribution of genotypes, and results in increased malabaricum provides an ideal system for studying the relatedness among geographically close individuals com- ability of economically and ecologically important late- pared to more distant ones (Epperson 1992; Vekemans and successional tree species to survive in disturbed habitats. Hardy 2004). Fine scale SGS (FSGS) has been observed in Previous conservation genetics studies on D. malabar- plant species (Vekemans and Hardy 2004) and measures of icum have shown the presence of genetic structure on a FSGS have been suggested to be more sensitive than range-wide and local scale. In the range-wide study, clustering algorithms and standard inbreeding statistics to genetic clusters were found to stretch over large as well as detect the early genetic effects of environmental changes small geographic distances, with more clustering and a higher fixation index (FIS) in the northern part of the 123 Conserv Genet species distribution range (Bodare et al. 2013). One FSGS perceived level of disturbance, based on the intensity of study in a moderately disturbed southern location (Kodagu, human land use activities. The
Recommended publications
  • Nesting Behavior of Bornean Immature Orangutan (Pongo Pygmaeus Wurmbii) in Nyaru Menteng Arboretum School, Palangka Raya, Central Kalimantan, Indonesia
    BIODIVERSITAS ISSN: 1412-033X Volume 21, Number 5, May 2020 E-ISSN: 2085-4722 Pages: 2172-2179 DOI: 10.13057/biodiv/d210545 Nesting behavior of Bornean immature Orangutan (Pongo pygmaeus wurmbii) in Nyaru Menteng Arboretum School, Palangka Raya, Central Kalimantan, Indonesia FOUAD FAUZI1, SUEMARNO2, AMINUDIN AFANDHI2, AMIN SETYO LEKSONO3,♥ 1Department of Forestry, Faculty of Agriculture, Universitas Palangkaraya. Jl. Yos Sudarso, Palangka Raya 74874, Central Kalimantan, Indonesia 2Faculty of Agriculture, Universitas Brawijaya. Jl. Veteran, Malang 65145, East Java, Indonesia 3Deparment of Biology, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya. Jl. Veteran, Malang 65145, East Java, Indonesia. Tel.: +62-341-575841, Fax.: +62-341-554403, email: [email protected] Manuscript received: 26 February 2020. Revision accepted: 23 April 2020. Abstract. Fauzi F, Suemarno, Afandhi A, Leksono AS. 2020. Nesting behavior of Bornean immature Orangutan (Pongo pygmaeus wurmbii) in Nyaru Menteng Arboretum School, Palangka Raya, Central Kalimantan, Indonesia. Biodiversitas 21: 2172-2179. This research aimed at analyzing the nesting behavior of Bornean Orangutan (Pongo pygmaeus wurmbii) in Nyaru Menteng Arboretum, Palangka Raya, Central Kalimantan, Indonesia. The objects of observation were the immature orangutan nest, and the type of nest tree. The purposive sampling technique was used because not all immature Orangutan could make a nest. The Focal animal sampling method was used to determine the daily behavior and nets building activity. It involved observing and recording the behavior of five young Orangutans over a certain period of time and analyzing the nest made. The results of the study established that the daily activity of immature Orangutan on an average sequentially ranges from feeding 17.18%, moving 23.92%, resting 26.34%, and social behavior 32.57%.
    [Show full text]
  • Frugivory in Sun Bears (Helarctos Malayanus) Is Linked to El Niño-Related fluctuations in Fruiting Phenology, East Kalimantan, Indonesia
    Blackwell Publishing LtdOxford, UKBIJBiological Journal of the Linnean Society0024-4066The Linnean Society of London, 2006? 2006 89? 489508 Original Article PHENOLOGICAL INFLUENCES ON SUN BEAR FRUGIVORY G. M. FREDRIKSSON ET AL. Biological Journal of the Linnean Society, 2006, 89, 489–508. With 6 figures Frugivory in sun bears (Helarctos malayanus) is linked to El Niño-related fluctuations in fruiting phenology, East Kalimantan, Indonesia GABRIELLA M. FREDRIKSSON1*, SERGE A. WICH2 and TRISNO3 1Institute for Biodiversity and Ecosystem Dynamics/Zoological Museum, University of Amsterdam, PO Box 94766, 1090 GT Amsterdam, the Netherlands 2Utrecht University, Behavioural Biology, PO Box 80086, 3508 TB Utrecht, the Netherlands 3Sugai Wain Management Board, Sekretariat d/a Kantor Bapedalda Kota Balikpapan, Jl. Jend. Sudirman No.1, Balikpapan, East Kalimantan, Indonesia Received 6 December 2004; accepted for publication 15 January 2006 Sun bear (Helarctos malayanus) frugivory and fruiting phenology was investigated in a lowland dipterocarp forest in East Kalimantan, Indonesia. Two mast fruiting events, both coinciding with El Niño/Southern Oscillation events, occurred 4 years apart, resulting in large fluctuations in fruit availability. Sun bear fruit availability decreased from 13 trees ha−1 fruiting month−1 during the mast fruiting to 1.6 trees ha−1 fruiting month−1 during the intermast period. Almost 100% of sun bear diet consisted of fruit during mast fruiting period, whereas sun bear diet was predomi- nantly insectivorous during intermast periods. The majority of sun bear fruit trees displayed ‘mast-fruiting’ and ‘supra-annual’ fruiting patterns, indicating sporadic productivity. Sun bears fed on 115 fruit species covering 54 gen- era and 30 families, with Ficus (Moraceae) being the main fallback fruit.
    [Show full text]
  • THE DISTRIBUTION of the DIPTEROCARPACEAE in THAILAND by Tern Sm Itinand (Read at Xitb Pacific Science Congress, Tokyo, 1St September 1966)
    THE DISTRIBUTION OF THE DIPTEROCARPACEAE IN THAILAND by Tern Sm itinand (Read at XItb Pacific Science Congress, Tokyo, 1st September 1966) ABSTRACT The family Dipterocarpaceae is represented in Thailand by 9 genera and 6 3 species, and can be classified into 2 groups, evergreen and deciduous or xerophytic. The majority belong to the evergreen, which is scattered all over the country either in gallery forest (Dij;tero­ carpus alatus, VaLica cinerea and Hopea odorata), along the hill streams (Dipterocarpus oblongifolius and V atica odorata), in the low-lying land (Dij;terocarpus baudii, D. dyeri, D. gmcilis, D. clwrtaceus, D. ken·ii, Slwrea and f-loj;ea spp.), or on bill slopes (Dij;terocarpus cnslatus, D. gt·andiflorus, D. Tetusus, D. turbinatus, D . IIWC1"0carpus, Hopea odomta, I-Iopea f enea and S!wrea talura). Only 5 xerophytic species are represented (Dipterocmpus obtusifolius, D. tuberculatus, D. intn·catus, Shorea obtusa and Pe11taC11·1e suavi.s), occupying either the high plateau or ridges, and forming a climatic forest type, the Dry Deciduous Diptero­ carp forest. The highest elevation reached by the Dipterocarps is 1300 m.a.s.l. (D1j;terocarpus tuberculatus, D. obtusifolius, Shot·ea obtusa and Pentacme suavis). Parashortea stellata and Shorea Togersiana follow the Tenesserim tract, while Cotylelobium lanceolatum, Balanocarpus heimii, Shorea curtisii, S. assamica var. globifera, S. guiso, S. faguetiana, S. hemsleyana, S. sumatrana, S. mae1·optera, S. glauca S. j;arv lfolia, I-Iopea pedicellata, I-I. lat1jolia, Vatica staj;fiana, and V. lowii are confined to the Peninsular region not beyond the latitude 1 o·N. Species found only in the Northeastern region are I-Iopea 1·eticulata and I-I.
    [Show full text]
  • Australian Essential Oils History and Emerging Trends
    Australian Essential Oils – History and Emerging Trends Ashley Dowell – Essential Oil Producers Association of Australia & Southern Cross University 23 rd October 2019 Introduction Australia has a unique flora largely of Gondwanan origin with later influence from the Indian subcontinent and South East Asia. Gondwana land was a pre-historic super continent including Australia, New Zealand, South America, Antarctica, Africa and the Indian sub-continent. Although separating early, it is proposed that Australia and India re-connected for a period of time before separating again. In more recent history Australia was connected to South-east Asia by land bridges which arose due to falling sea levels resulting from ice age glaciation Dominant plant families present in Australia include the essential oil bearing genus: Myrtaceae – Eucalyptus, Melaleuca, Leptospermum Rutaceae – Boronia, Citrus Other significant essential oil bearing plant families found in Australia are the Santalaceae, Myoporaceae, and Cupressaceae. Australia is often perceived as a land of deserts but is in fact a diverse collection of fire and drought adapted environments. Eucalypt woodlands make up to 39% of Australian vegetative cover, predominantly in New South Wales and Queensland followed by Hummock grasslands at 23% found mostly in Western Australia, Queensland and New SouthWales and Acacia woodlands occupying 10-20%, mostly in Western Australia, Queensland and New South Wales. There are significant areas of Acacia shrublands, Tussock grasslands and Chenopod shrubs and forblands, particularly in South Australia. There are relatively small (less than 70,000 Km2) but biologically significant areas of tropical and temperate rainforest in eastern coastal areas from Queensland to Tasmania, as well as Tall eucalypts forests and Callitris and Casuarina forests further inland and in sub-alpine areas.
    [Show full text]
  • Farmaka 212 Volume 17 Nomor 3
    Farmaka 212 Volume 17 Nomor 3 REVIEW ARTIKEL: AKTIVITAS FARMAKOLOGI DARI TANAMAN GENUS DYSOXYLUM Muhamad Nadiva Mardiana dan Raden Bayu Indradi Fakultas Farmasi Universitas Padjadjaran Jl. Raya Bandung Sumedang KM 21, Jatinangor, Sumedang, Jawa Barat 45363 [email protected], [email protected] Diserahkan 29/06/2019, diterima 23/01/2020 ABSTRAK Tanaman obat telah menjadi alternatif pengobatan pada masyarakat lokal untuk beberapa penyakit. Banyaknya resistensi mikroba terhadap obat kimia yang meningkat memunculkan beberapa penelitian untuk beralih ke obat herbal yang memiliki efek samping yang lebih sedikit dibandingkan obat kimia. Tanaman dari genus Dysoxylum sangat tersebar luas di benua Asia, dan ada kurang kebih 80 spesies yang sudah diuji, dan masih ada banyak spesies tanaman genus ini yang belum diuji aktivitas farmakologinya. Berdasarkan kebutuhan yang ada, pengkajian terhadap tanaman-tanaman genus Dysoxylum perlu dilakukan agar dapat memberikan manfaat secara menyeluruh terhadap pengembangan obat herbal. Dari hasil ulasan diperoleh beberapa tanaman genus ini, didapat hasil aktivitasnya yang berupa sitotoksik terhadap sel kanker payudara MCF-7, antiinflamasi, antibakteri, antifidan, antiplasmodium, antioksidan, sitoprotektif dan penghambat pertumbuhan bakteri dan jamur yang berasal dari tanaman Dysoxylum aborescens, Dysoxylum parasiticum, Dysoxylum lukii, Dysoxylum alliaceum, Dysoxylum hainanense, Dysoxylum caulostachyum, Dysoxylum gothadora, Dysoxylum binectariferum, Dysoxylum cauliflorum, Dysoxylum densiflorum. Kata
    [Show full text]
  • Origins and Assembly of Malesian Rainforests
    ES50CH06_Kooyman ARjats.cls October 21, 2019 11:31 Annual Review of Ecology, Evolution, and Systematics Origins and Assembly of Malesian Rainforests Robert M. Kooyman,1,2 Robert J. Morley,3,4 Darren M. Crayn,5 Elizabeth M. Joyce,5 Maurizio Rossetto,2 J.W. Ferry Slik,6 Joeri S. Strijk,7,8,9 Ta o S u , 9,10 Jia-Yee S. Yap,2,11 and Peter Wilf12 1Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia; email: [email protected] 2National Herbarium of New South Wales, Royal Botanic Gardens and Domain Trust, Sydney, New South Wales 2000, Australia 3Palynova UK, Littleport, Cambridgeshire CB6 1PY, United Kingdom 4Earth Sciences Department, Royal Holloway, University of London, Egham, Surrey TW20 0EX, United Kingdom 5Australian Tropical Herbarium and Centre for Tropical Environmental Sustainability Science, James Cook University, Smithfield, Queensland 4878, Australia 6Environmental and Life Sciences, Faculty of Science, Universiti Brunei Darussalam, Gadong BE1410, Brunei Darussalam 7State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Forestry, Guangxi University, Nanning, Guangxi 530005, China 8Alliance for Conservation Tree Genomics, Pha Tad Ke Botanical Garden, 06000 Luang Prabang, Lao PDR 9Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China 10Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw 05282, Myanmar Access provided by 118.208.177.216 on 11/06/19. For personal use only. 11Queensland Alliance of Agriculture and Food Innovation, University of Queensland, Brisbane, Queensland 4072, Australia 12Department of Geosciences, Pennsylvania State University, University Park, Annu.
    [Show full text]
  • Final Report
    Darwin Initiative Final Report To be completed with reference to the Reporting Guidance Notes for Project Leaders (http://darwin.defra.gov.uk/resources/) it is expected that this report will be a maximum of 20 pages in length, excluding appendices) Darwin project information Project reference 21-001 Project title Developing a conservation management plan for Samoa’s little dodo- the Manumea or tooth-billed pigeon Host country(ies) Samoa Contract holder institution The Australian National University Partner institution(s) The Samoa Conservation Society and the Samoan government, Birdlife, The Department of Conservation NZ, Auckland zoo Darwin grant value £229,842 Start/end dates of project 01 May 2014 – 31 December 2017 Project leader’s name Robert Heinsohn Project WWW.SAMOANBIRDS.ORG website/blog/Twitter @SAMOANBIRDS Report author(s) and date Robert Heinsohn 15/03/17 Project Rationale The Manumea or tooth-billed pigeon is found only on the islands of Samoa and has until recently been listed as Endangered by the IUCN. Recent surveys in upland and lowland forest on both Upolu and Savaii confirm that Manumea numbers are extremely small. The species was consequently upgraded to Critically Endangered. A major cyclone (cyclone Evan) in December 2012 is likely to have further affected Manumea and other native bird populations. It became vital that the locations of any remaining populations of Manumea be identified to inform the targeting of conservation efforts. As stated in the Manumea recovery plan (MNRE, 2006) it is also critical that information on the breeding biology and the spatial requirements of Manumea are understood so that threats can be identified and appropriate conservation management actions taken.
    [Show full text]
  • Tree Species Diversity and Distribution Patterns in Tropical Forests of Garo Hills
    RESEARCH ARTICLES Tree species diversity and distribution patterns in tropical forests of Garo Hills Ashish ~urnar''~**,Bruce G. ~arcot)and Ajai saxenals4 'wildlife Institute of India, Post Box 18, Chandrabani, Dehradun 248 001, India 'present Address: National Tiger ConservationAuthority, Bikaner House, Annexe 5, Shahjahan Road, New Delhi 110 01 1, India 'USDA Forest Service, Pacific Northwest Research Station, 620 S.W. Main Street, Portland, OR 97205, USA 'Present address: Department of Ocean Development, Block 12, C.G.O. Complex, Lodhi Road, New Delhi 110 003, India pressure, particularly shifting cultivation (locally known We analysed phytosociological characteristics and diver- sity patterns of tropical forest tree species in Garo asjhzun)'. Nevertheless, pristine PFs of Garo Hills still occur Hills, western Meghalaya, Northeast India. The main as remnant patches in remote localities mainly in the inte- vegetation of the region included primary forests rior hills. SF growth originates from many years of prac- (PFs), secondary forests (SFs), and sal (Shoreu ro- tising jhm, resulting in patches of various forest ages bust~)plantations, with 162, 132, and 87 tree species dispersed across the area. Many recent studies4-' have des- respectively. The Shannon-Wiener diversity index of cribed vegetation characteristics and diversity of the tropical trees in PF was 4.27 (n = 21 one-ha belt-transects), forests of India and other parts of the world. Meghalaya, which is comparable to the world's richest tropical however, has remained, largely unstudied, except for our forests. Statistical results revealed that primary for- work and another landscape level asse~sment".~.Here, we ests were more tree-rich and diverse than secondary present empirical data on diversity of tree species in the forests or sal plantations.
    [Show full text]
  • Orangutan Nesting Behavior in Disturbed Forest of Sabah, Malaysia: Implications for Nest Census
    P1: JQX International Journal of Primatology [ijop] pp1259-ijop-489434 September 2, 2004 23:18 Style file version Nov. 18th, 2002 International Journal of Primatology, Vol. 25, No. 5, October 2004 (C 2004) Orangutan Nesting Behavior in Disturbed Forest of Sabah, Malaysia: Implications for Nest Census Marc Ancrenaz,1,4 Romain Calaque,2 and Isabelle Lackman-Ancrenaz1,3 Received March 7, 2003; revision October 14, 2003; accepted December 23, 2003 High concentrations of orangutans remain in the multiple-use forests of the Lower Kinabatangan, Sabah, Malaysia. Compared to primary forest, the habi- tat is highly fragmented, characterized by a low tree density (332 stems/ha), small tree size (83.6% of trees are <20 m high), low basal area (18 m2/ha), abundance of canopy gaps and high level of soil disturbance. The forest struc- ture and composition influence orangutan nesting patterns, and thus directly influence the results of nest surveys used to determine orangutan population size. In logged forests, tall and large trees are the preferred nesting sites of orangutans. The scarcity of suitable nesting sites in the logged-over forests of Kinabatangan, could partly explain the lower daily rate of nest construction (r = 1.00) versus those of other orangutan populations. The nest decay rate t recorded at the study site (average ± SD = 202 ± 151 days) strongly depends on the species of tree in which a nest is built. Our results illustrate that the nest-related parameters used for orangutan censuses fluctuate among habitat types and emphasize the need to determine specific values of r for specific orangutan populations and of t for different tree species in order to achieve accurate analysis of census data.
    [Show full text]
  • I Is the Sunda-Sahul Floristic Exchange Ongoing?
    Is the Sunda-Sahul floristic exchange ongoing? A study of distributions, functional traits, climate and landscape genomics to investigate the invasion in Australian rainforests By Jia-Yee Samantha Yap Bachelor of Biotechnology Hons. A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2018 Queensland Alliance for Agriculture and Food Innovation i Abstract Australian rainforests are of mixed biogeographical histories, resulting from the collision between Sahul (Australia) and Sunda shelves that led to extensive immigration of rainforest lineages with Sunda ancestry to Australia. Although comprehensive fossil records and molecular phylogenies distinguish between the Sunda and Sahul floristic elements, species distributions, functional traits or landscape dynamics have not been used to distinguish between the two elements in the Australian rainforest flora. The overall aim of this study was to investigate both Sunda and Sahul components in the Australian rainforest flora by (1) exploring their continental-wide distributional patterns and observing how functional characteristics and environmental preferences determine these patterns, (2) investigating continental-wide genomic diversities and distances of multiple species and measuring local species accumulation rates across multiple sites to observe whether past biotic exchange left detectable and consistent patterns in the rainforest flora, (3) coupling genomic data and species distribution models of lineages of known Sunda and Sahul ancestry to examine landscape-level dynamics and habitat preferences to relate to the impact of historical processes. First, the continental distributions of rainforest woody representatives that could be ascribed to Sahul (795 species) and Sunda origins (604 species) and their dispersal and persistence characteristics and key functional characteristics (leaf size, fruit size, wood density and maximum height at maturity) of were compared.
    [Show full text]
  • Dysoxylum Parasiticum (Osbeck) Kosterm
    Australian Tropical Rainforest Plants - Online edition Dysoxylum parasiticum (Osbeck) Kosterm. Family: Meliaceae Kostermans, A.G.J.H. (1966) Reinwardtia 7: 247. Common name: Yellow Mahogany; Mahogany, Yellow Stem Numerous yellow or pale brown brittle stripes in the blaze. Flowers and fruit borne on bumps on the trunk of the tree almost down to ground level. Leaves Flower and buds. © Barry Jago Leaflet stalks quite short, about 2-8 mm long. Rusty lenticels present both on the twigs and compound leaf axis. Midrib raised on the upper surface of the leaflet blade. Leaflet blades about 6- 24 x 3-6.5 cm. Flowers Calyx cup-shaped to almost tubular, lobes variable. Calyx tube tends to be split on one side. Outer surface of the corolla clothed in pale, prostrate hairs. Petals about 15-20 mm long. Stamens eight. Disk cupular, too short to enclose the ovary. Ovary and lower half of the style pubescent. Flowers. © CSIRO Fruit Fruits +/- globular, about 20-30 mm long, often somewhat lobed in transverse section, outer surface scurfy brown. Sarcotesta red, red-brown and white. Cotyledons cream. Seedlings The terminal leaflets of the first pair of leaves sometimes toothed. At the tenth leaf stage: leaflet blades obovate, apex acuminate, base obtuse and unequal-sided, hairy along midrib on the upper surface; axis of compound leaf, petiole and terminal bud clothed in pale hairs. Seed germination time 14 to 37 days. © CSIRO Distribution and Ecology Occurs in CYP, NEQ and CEQ. Altitudinal range from near sea level to 1000 m. Grows in well developed rain forest on a variety of sites.
    [Show full text]
  • A Handbook of the Dipterocarpaceae of Sri Lanka
    YAYASAN TUMBUH-TUMBUHAN YANG BERGUNA FOUNDATION FOR USEFUL PLANTS OF TROPICAL ASIA VOLUME III A HANDBOOK OF THE DIPTEROCARPACEAE OF SRI LANKA YAYASAN TUMBUH-TUMBUHAN YANG BERGUNA FOUNDATION FOR USEFUL PLANTS OF TROPICAL ASIA VOLUME III A HANDBOOK OF THE DIPTEROCARPACEAE OF SRI LANKA A.J.G.H. KOSTERMANS Wildlife Heritage Trust of Sri Lanka A HAND BOOK OF THE DIPTEROCARPACEAE OF SRI LANKA A.J.G.H Kostermans Copyright © 1992 by the Wildlife Heritage Trust of Sri Lanka ISBN 955-9114-05-0 All rights reserved. No part of this work covered by the copyright hereon may be reproduced or used in any form or by any means — graphic, electronic or mechanical, including photocopying or information storage and retrieval systems — without permission of the publisher. Manufactured in the Republic of Indonesia Published by the Wildlife Heritage Trust of Sri Lanka, Colombo 8, Sri Lanka Printed by PT Gramedia, Jakarta under supervision of PT Gramedia Pustaka Utama (Publisher), Jakarta 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 CONTENTS Preface 1 Acknowledgments 3 List of illustrations 5 Introduction 8 History of taxonomy 19 Ecology and vegetation classification 22 Dipterocarpaceae and key to the genera 27 Species 29 References 137 Abbreviations 147 Collector's numbers 147 Index of vernacular names 149 Index of scientific names 149 PREFACE Since the publication of P. Ashton's revision of the Dipterocarpaceae of Sri Lanka in 1977 (reprinted in 1980), a fair number of changes have appeared in this family, a large number of new species has been published in periodicals not always easily accessible and, hence, we thought it appropriate to bring together in a single volume an up-to-date overview of the family in Sri Lanka.
    [Show full text]