IEC Standards Status ICCP-TASE.2, IEC 61850, CIM, and Other

Total Page:16

File Type:pdf, Size:1020Kb

IEC Standards Status ICCP-TASE.2, IEC 61850, CIM, and Other The Standards Based Integration Company Systems Integration Specialists Company, Inc. IEC Standards Status ICCP-TASE.2, IEC 61850, CIM, and Other Standards Impacting EMS Ralph Mackiewicz SISCO, Inc. 6605 19½ Mile Road Sterling Heights, MI 48314-1408 USA Tel: +1-586-254-0020 x103 Fax: +1-586-254-0053 Email: [email protected] 1 © Copyright 2012 SISCO, Inc. Agenda ICCP-TASE.2 Status IEC 60870-6 Standard Update ENTSO-E network Product migration IEC 61850 WAMPAC profile – IEC TR 61850-90-5 Edition 2 CIM CIM 15 ENTSO-E Network IEC 61850 Harmonization Other CIM Activities 2 © Copyright 2012 SISCO, Inc. IEC TC 57 Technical Committees WG 3 – Telecontrol Protocols IEC 60870-5-7 – Security for IEC 60870-5 protocols. WG 10 - Power system IED communication and associated data models IEC 61850 – Communications for power system automation WG 13 - Energy management system application program interface (EMS - API) IEC 61970 – Common Information Model (CIM) and Generic Interface Definition (GID) WG 14 - System interfaces for distribution management (SIDM) IEC 61968 – CIM for distribution and model driven messaging WG 15 - Data and communication security IEC 62351 – Communications Security WG 16 - Deregulated energy market communications IEC 62325 – CIM for energy markets WG 17 - Communications Systems for Distributed Energy Resources (DER) IEC 61850-7-420 – IEC 61850 for DER applications IEC 61850-8-2 – Web service mapping for IEC 61850 WG 18 - Hydroelectric power plants - Communication for monitoring and control IEC 61850-7-410 – IEC 61850 for Hydropower applications WG 19 - Interoperability within TC 57 in the long term IEC 62445 – Use of IEC 61850 between control centers and substations IEC 61850-CIM harmonization, ICCP-TASE.2 update, naming and design rules for CIM, quality codes. WG 9 and WG 20 – Power line carrier systems for DMS (9) and planning for same (20) IEC 60495, 60663, 62488 – Power line carrier systems WG 21 - Interoperability within TC 57 in the long term IEC 62746 – Interfaces and protocol for systems connected to the Smart Grid JWG 16 – DLMS/COSEM – metering protocols (TC13) 3 JWG 25 – Windpower systems (TC 88) © Copyright 2012 SISCO, Inc. TC 57 Architecture 57 TC 4 © Copyright 2012 SISCO, Inc. The Standards Based Integration Company Systems Integration Specialists Company, Inc. ICCP-TASE.2 Update IEC 60870-6-XXX TASE.2 © Copyright 2012 SISCO, Inc. TASE.2 - ICCP 6 © Copyright 2012 SISCO, Inc. ICCP-TASE.2 Update (Edition 3) IEC 60870-6 TASE.2 Update underway within WG19 Elimination of Unused Conformance Blocks by Making Them “Informative” instead of “Normative” Block 6 – Programs Block 7 – Events Block 8 – Accounts Block 9 – Time Series Elimination of unused profiles (i.e. ISO/OSI transport/network) Integrating changes made since V2000-08 (Ed.2) State Supplemental type Harmonization with CIM 7 © Copyright 2012 SISCO, Inc. CIM Harmonization Objective is to enable CIM models from EMS to specify everything needed to configure ICCP links including secure ICCP parameters UML extensions for ICCP bilateral table information Reference to existing CIM standards for full, incremental and partial file formats for data exchange Herb Falk of SISCO is the editor Initial UML proposed. Work progressing 8 © Copyright 2012 SISCO, Inc. 9 © Copyright 2012 SISCO, Inc. New ICCP-TASE.2 Systems ICCP-TASE.2 remains widely used for EMS real-time data exchange for high-voltage system security and power plant dispatch North America South America Peru, Chile, Ecuador, Brazil, Colombia, etc. Pacifica Australia and New Zealand Asia India, Russia, Vietnam, Thailand, etc. New: Europe ENTSO-E 10 © Copyright 2012 SISCO, Inc. Secure ICCP Status IEC 62351-3 – Use of TLS for encryption IEC 62351-4 – Application Authentication for MMS based profiles IEC 61850 IEC 60870-6 TASE.2 (ICCP) Recent attacks have reduced the effectiveness of some 1024-bit ciphers for encryption and some hash algorithms (SHA1) used for signing/authentication. An update to IEC 62351 will be started soon to deprecate these and officially increase asymmetrical key length options. 11 © Copyright 2012 SISCO, Inc. Secure ICCP Products 1024-bit asymmetrical key length implementations are widely available today that can be used without the deprecated ciphers and hashes. Some products have already been updated for 2048-bit asymmetrical key length. Many products utilize multiple certificates per link to enable overlapping certificate expirations to support certificate updating with minimal impact on data transfers. Some products incorporate “secure fallback” mode: If a secure link cannot be established with a remote then the system will “fallback” to non-secure associations 12 © Copyright 2012 SISCO, Inc. Secure ICCP Status Secure ICCP products have been available since 1997. SCADA/EMS vendors have been working with it since 2003. Many systems have Secure ICCP licenses. Very few systems use Secure ICCP. The business processes to establish and maintain data flow using Secure ICCP are not overwhelming. Of course the government will make this all better when they write laws and regulations requiring it. Fear, uncertainty, and doubt should be added to the 7 deadly sins. 13 © Copyright 2012 SISCO, Inc. Other ICCP-TASE.2 Product Information SISCO is working with our OEM partners to migrate to a new code base for the underlying communications stack used for ICCP-TASE.2 communications. Driven by increased expectations from users for maintenance activities and increased expectations for performance, scalability and vulnerability. Elimination of Marben components and replaced with SISCO designed stack that is much much simpler and without some of the limitations. Base stack technology is used in hundreds of thousands of IEC 61850 devices and has been used in ICCP solutions since 2006. Will require new licenses and installation. 14 © Copyright 2012 SISCO, Inc. The Standards Based Integration Company Systems Integration Specialists Company, Inc. IEC 61850 Update IEC TR 61850-90-5 for Wide Area Measurement, Protection, Automation and Control © Copyright 2012 SISCO, Inc. IEC 61850 IEC 16 © Copyright 2012 SISCO, Inc. IEC 61850 Edition 1: Completely New Approach IEC 61850 Edition 1 was a new and innovative approach to substation automation: Standardized Device and Object Modeling Logical Devices, Logical Nodes, Common Data Classes, etc. Extensions unique to specific applications (Hydro, Distributed Energy Resources (DER), Wind power, etc.) Standardized Service/Behavior Modeling Standardized XML for Systems and Device Configuration Standardized Communications Protocols for Specific Use Cases: Station Level Monitoring and Control (substation SCADA) (TCP/IP) Protection and Control – GOOSE over Ethernet Sampled Values – Process Bus over Ethernet Standardized Conformance Test Cases 17 © Copyright 2012 SISCO, Inc. IEC 61850 Edition 2 Much was learned using and testing Edition 1 UCA International Users Group (UCAIug – http:///www.ucaiug.org) operated a technical issue (Tissue) resolution process for IEC 61850 as part of its Liaison D status with IEC. Anyone could enter a Tissue IEC committee experts would propose solution If consensus on solutions that affect interoperability, UCAIug made them mandatory for Edition 1 testing Otherwise, submitted to IEC for Edition 2 18 © Copyright 2012 SISCO, Inc. Edition 2 Changes New Common Data Classes New Abstract Modeling Approach for control blocks and Controls Mapping of abstract models in IEC 61850-8-1 updated to result in nearly identical protocol on the wire Backward compatible New and updated logical nodes More detailed state diagrams and service descriptions for reporting and control operations. All significant reporting changes were considered mandatory for Edition 1 and have been implemented already. Substation Configuration Language (IEC 61850-6) Numerous changes to address changes to CDCs and LNs 19 © Copyright 2012 SISCO, Inc. New Name for IEC 61850 Edition 2 of IEC 61850 is renamed: Communication Networks And Systems For Power Utility Automation 20 © Copyright 2012 SISCO, Inc. IEC 61850-1 Introduction and Overview IEC 61850-2 Glossary IEC 61850-3 General Requirements (e.g. Environmental) IEC 61850 IEC 61850-4 System and Project Management IEC 61850-5 Comm. Requirements for functions and device models is IEC 61850-6 Configuration Description Language IEC 61850-7-1 Basic Comm. Structure – Principles and models Growing IEC 61850-7-2 Basic Comm. Structure – Abstract Comm. Service Interface (ACSI) IEC 61850-7-3 Basic Comm. Structure – Common data classes (CDC) IEC 61850-7-4 Basic Comm. Structure – Logical node (LN) and data object classes IEC 61850-7-410 Hydro Power Ed.2 Published IEC 61850-7-420 Distributed Energy Resources IEC 61850-7-4XX Steam and gas turbines Ed.2 in Progress IEC 61850-7-501 Hydroelectric power plants – Modeling concepts and guidelines (TR) IEC 61850-8-1 Specific Comm. Service Mapping (SCSM) – Mapping to MMS/Ethernet IEC 61850-8-2 SCSM – Mappings to web services IEC 61850-9-1 Samples values over serial unidirectional multi-drop point to point link (Ethernet) IEC 61850-9-2 Sampled values over Ethernet (Multicast) (see also UCAIug 9-2LE specs) IEC 61850-10 Conformance Testing IEC 61850-10-2 Interoperability test for Hydro Equipment based on IEC 61850 IEC 61850-80-1 Gateway mapping to IEC 60870-5-101/104 IEC 61400-25 IEC 61850 for Wind Turbines (TC88) IEC 62271-3 High-voltage switchgear – digital interfaces based on
Recommended publications
  • An Introduction to Integrated Process and Power Automation
    Power Up Your Plant An introduction to integrated process and power automation Jeffrey Vasel ABB, Inc. June 30, 2010 Rev 1 Abstract This paper discusses how a single integrated system can increase energy efficiency, improve plant uptime, and lower life cycle costs. Often referred to as Electrical Integration, Integrated Process and Power Automation is a new system integration architecture and power strategy that addresses the needs of the process and power generation industries. The architecture is based on Industrial Ethernet standards such as IEC 61850 and Profinet as well as Fieldbus technologies. Emphasis is placed on tying the IEC 61850 substation automation standard with the process control system. The energy efficiency gains from integration are discussed in a power generation use case. In this use case, energy efficiency is explored with integrated variable frequency drives, improved visibility into power consumption, and energy efficiency through faster plant startup times. Demonstrated capital expenditure (CAPEX) savings is discussed in a cost avoidance section where a real world example of wiring savings is described. Lastly, a power management success story from a major oil and gas company, Petrobras, is discussed. In this case, Petrobras utilized integrated process and power automation to lower CAPEX, operational expenditure (OPEX), and explore future energy saving opportunities. Executive Summary Document ID: 3BUS095060 Page 1 Date: 6/30/2010 © Copyright 2010 ABB. All rights reserved. Pictures, schematics and other graphics contained herein are published for illustration purposes only and do not represent product configurations or functionality. Executive Summary Document ID: 3BUS095060 Page 2 Date: 6/30/2010 © Copyright 2010 ABB.
    [Show full text]
  • Introduction to Iec 62361-102 Cim - 61850 Harmonization
    25th International Conference on Electricity Distribution Madrid, 3-6 June 2019 Paper n° 1368 INTRODUCTION TO IEC 62361-102 CIM - 61850 HARMONIZATION Tom BERRY Schneider Electric – France [email protected] ABSTRACT TR IEC 62361-102 [1] is a Technical Specification that describes a mapping for information exchange between power system installations based on the modelling approach of IEC 61850; and business systems based on IEC CIM standard data exchanges. The document includes proposals to ‘harmonize’ the two standards by adapting or extending existing information models and/or defining new models, where such changes will enable more effective communication. This paper explains the key mapping principles and some of the recommendations for future editions of the standards. WHAT IS THE PROBLEM? The smart grid initiatives in the USA, Europe and Asia Figure 1: Data models for Smart Grids Architectural have all recognized the necessity to establish solid Methodology standards for communicating between all the "smart" devices. For interoperability purposes, it has been Several studies [3] and reports [4,5] have already been recognized, at an early stage, that widely shared semantics produced on the subject of harmonization, but failed to get to describe power systems would be necessary. Power sufficient support for publication as IEC standards or systems are complex and several technical groups have technical specifications. The approach taken by the task worked on different aspects of communication. There are force was to concentrate on a fundamental use case related different needs for information exchange within different to configuration of real time communication between contexts e.g. within a substation or within control centres.
    [Show full text]
  • International Standard IEC 60870-6-802 Has Been Prepared by IEC Technical Committee 57: Power System Control and Associated Communications
    INTERNATIONAL IEC STANDARD 60870-6-802 Second edition 2002-04 Telecontrol equipment and systems – Part 6-802: Telecontrol protocols compatible with ISO standards and ITU-T recommendations – TASE.2 Object models Matériels et systèmes de téléconduite – Partie 6-802: Protocoles de téléconduite compatibles avec les normes ISO et les recommandations de l'UIT-T – Modèles d'objets TASE.2 This is a free 10 page sample. Access the full version online. Reference number IEC 60870-6-802:2002(E) Publication numbering As from 1 January 1997 all IEC publications are issued with a designation in the 60000 series. For example, IEC 34-1 is now referred to as IEC 60034-1. Consolidated editions The IEC is now publishing consolidated versions of its publications. For example, edition numbers 1.0, 1.1 and 1.2 refer, respectively, to the base publication, the base publication incorporating amendment 1 and the base publication incorporating amendments 1 and 2. Further information on IEC publications The technical content of IEC publications is kept under constant review by the IEC, thus ensuring that the content reflects current technology. Information relating to this publication, including its validity, is available in the IEC Catalogue of publications (see below) in addition to new editions, amendments and corrigenda. Information on the subjects under consideration and work in progress undertaken by the technical committee which has prepared this publication, as well as the list of publications issued, is also available from the following: • IEC Web Site (www.iec.ch) • Catalogue of IEC publications The on-line catalogue on the IEC web site (www.iec.ch/catlg-e.htm) enables you to search by a variety of criteria including text searches, technical committees and date of publication.
    [Show full text]
  • Technical Framework on Local Energy Communities TF-LEC Vol.1
    Integrating the Energy System – IES Technical Framework on Local Energy Communities TF-LEC Vol.1 Version 0.5 First trial release January 14, 2021 TF-LEC Vol.1 i Document Information Title Technical Framework on Local Energy Communities – Vol.1 Editors Gerald Franzl, Stefan Wilker Authors Gerald Franzl Filename TF-LocalEnergyCommunities-Vol1_v005.pdf Description Local Energy Communities – operation principle and environment Last changes First trial release 01/2021 sClassification WHITE: open to public Version History Version Date Changed by Comment 0.1 2020-03-20 Gerald Franzl Start compiling content & text 0.3 2020-07-10 Gerald Franzl Invite cFlex team to contribute 0.5 2021-01-15 Gerald Franzl Publish the first trial version The TF-LEC was initiated and created within the cFlex project [energyit.ict.tuwien.ac.at/projects/project-cflex] by: Danube University Krems TU Wien Department for Integrated Sensor Systems Institute of Computer Technology (E384) Viktor Kaplan Strasse 2/E, Gusshaus Strasse 27-29/384, A-2700 Wiener Neustadt, Austria A-1040 Vienna, Austria www.donau-uni.ac.at/diss www.ict.tuwien.ac.at Corresponding author: [email protected] Acknowledgement: This Technical Framework was initiated and prepared in the course of the national project cFlex funded by the Austrian Climate and Energy Fund (KLIEN), administrated by the Austrian Research Promotion Agency (FFG) under contract number 871657. The initial authors like to thank all the contributing team members from the cFlex project for their invaluable contribution of knowledge, experience and support toward a better joint understanding of the complexities involved in operating Local Energy Communities.
    [Show full text]
  • Integration Ecosystems Panel (Howard Self)
    Howard Self, ABB , Program Manager Smart Grid, May 10, 2017 GMLC Interoperability Technical Meeting © ABB June 6, 2017 | Slide 1 Utility Network Control Overview Transmission – 1970 - 1995 SCADA‪ Control Center Proprietary‪ Protocols Harris‪ 5000 CDC‪ I & II Conitel‪ 2020/3000 Telegyr‪ 6500/8979 Valmet‪ III & V PG&E‪ 2179 SES‪ 92 © ABB June 6, 2017 | Slide 2 Microprocessor Evolution(Integration Nightmare) 1988-1996, RS232,RS485 – 9600 Baud Relay/IEDs‪ Regulator‪ Controller RTU/Data‪ Concentrator GETAC‪ 2179‪ Incom‪ /Modbus ASCII Incom‪ Meter‪ IED PLC/Data‪ Concentrator SEL‪ ASCII Modbus/DNP‪ © ABB June 6, 2017 | Slide 3 The Birth of DNP3 1992-1994 through today o Open, non-proprietary o SBO (Select Before Operate) o Accurate Time Sync and Time Stamped Data o Quality flags, Internal Indications o Multiple Data Formats o Layer Separation (Link, transport, application) o Quiescent, Report-by-exception, polling o File transfer o UDP/TCP o Secure Authentication V2/V5 © ABB June 6, 2017 | Slide 4 The Need for Speed Inside the substation o Modbus Plus – 1 mb/s (Serial Taken ring) o Modbus TCP/IP – 10/100 mb/s o Profibus – 12mbs o DNP/IP – 10/100mbs o LON o UCA – 10/100 mb/s (Client/Server, Peer-to-peer) o IEC 61850 – 10/100 mb/s (Client/Server, Peer-to- peer, Sample measured Values) © ABB June 6, 2017 | Slide 5 Introduction UCA 2.0/IEC 61850 start-up UCA Project Origin: . Utility Communications Architecture (UCA) - enterprise-wide unified scheme to share all operating and management information . 1994 - EPRI member utilities called for common standard for IEDs in substations .
    [Show full text]
  • Smart Grid Standardization Documentation Map
    D2.1 – SMART GRID STANDARDIZATION DOCUMENTATION MAP The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no 318782. STARGRID FP7 - 318782 D2.1 – SMART GRID STANDARDIZATION DOCUMENTATION MAP Version V1.3 Status Final Draft Work Package WP2 Preparation Date 2013-11-08 Due Date M8 Submission Date 2013-06-28 Inés Gómez (TECNALIA) J. Emilio Rodríguez (TECNALIA) Main Author(s) Eugenia Aghinii (ASRO) Speranta Stomff (ASRO) Joseba Jimeno (TECNALIA) Christoph Nölle (IWES) Contributors Ibon Arechalde (TECNALIA) Eduardo García (TECNALIA) Eutimio Sánchez (TECNALIA) Dissemination Level PU Nature R Keywords Smart Grid, Standardization, Industry Initiatives D2.1 – Smart Grid standardization documentation map VERSION HISTORY Version Date Author(s) Comments Inés Gómez (TECNALIA) J. Emilio Rodríguez (TECNALIA) Eugenia Aghinii (ASRO) v0.1 2013-06-25 First draft Speranta Stomff (ASRO) Joseba Jimeno (TECNALIA) Christoph Nölle (IWES) Inés Gómez (TECNALIA) J. Emilio Rodríguez (TECNALIA) Eugenia Aghinii (ASRO) V0.2 2013-06-27 Final draft Speranta Stomff (ASRO) Joseba Jimeno (TECNALIA) Christoph Nölle (IWES) Inés Gómez (TECNALIA) J. Emilio Rodríguez (TECNALIA) Eugenia Aghinii (ASRO) v1.0 2013-06-28 Final version, submitted Speranta Stomff (ASRO) Joseba Jimeno (TECNALIA) Christoph Nölle (IWES) Inés Gómez (TECNALIA) J. Emilio Rodríguez (TECNALIA) Eugenia Aghinii (ASRO) V1.2 2013-07-16 Periodic review Speranta Stomff (ASRO) Joseba Jimeno (TECNALIA) Christoph Nölle (IWES) Inés Gómez (TECNALIA) J. Emilio Rodríguez (TECNALIA) Eugenia Aghinii (ASRO) V1.3 2013-11-08 Periodic review Speranta Stomff (ASRO) Joseba Jimeno (TECNALIA) Christoph Nölle (IWES) 2013-11-08 v1.3 2/312 D2.1 – Smart Grid standardization documentation map TABLE OF CONTENTS Version History................................................................................................................................................
    [Show full text]
  • 2013-09 (Adobe Reader)
    Turinys AKTUALIJOS SUDAROMA LAIKINOJI DARBO GRUPË „TEISMO MEDICINOS PROCESAI“ .... 5 STANDARTIZACIJA INFORMACIJA APIE VIEÐAJAI APKLAUSAI TEIKIAMUS EUROPOS IR LIETUVOS STANDARTØ BEI KITØ LEIDINIØ PROJEKTUS ................................. 6 IÐLEISTI LIETUVOS STANDARTAI IR KITI LEIDINIAI ........................................... 6 NETEKÆ GALIOS LIETUVOS STANDARTAI IR KITI LEIDINIAI ............................ 11 TARPTAUTINIØ IR EUROPOS ÁSTAIGØ BEI ORGANIZACIJØ STANDARTAI IR KITI LEIDINIAI, KURIUOS DEPARTAMENTAS GAVO RUGPJÛÈIO MËNESÁ ............................................................................ 13 TARPTAUTINËS STANDARTIZACIJOS ORGANIZACIJOS STANDARTAI IR KITI LEIDINIAI ............... 13 TARPTAUTINËS ELEKTROTECHNIKOS KOMISIJOS STANDARTAI IR KITI LEIDINIAI ................... 16 RATIFIKUOTI EUROPOS STANDARTIZACIJOS KOMITETO STANDARTAI IR KITI LEIDINIAI ............ 17 RATIFIKUOTI EUROPOS ELEKTROTECHNIKOS STANDARTIZACIJOS KOMITETO STANDARTAI ...................................................................................... 19 RATIFIKUOTI EUROPOS TELEKOMUNIKACIJØ STANDARTØ INSTITUTO STANDARTAI IR KITI LEIDINIAI ............................................................................................... 21 REDAKCINË KOLEGIJA R. Rukðënienë (pirmininkë), L. Balèiauskienë, S. Vaitkevièienë, V. Masalskytë, V. Tamoðevièienë Redaktorë V. Tamoðevièienë Maketuotoja A. Skomskienë 2013-09-09 © Lietuvos standartizacijos departamentas, 2013 Lietuvos standartizacijos departamento BIULETENIS 2013 Nr. 9 VILNIUS, 2013 Lietuvos standartizacijos
    [Show full text]
  • Smart Reconfiguration of Distribution Grids Using Agent-Based Technology
    FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO Smart Reconfiguration of Distribution Grids using Agent-based Technology Matheus Macedo Lopes Dissertation conducted under the Master’s in Electrical and Computers Engineering Program - Major Energy Supervisor: Prof. Vladimiro Miranda , Ph.D. Co-Supervisor: Prof. Diego Issicaba , Ph.D. July 28, 2016 © Matheus Macedo Lopes, 2016 Resumo As manobras de isolamento para reconfiguração em redes de distribuição de média tensão são tradicionalmente manuais ou dependem de decisões tomadas pelos operadores de rede. A abor- dagem proposta assume uma arquitetura onde os agentes interagem em um ambiente de rede de distribuição simulado a partir do estabelecimento de metas projetadas seguindo o paradigma de orientação mulit-agente. A aplicação é implementada de tal forma que agentes AgentSpeak in- teragem entre eles através de uma comunicação baseada em ato de fala/comunicação, bem como com um ambiente desenvolvido em linguagem JAVA. Neste contexto, esta tese propõe a modelagem e verificação de soluções baseadas em agentes para apoiar as operações de reconfiguração em redes de distribuição em nível de média tensão. A metodologia foi utilizada para apoiar as actividades dos operadores de redes de distribuição por meio de planos de restabelecimento de energia para ajudar em casos de falhas permanentes. As abordagens empregadas para arquitetura de agentes para a reconfiguração foram baseadas em modelo hierárquico e uma abordagem totalmente descentralizada. A capabilidade dos agentes foram desenvolvidas prevendo as possiveis aplicações do sistema de distribuição com foco em procedimentos de gestão des interrupções de service. As abordagens foram testadas em um ali- mentador teste trifásico do IEEE de 123 nós.
    [Show full text]
  • CGMES Profiling User Guide V1.0
    European Network of Transmission System Operators for Electricity CGMES Profiling User Guide v1.0 2021-04-21 SOC APPROVED VERSION 1.0 ENTSO-E AISBL • Rue de Spa, 8 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51 • [email protected] • www.entsoe.eu CGMES Profiling User Guide v1.0 European Network of Transmission System Operators for Electricity Copyright notice: Copyright © ENTSO-E. All Rights Reserved. This document and its whole translations may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and d erivative works. However, this document itself may not be modified in any way, except for literal and whole translation into languages other than English and under all circumstances, the copyright notice or references to ENTSO-E may not be removed. This document and the information contained herein is provided on an "as is" basis. ENTSO-E DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Maintenance notice: This document is maintained by the ENTSO-E CIM EG. Comments or remarks are to be provided at [email protected] NOTE CONCERNING WORDING USED IN THIS DOCUMENT The force of the following words is modified by the requirement level of the document in which they are used.
    [Show full text]
  • Introduction to IEC 61850
    IEC 61850 - Communication Networks and Systems in Substations: An Overview of Computer Science Jianqing Zhang and Carl A. Gunter University of Illinois at Urbana-Champaign Agenda • Overview • Data modeling approach • Communication model • Communication service mapping • Sampled measured values • Configuration description language • Conclusion • Reference 2 Background I: Power Substation 3 Intelligent Electronic Device • Microprocessor-based controllers of power system equipment – e.g. circuit breaker, protective relay… • Receive digitalized data from sensors and power equipment • Issue control commands in case of anomalies to maintain the desired status of power grid – e.g. tripping circuit breakers 4 Why Standards Are Needed • Interoperability and Integration – No standard for data representation or how devices should look and behave to network applications • Intuitive device and data modeling and naming – Hierarchical and structured, rather than plain formatted • Fast and convenient communication • Lower cost for installation, configuration and maintenance – Wire connected legacy devices 5 History of IEC 61850 UCA: Utility Communication Architecture • Protocols • Data models • Abstract service definitions GOAL: One International Standard IEC 61850 IEC 60870-5 • A communication profile for sending basic telecontrol messages between two systems • Based on permanent directly connected data circuits 6 IEC 61850 Substation Architecture • IEC61850-enabled IEDs get digitalized power grid condition data via process bus and merge units • IEDs communicate with each other using substation buses • Legacy devices use IEC61850 wrapper 7 Core Components of IEC 61850 • An object model describing the information available from the different primary equipment and from the substation automation functions – Abstract definitions of services, data and Common Data Class, independent of underlying protocols • A specification of the communication between the IEDs of the substation automation system.
    [Show full text]
  • Openmuc User Guide
    OpenMUC User Guide Table of Contents 1. Intro. 2 2. Quick Start . 2 2.1. Install OpenMUC . 3 2.2. Start the Demo . 3 2.3. WebUI Walk Through. 4 3. Tutorials . 7 3.1. Build a Simple M-Bus Data Logger. 7 3.2. Develop a Customised Application . 10 3.3. Develop a Customised WebUI Plugin . 13 4. Architecture. 20 4.1. File Structure of the Distribution . 22 4.2. Folder framework/ . 23 4.3. Devices and Channels. 24 4.4. Configuration via channels.xml . 24 4.5. Sampling, Listening and Logging . 28 5. OpenMUC Start Script . 29 5.1. Start OpenMUC . 29 5.2. Stop OpenMUC . 30 5.3. Restart OpenMUC . 30 5.4. Reload OpenMUC Configuration. 30 5.5. Update Bundles . 30 5.6. Remote Shell . 31 5.7. Auto Start at Boot Time . 31 6. Drivers. 32 6.1. Install a Driver . 32 6.2. Modbus . 33 6.3. M-Bus (wired) . 39 6.4. M-Bus (wireless) . 40 6.5. IEC 60870-5-104 . 41 6.6. IEC 61850. 42 6.7. IEC 62056 part 21 . 43 6.8. DLMS/COSEM . 44 6.9. KNX . 45 6.10. eHZ. 46 6.11. SNMP . 46 6.12. CSV . 48 6.13. Aggregator . 49 6.14. REST/JSON . 50 6.15. AMQP. 51 6.16. MQTT. 53 1 7. Dataloggers . 55 7.1. ASCII Logger . 55 7.2. AMQP Logger . 56 7.3. MQTT Logger . 57 7.4. SlotsDB Logger . 60 7.5. SQL Logger . 60 8. Libraries . ..
    [Show full text]
  • Investigate M2M-Related Communication Standards That Exist on the Global Market Today
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Agder University Research Archive Investigate M2M-related communication standards that exist on the global market today by Aleksander Albretsen Thesis in partial fulfilment of the degree of Master in Technology in Information and Communication Technology Agder University College Faculty of Engineering and Science Grimstad Norway June 2006 Abstract Most M2M applications use well-known communication technologies to interconnect the devices. Even though they use well-known communication technologies there are no widely used and well-defined M2M standards regarding the data exchange (application layer). This thesis investigates and identifies M2M related communication standards that exist on the global market today, and are applicable for M2M standardisation. This thesis is limited to the following segments within M2M: Security, Automatic Meter Reading (AMR) and Utility Control. Today, and in the future, IP will play an important role within M2M. This thesis is therefore mainly focusing on standards that implement how to transfer the application layer using the IP-stack. M2M is defined in this thesis as an application with a central server communicating with end-devices through a gateway, using remote communication from server to gateway. The following standards are investigated and found applicable in one or more of the selected segments: CIP, MODBUS, LonWorks, KNX, DLMS/COSEM, M-BUS, SIA, M2MXML, OPC and ZigBee. Each of the standards is explained within the thesis. All standards are identified and categorised, and area of applications and proposed solutions are described. This thesis discusses the applicability regarding each segment, multiple services behind one gateway, bandwidth consumption, software update and interconnection of networks.
    [Show full text]