Understanding the Life of a Sandy Beach Polychaete of Functional
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
New Insights in the Biogeographical Distributions of Two Spionidae (Annelida) from the NE Atlantic and Mediterranean French Coasts
Zoosymposia 19: 173–184 (2020) ISSN 1178-9905 (print edition) https://www.mapress.com/j/zs ZOOSYMPOSIA Copyright © 2020 · Magnolia Press ISSN 1178-9913 (online edition) https://doi.org/10.11646/zoosymposia.19.1.18 http://zoobank.org/urn:lsid:zoobank.org:pub:7CF4D06E-47F9-48C5-9703-5CECFD9C1491 New insights in the biogeographical distributions of two Spionidae (Annelida) from the NE Atlantic and Mediterranean French coasts JÉRÔME JOURDE1,5*, NICOLAS LAVESQUE2,7, CÉLINE LABRUNE3,10, JEAN-MICHEL AMOUR- OUX3,12, PAULO BONIFÁCIO3,11, SUZIE HUMBERT2,8, BASTIEN LAMARQUE2,9, PIERRE-GUY SAURIAU1,6 & KARIN MEIßNER4,13 1La Rochelle Université, CNRS, UMR 7266 LIENSs, 2 rue Olympe de Gouges 17000 La Rochelle, France 2Université de Bordeaux, CNRS, UMR 5805 EPOC, Station Marine d’Arcachon, 2 rue du Professeur Jolyet, 33120 Arcachon, France 3Sorbonne Université, CNRS, UMR LECOB 8222, Laboratoire d’Ecogéochimie des Environnements Benthiques, Observatoire Océanologique de Banyuls, Avenue Pierre Fabre, 66650 Banyuls-sur-Mer, France 4Senckenberg Forschungsinstitute und Naturmuseen (SFN), Deutsches Zentrum für Marine Biodiversitätsforschung, Biozentrum Grindel, Martin-Luther-King-Platz 3, D-20146 Hamburg, Germany 5 [email protected], https://orcid.org/0000-0001-7260-8419 6 [email protected], https://orcid.org/0000-0002-5360-8728 7 [email protected], https://orcid.org/0000-0001-5701-2393 8 [email protected], https://orcid.org/0000-0003-4254-3567 9 [email protected], https://orcid.org/0000-0002-1418-9049 10 [email protected], -
Catálogo Das Espécies De Annelida Polychaeta Do Brasil
CATÁLOGO DAS ESPÉCIES DE ANNELIDA POLYCHAETA DO BRASIL A. Cecília Z. Amaral Silvana A. Henriques Nallin Tatiana Menchini Steiner Depto. Zoologia, Inst. Biologia, UNICAMP, CP 6109, 13083-970, Campinas, SP, Brasil. E-mail: [email protected]; [email protected] Esta compilação das espécies de poliquetas do Brasil é dedicada a todos aqueles que em algum momento tiveram o privilégio de admirar a beleza e avaliar a importância que este grupo representa para a ciência. A.C.Z.A. Este trabalho deve ser citado como: AMARAL, A.C.Z., NALLIN, S.A.H. & STEINER, T.M. 2006. Catálogo das espécies de Annelida Polychaeta do Brasil. http://www.ib.unicamp.br/destaques\biota\bentos_marinho\prod_cien\texto_poli.pdf (consultado em ... ). Campinas 2006 INTRODUÇÃO Os primeiros registros de poliquetas do Brasil foram publicados por Müller (1858), que descreveu treze novas espécies marinhas da Ilha de Santa Catarina, e por Kinberg (1865, 1910) com algumas espécies coletadas pela expedição “Eugenies” ao largo da costa brasileira. A edição de 1910 é excelente e apresenta pranchas de primoroso trabalho gráfico. Hartman (1948) publicou uma revisão destas espécies descritas por Kinberg entre os anos de 1865 e 1910, tornando-se um importante trabalho taxonômico, que contém minuciosa e bem documentada descrição e discussão de muitas dessas espécies. Hansen (1882), a partir de material proveniente, principalmente, da região do Rio de Janeiro, descreveu 42 espécies de poliquetas colecionadas por Edouard Joseph L.M. van Beneden durante uma viagem ao Brasil e à Argentina. Os trabalhos de Friedrich (1950) e Tebble (1960), com material procedente do Atlântico Sul, devem ser os mais conhecidos. -
Mitochondrial Genomes of Two Polydora
www.nature.com/scientificreports OPEN Mitochondrial genomes of two Polydora (Spionidae) species provide further evidence that mitochondrial architecture in the Sedentaria (Annelida) is not conserved Lingtong Ye1*, Tuo Yao1, Jie Lu1, Jingzhe Jiang1 & Changming Bai2 Contrary to the early evidence, which indicated that the mitochondrial architecture in one of the two major annelida clades, Sedentaria, is relatively conserved, a handful of relatively recent studies found evidence that some species exhibit elevated rates of mitochondrial architecture evolution. We sequenced complete mitogenomes belonging to two congeneric shell-boring Spionidae species that cause considerable economic losses in the commercial marine mollusk aquaculture: Polydora brevipalpa and Polydora websteri. The two mitogenomes exhibited very similar architecture. In comparison to other sedentarians, they exhibited some standard features, including all genes encoded on the same strand, uncommon but not unique duplicated trnM gene, as well as a number of unique features. Their comparatively large size (17,673 bp) can be attributed to four non-coding regions larger than 500 bp. We identifed an unusually large (putative) overlap of 14 bases between nad2 and cox1 genes in both species. Importantly, the two species exhibited completely rearranged gene orders in comparison to all other available mitogenomes. Along with Serpulidae and Sabellidae, Polydora is the third identifed sedentarian lineage that exhibits disproportionally elevated rates of mitogenomic architecture rearrangements. Selection analyses indicate that these three lineages also exhibited relaxed purifying selection pressures. Abbreviations NCR Non-coding region PCG Protein-coding gene Metazoan mitochondrial genomes (mitogenomes) usually encode the set of 37 genes, comprising 2 rRNAs, 22 tRNAs, and 13 proteins, encoded on both genomic strands. -
H1.1 Open Water
PAGE .............................................................. 392 ▼ H1.1 OPEN WATER The open-water offshore habitat covers an area of by which solar energy enters the marine ecosystem, Nova Scotia larger than the land mass, and includes similar to the layer of plants on land. The ocean H1.1 Open Water salt water in inlets, bays and estuaries. The water waters are distinctive in having fostered the origins and the organisms it supports are the primary means of life on the planet. Plate H1.1.1: Right Whale, north of Brier Island (Unit 912). Photo: BIOS Habitats Natural History of Nova Scotia, Volume I © Nova Scotia Museum of Natural History .............................................................. PAGE 393 ▼ FORMATION PLANTS Oceans are formed as part of major geological events. The plants of the open ocean are almost entirely Nova Scotia’s open-ocean habitats are part of the microscopic algae, collectively known as phyto- Atlantic Ocean, which opened during the Jurassic plankton. Many different species occur, including Period and has been in continuous existence ever representatives of the prochlorophytes (blue-green since. The quality and depth of the water column algae—evolutionary intermediates between bacteria have fluctuated in relation to post-glacial climatic and algae), diatoms, dinoflagellates, chrysomonads, conditions. cryptomonads, minute flagellates and unicellular reproductive stages of macroscopic algae. Phyto- H1.1 PHYSICAL ASPECTS plankton are often grouped in size classes: Open Water 1. Water conditions, such as salinity, temperature, macroplankton: 200–2000 micrometres, includes ice-formation, turbidity, light penetration, tides larger diatoms. and currents, are extremely variable in the microplankton: 20–200 micrometres, includes waters offshore. most diatoms. 2. Air-water interaction, surface-water turbulence nanoplankton: 2–20 micrometres, includes determines the level of wave and gas exchange. -
(Polychaeta) of the Gulf
STUDIES ON THE FAUNA OF CURAÇAO AND OTHER CARIBBEAN ISLANDS: No. 129. Spionidae (Polychaeta) of the Gulf of Mexico and the Caribbean Sea by Nancy Marie Foster (Dunbarton College, Washington, D.C.) page figures INTRODUCTION History 3 Acknowledgements 5 Genera] Taxonomic Characters of the Spionidae (PI. 1-2) . 5 Development 11 Ecology and Distribution 12 Methods and Materials 14 Family Diagnosis 14 Key to Spionid Genera of the Gulf of Mexico and Caribbean Sea 15 TAXONOMIC SECTION Polydora 18 1—12 — commensalis Andrews 20 1-12 — ligni Webster 22 13-21 — plena Berkeley & Berkeley 24 22-29 — websteri Hartman 26 30-36 Pygospio 28 — elegans Claparfede 29 37-47 Spio 32 — 35 pettiboneae sp. n 48-56 Scolecolepides 37 — viridis (Verrill) 37 57-65 Spiophanes 40 — bombyx (Claparede) 40 66-75 — wigleyi Pettibone 43 76-85 Malacoceros 47 — vanderhorsti (Augener) 48 86-92 — indicus (Fauvel) 50 93-99 — glutaeus (Ehlers) 53 100-111 — in 57 112-117 flatus sp. n 2 Scolelepis j 58 — squamata (Miilleri 59 118-131 — texana sp. n 63 132-142 Aonides 65 — mayaguezensis Foster 66 143-154 Laonice 69 — cirrata (Sars, 69 155-160 Dispio 72 — uncinata Hartman 73 161-174 Prionospio 79 — steenstrupi Malmgren 84 175-185 — cristata sp. n 87 186-199 — heterobranchia Moore 89 199-212 Apoprionospio 93 — pygmaea (Hartman; 94 213-225 — dayi Foster 97 226-236 Paraprionospio 100 — pinnata (Ehlers) 102 237-261 Aquilaspio 105 Minuspio 106 — cirri fera (Wir6n) 108 262-275 Streblospio 112 — benedicti Webster 112 276-283 ZOOGEOGRAPHY 116 284-285 DISCUSSION OF TAXONOMIC CHARACTERS 118 LITERATURE CITED 121 INTRODUCTION HISTORY Although there have been several collections of polychaetous annelids from the Gulf of Mexico and Caribbean few Sea, very spionids have been included in the published species lists. -
OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber ......................................................................... -
(Scolelepis) Daphoinos (Annelida: Polychaeta: Spionidae) in South Korea
Anim. Syst. Evol. Divers. Vol. 37, No. 3: 229-234, July 2021 https://doi.org/10.5635/ASED.2021.37.3.007 Short communication First Record of Scolelepis (Scolelepis) daphoinos (Annelida: Polychaeta: Spionidae) in South Korea Geon Hyeok Lee, Gi-Sik Min* Department of Biological Sciences, Inha University, Incheon 22212, Korea ABSTRACT Scolelepis (Scolelepis) daphoinos is newly reported in Korean fauna. This species can be distinguished from its congeners by the following characteristics: the presence of reddish pigment patches on the posterior part of the prostomium, notopodial postchaetal lamellae that are partially fused to the branchiae, and the presence of only the bidentate hooded hooks. The morphological diagnosis and photographs of S. (S.) daphoinos are provided. The partial mitochondrial cytochrome c oxidase subunit I (COI), 16S ribosomal DNA (16S rDNA), and the nuclear 18S ribosomal DNA (18S rDNA) sequences from Korean specimens of S. (S.) daphoinos were determined. Species identification was supported by a comparison of DNA barcode sequences of COI and 16S rDNA with morphological examination from the specimens of type locality, China. Keywords: Scolelepis (Scolelepis) daphoinos, COI, 16S rDNA, 18S rDNA, Korea INTRODUCTION Yoon, 2016; Lee et al., 2018). The sequences of mitochondrial cytochrome c oxidase sub- The genus Scolelepis Blainville, 1828 is one of the largest unit I (COI), 16S ribosomal DNA (16S rDNA), and the nucle- groups of spionid polychaetes commonly found on soft bot- ar 18S ribosomal DNA (18S rDNA) have been used as DNA toms in intertidal to deep-sea waters (Sikorski and Pavlova, barcode markers for the molecular identification of spionid 2015). Members of this genus are taxonomically defined by polychaetes (Radashevsky and Pankova, 2013; Sato-Okoshi a distally pointed prostomium, the presence of branchiae and Abe, 2013). -
(Polychaeta) Borings in Paraspirifer Bownockeri (Brachiopoda: Devonian)1
114 A. E. ANNALA AND L. A. KAPUSTKA Vol. 83 Copyright © 1983 Ohio Acad. Sci. 003O-O95O/83/0003-O114 $2.00/0 VERMIFORICHNUS (POLYCHAETA) BORINGS IN PARASPIRIFER BOWNOCKERI (BRACHIOPODA: DEVONIAN)1 R. D. HOARE and R. L. WALDEN, Department of Geology, Bowling Green State University, Bowling Green, OH 43403 ABSTRACT. Shells of Paraspirifer bownockeri (Stewart) from the Silica Formation, Middle Devonian of northwestern Ohio, commonly contain numerous borings of a polychaete worm forming the endolithic trace fossil Vermiforichnus clarki Cameron (1969a) which can be exposed by acidizing the specimens. The borings are most abundant on the brachial valve, and their surface openings tend to be concentrated along major growth lines thence extending dominantly in the general direction of the beaks of the valves. In- festations of the polychaete occurred at 2 different time intervals as indicated by the spac- ing of the borings on 2 major growth lines with renewed shell growth between them. Growth of the host was severely reduced immediately following the infestation and in some areas damage to the mantle caused deformation in the shell of the host. OHIO J. SCI. 83 (3): 114-119, 1983 INTRODUCTION (1932) by Hoare and Steller (1967) (fig. 1), Previous interpretations of the larger as boring sponges by Kesling and Chilman borings commonly seen in the brachiopod (1975) and as "Clionoides" sp. by Steller Paraspirifer bownockeri (Stewart) from the (1965), Kesling et al. (1980) and Sparks Silica Formation in northwestern Ohio et al. (1980). These interpretations were have been alluded to as sponge borings, based on the external configuration of the Clionoides thomasi Fenton and Fenton surface opening of the boring only. -
The Presence of Melinna Palmata (Annelida: Polychaeta) and Ensis
Cah. Biol. Mar. (2007) 48 : 391-401 The presence of Melinna palmata (Annelida: Polychaeta) and Ensis directus (Mollusca: Bivalvia) related to sedimentary changes in the Bay of Seine (English Channel, France) Jean-Claude DAUVIN1*, Thierry RUELLET1, Eric THIEBAUT2, Franck GENTIL2, Nicolas DESROY3, Anne-Laure JANSON4, Sylvain DUHAMEL5, Jérôme JOURDE5 and Serge SIMON5 (1) Station Marine de Wimereux, Université des Sciences et Technologies de Lille, FRE CNRS 2816 ELICO, B.P. 80, 62930 Wimereux, France. *Corresponding author: Fax: 33 3 21 99 29 01, E-mail: [email protected] (2) Université Pierre et Marie Curie-Paris 6, Station Biologique de Roscoff, UMR CNRS 7144, B.P. 74, 29682 Roscoff Cedex, France (3) Station IFREMER, 2 bis rue Saint-Georges, B.P. 46, 35042 Saint-Malo Cedex, France (4) Muséum National d’Histoire Naturelle, Département Milieux et Peuplements Aquatiques CNRS UMR 5178 BOME, 61 rue Buffon, 75005 Paris, France (5) Cellule du Suivi du Littoral Normand, 16 quai Casimir Delavigne, 76600 Le Havre, France Abstract: Since late 1990s the annelid polychaete Melinna palmata and the mollusc bivalve Ensis directus have been collected in the eastern part of the Bay of Seine (English Channel), indicating changes in the benthic communities. Melinna palmata was never collected prior to 2002, whereas it was reported in the muddy fine sands of the western part of the Channel, along the French (e.g. Bay of Cherbourg) and southern UK (e.g. Southampton Waters) coasts. Ensis directus was first reported in 1998 and now appears to be well implanted, given the abundant population collected in 2006. -
The Snodgrass Tapes Evolution of the Arthropods Robert Evans Snodgrass Page 1 Figure 1
The Snodgrass Tapes Evolution of the Arthropods The third of three lectures by the insect morphologist Robert Evans Snodgrass delivered to the Department of Entomology at the University of Maryland in 1960. Transcribed, assembled and annotated by Jeffrey W. Shultz Robert Evans Snodgrass Well, the subject today will be the evolution of the arthropods. But, of course, I'll have to admit to begin with that I don't really know the truth of the matter. So, judging from what facts you can get to together... I suppose at the present time that all .... evolution is accepted as a fact by all zoologists. And apparently the fundamentalists have given up trying to do anything about it. Yet it is a theory. And ... But it seems the idea of natural selection well- enough accounts for the physical evolution of animals; that is, certain genes produce the proper variations. But what bothers me about the ... about the evolution of the animals is how did the animal ever become such a com- plex assemblage of chemical substances. I've had a cold, but I guess I can talk through it. Every cell in the body, for example, has to have its own enzymes to do its work it's supposed to do. And all these activities have to be correlated and regulated by hormones, and hormones, again, are just chemical compounds. And, so, it seems to me that that's one of the problems of evolution yet is to find out how all of these chemical substances ever got together in the animal in the proper amount, in the proper places and [how they came] to do the things that they do do... -
Identification Guide to the Planktonic Polychaete Larvae Around the Island of Helgoland (German Bight)
HELGOL.~NDER MEERESUNTERSUCHUNGEN Helgol/inder Meeresunters. 48, 1-58 (1994) Identification guide to the planktonic polychaete larvae around the island of Helgoland (German Bight) S. Plate* & E. Husemann* * Biologische Anstalt Helgoland (Meeresstation); D-27483 Helgoland, Federal Republic of Germany ABSTRACT: The purpose of this work is to provide the means of identifying the planktonic larvae of the polychaete species appearing in the plankton around the island of Helgoland (North Sea). During a three-year survey in this area, the larvae of 54 species out of 24 families belonging to the orders Orbiniida, Spionida, Capitelhda, Phyllodocida, Oweniida, Terebelhda, Sabelhda and the former Archiannelida have been recorded. Illustrated keys to the families, genera and species are presented. To facilitate the identification, additional descriptions and information about the seasonal appearance of the species are given. INTRODUCTION More than 13 000 species of polychaetous annelids take part in the marine benthos communities worldwide. Their distribution, species composition and population density are monitored within various benthos surveys. For the North Sea, especially the German Bight and the Wadden Sea, much information about the benthic polychaete fauna is available (Caspers, 1950; Stripp, 1969; DSrjes, 1977; Rachor & Gerlach, 1978; Gillandt, 1979; Salzwedel et al., 1985; Rachor, 1990; Bosselmann, 1991; Kr6ncke, 1991). In contrast, the holoplanktonic polychaete species and the meroplanktonic polychaete larvae, which are only part of the plankton during a more or less expanded phase of their ontogenesis, have never received much attention. Meroplanktonic polychaete larvae are seldomly recorded during studies monitoring the North Sea plankton (Smidt, 1951; Giere, 1968; Fransz, 1981; Bosselmann, 1989; Belgrano et al., 1990). -
Polydora (Polychaeta: Spionidae) Species from Taiwan Vasily I
Zoological Studies 39(3): 203-217 (2000) Polydora (Polychaeta: Spionidae) Species from Taiwan Vasily I. Radashevsky1,2 and Hwey-Lian Hsieh2,* 1Institute of Marine Biology, Russian Academy of Sciences, Vladivostok 690041, Russia 2Institute of Zoology, Academia Sinica, Taipei, Taiwan 115, R.O.C. (Accepted March 7, 2000) Vasily I. Radashevsky and Hwey-Lian Hsieh (2000) Polydora (Polychaeta: Spionidae) species from Taiwan. Zoological Studies 39(3): 203-217. This report discusses 5 species of the genus Polydora (Polychaeta: Spionidae) from the shallow waters of Taiwan and off mainland China. These include P. cf. agassizi Claparède, 1869, P. cornuta Bosc, 1802, and 3 new species: P. fusca, P. triglanda, and P. villosa. Polydora cf. agassizi inhabits mud tubes on the surface of a horseshoe crab; P. cornuta and P. fusca inhabit mud tubes on soft bottoms while P. villosa bores into skeletons of living corals. Polydora triglanda is both a shell-borer and a tube- dweller, and no morphological differences were found between individuals from the 2 habitats. Five species are described and illustrated, and a key is provided for their identification. Polydora species with black bands on the palps, median antenna on the caruncle, and needlelike spines on the posterior notopodia are reviewed, and their morphological characteristics are compared. Key words: Spionid polychaete, Polydora, Systematics, Morphology. Spionid polychaetes from Taiwan have not yet been the subject of systematic study and to date only parentheses after the museum abbreviation and re- 1 species, Pseudopolydora diopatra Hsieh, is de- gistration number. scribed from the region (Hsieh 1992). In recent stud- ies on macrobenthic communities, a large number of SYSTEMATIC ACCOUNT spionids was collected along the western coast of Taiwan and from Kinmen Island, located just off Key to identification of Polydora species from Taiwan mainland China (Fig.