Download Article
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sink Or Float? Thought Problems in Math and Physics
AMS / MAA DOLCIANI MATHEMATICAL EXPOSITIONS VOL AMS / MAA DOLCIANI MATHEMATICAL EXPOSITIONS VOL 33 33 Sink or Float? Sink or Float: Thought Problems in Math and Physics is a collection of prob- lems drawn from mathematics and the real world. Its multiple-choice format Sink or Float? forces the reader to become actively involved in deciding upon the answer. Thought Problems in Math and Physics The book’s aim is to show just how much can be learned by using everyday Thought Problems in Math and Physics common sense. The problems are all concrete and understandable by nearly anyone, meaning that not only will students become caught up in some of Keith Kendig the questions, but professional mathematicians, too, will easily get hooked. The more than 250 questions cover a wide swath of classical math and physics. Each problem s solution, with explanation, appears in the answer section at the end of the book. A notable feature is the generous sprinkling of boxes appearing throughout the text. These contain historical asides or A tub is filled Will a solid little-known facts. The problems themselves can easily turn into serious with lubricated aluminum or tin debate-starters, and the book will find a natural home in the classroom. ball bearings. cube sink... ... or float? Keith Kendig AMSMAA / PRESS 4-Color Process 395 page • 3/4” • 50lb stock • finish size: 7” x 10” i i \AAARoot" – 2009/1/21 – 13:22 – page i – #1 i i Sink or Float? Thought Problems in Math and Physics i i i i i i \AAARoot" – 2011/5/26 – 11:22 – page ii – #2 i i c 2008 by The -
THE INVENTION of ATOMIST ICONOGRAPHY 1. Introductory
THE INVENTION OF ATOMIST ICONOGRAPHY Christoph Lüthy Center for Medieval and Renaissance Natural Philosophy University of Nijmegen1 1. Introductory Puzzlement For centuries now, particles of matter have invariably been depicted as globules. These glob- ules, representing very different entities of distant orders of magnitudes, have in turn be used as pictorial building blocks for a host of more complex structures such as atomic nuclei, mole- cules, crystals, gases, material surfaces, electrical currents or the double helixes of DNA. May- be it is because of the unsurpassable simplicity of the spherical form that the ubiquity of this type of representation appears to us so deceitfully self-explanatory. But in truth, the spherical shape of these various units of matter deserves nothing if not raised eyebrows. Fig. 1a: Giordano Bruno: De triplici minimo et mensura, Frankfurt, 1591. 1 Research for this contribution was made possible by a fellowship at the Max-Planck-Institut für Wissenschafts- geschichte (Berlin) and by the Netherlands Organization for Scientific Research (NWO), grant 200-22-295. This article is based on a 1997 lecture. Christoph Lüthy Fig. 1b: Robert Hooke, Micrographia, London, 1665. Fig. 1c: Christian Huygens: Traité de la lumière, Leyden, 1690. Fig. 1d: William Wollaston: Philosophical Transactions of the Royal Society, 1813. Fig. 1: How many theories can be illustrated by a single image? How is it to be explained that the same type of illustrations should have survived unperturbed the most profound conceptual changes in matter theory? One needn’t agree with the Kuhnian notion that revolutionary breaks dissect the conceptual evolution of science into incommensu- rable segments to feel that there is something puzzling about pictures that are capable of illus- 2 THE INVENTION OF ATOMIST ICONOGRAPHY trating diverging “world views” over a four-hundred year period.2 For the matter theories illustrated by the nearly identical images of fig. -
On the Chiral Archimedean Solids Dedicated to Prof
Beitr¨agezur Algebra und Geometrie Contributions to Algebra and Geometry Volume 43 (2002), No. 1, 121-133. On the Chiral Archimedean Solids Dedicated to Prof. Dr. O. Kr¨otenheerdt Bernulf Weissbach Horst Martini Institut f¨urAlgebra und Geometrie, Otto-von-Guericke-Universit¨atMagdeburg Universit¨atsplatz2, D-39106 Magdeburg Fakult¨atf¨urMathematik, Technische Universit¨atChemnitz D-09107 Chemnitz Abstract. We discuss a unified way to derive the convex semiregular polyhedra from the Platonic solids. Based on this we prove that, among the Archimedean solids, Cubus simus (i.e., the snub cube) and Dodecaedron simum (the snub do- decahedron) can be characterized by the following property: it is impossible to construct an edge from the given diameter of the circumsphere by ruler and com- pass. Keywords: Archimedean solids, enantiomorphism, Platonic solids, regular poly- hedra, ruler-and-compass constructions, semiregular polyhedra, snub cube, snub dodecahedron 1. Introduction Following Pappus of Alexandria, Archimedes was the first person who described those 13 semiregular convex polyhedra which are named after him: the Archimedean solids. Two representatives from this family have various remarkable properties, and therefore the Swiss pedagogicians A. Wyss and P. Adam called them “Sonderlinge” (eccentrics), cf. [25] and [1]. Other usual names are Cubus simus and Dodecaedron simum, due to J. Kepler [17], or snub cube and snub dodecahedron, respectively. Immediately one can see the following property (characterizing these two polyhedra among all Archimedean solids): their symmetry group contains only proper motions. There- fore these two polyhedra are the only Archimedean solids having no plane of symmetry and having no center of symmetry. So each of them occurs in two chiral (or enantiomorphic) forms, both having different orientation. -
MINEOLA BIBLE INSTITUTE and SEMINARY Philosophy II Radically
MINEOLA BIBLE INSTITUTE AND SEMINARY Page | 1 Philosophy II Radically, Biblical, Apostolic, Christianity Bishop D.R. Vestal, PhD Larry L Yates, ThD, DMin “Excellence in Apostolic Education since 1991” 1 Copyright © 2019 Mineola Bible Institute Page | 2 All Rights Reserved This lesson material may not be used in any manner for reproduction in any language or use without the written permission of Mineola Bible Institute. 2 Contents Introduction ................................................................................................................................. 7 Alexander the Great (356-323 B.C.) ........................................................................................... 8 Philip II of Macedonia (382-336 B.C.) ....................................................................................... 12 Page | 3 “Olympias the mother of Alexander was an evil woman. .......................................... 13 Philip II (of Macedonia) (382-336 BC) .............................................................................. 13 Aristotle (384-322 BC) ............................................................................................................... 15 Works .................................................................................................................................... 16 Methods ............................................................................................................................... 17 Doctrines ............................................................................................................................ -
Hermes in the Academy WT.Indd
In 1999, an innovative chair and expertise center was created at the Faculty wouter j. hanegraaff and joyce pijnenburg (eds.) of Humanities of the University of Amsterdam, focused on the history of Western esotericism from the Renaissance to the present. The label “Western esotericism” refers here to a complex of historical currents such as, notably, the Hermetic philosophy of the Renaissance, mystical, magical, alchemical and astrological currents, Christian kabbalah, Paracelsianism, Rosicrucianism, Christian theosophy, and the many occultist and related esoteric currents that developed in their wake during the 19th and the 20th centuries. This complex of “alternative” religious currents is studied from a critical historical and interdisciplinary perspective, with the intention of studying the roles that they have played in the history of Western culture. In the past ten years, the chair for History of Hermetic Philosophy and Related Currents has succeeded in establishing itself as the most important center for study and teaching in this domain, and has strongly contributed to the establishment of Western esotericism as a recognized academic field of research. This volume is published at the occasion of the 10th anniversary. Hermes in the Academy in the Hermes It contains a history of the creation and development of the chair, followed by articles on aspects of Western esotericism by the previous and current staff members, contributions by students and Ph.D. students about the study program, and reflections by international top specialists about the field of research and its academic development. Prof. Dr. Wouter J. Hanegraaff is Professor of History of Hermetic Philosophy and Related Currents at the University of Amsterdam. -
May Plato's Academy Be Considered As the First Academic Institution?
Center for Open Access in Science ▪ https://www.centerprode.com/ojsh.html Open Journal for Studies in History, 2019, 2(2), 35-42. ISSN (Online) 2620-066X ▪ https://doi.org/10.32591/coas.ojsh.0202.02035s _________________________________________________________________________ May Plato’s Academy be Considered as the First Academic Institution? Zhulduz Amangelidyevna Seitkasimova M. Auezov South Kazakhstan State University, KAZAKHSTAN Faculty of Pedagogy and Culture, Shymkent Received 8 November 2019 ▪ Revised 17 December 2019 ▪ Accepted 23 December 2019 Abstract Plato’s Academy is undoubtedly the first higher education institution in history, and in ancient Athens itself represents the most important educational institution. It constituted in the context of the universal development that took place in ancient Athens, in the 5th and 4th century BC, and it continued to work until the Byzantine Emperor Justinian forbade the work of all schools of philosophy (529 AD). This development, which is part of the so-called Golden Age of ancient Athens, represents the period of Greek history in which the foundations of Western civilization originated, as we know it today. Plato appears as one of the greatest philosophers of ancient Greece, along with Socrates and Aristotle, to the first of whom appears as a student and to the second as a teacher. Philosophy in the true sense of the word was created in Plato’s era in ancient Athens (Russell, 1975), and Plato’s Academy, in which he, along with his students, talked about various philosophical topics through the Garden of Akademos, was the impetus for this development. There are also opinions that the development of philosophy after Socrates, Plato, and Aristotle is only of reproductive character when it comes to the basics of philosophy. -
Platonic Academy of Florence"
Humanist Academies and the "Platonic Academy of Florence" The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Hankins, James. Forthcoming. Humanist academies and the “Platonic Academy of Florence.” In Proceedings of the conference, "From the Roman Academy to the Danish Academy in Rome," ed. H. Ragn Jensen and M. Pade. Analecta Romana Instituti Danici Supplementum. Copenhagen: Odense University Press. Published Version http://www.acdan.it/analecta/english.htm Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:2936369 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA 1 Forthcoming in the proceedings of the conference, From the Roman Academy to the Danish Academy in Rome, ed. H. Ragn Jensen and M. Pade, to appear in Analecta Romana Instituti Danici Supplementum. Humanist Academies and the “Platonic Academy of Florence” James Hankins (Harvard University) It is now widely recognized that the student of early humanist academies has to use great care when dealing with the numerous but often ambiguous references to academies and academic life in fifteenth century sources. The second half of the Quattrocento was the formative period for the idea of learned, literary and artistic academies, and it is all too easy to impose on fifteenth-century sources anachronistic assumptions drawn from the sixteenth and later centuries about the purpose, organization, and general character of these early associations of humanists. -
Early Greek Philosophy
P1: GNK/ABS P2: CSS/SCM P3: CSS/SCM QC: ANG/ADS T1: ADS CB162/Long CB162-FM1 January 29, 1999 13:56 The Cambridge Companion to EARLY GREEK PHILOSOPHY Edited by A. A. Long University of California, Berkeley iii P1: GNK/ABS P2: CSS/SCM P3: CSS/SCM QC: ANG/ADS T1: ADS CB162/Long CB162-FM1 January 29, 1999 13:56 published by the press syndicate of the university of cambridge The Pitt Building, Trumpington Street, Cambridge, United Kingdom cambridge university press The Edinburgh Building, Cambridge cb2 2ru, uk http: //www.cup.cam.ac.uk 40 West 20th Street, New York, ny 10011-4211, usa http: //www.cup.org 10 Stamford Road, Oakleigh, Melbourne 3166, Australia c Cambridge University Press 1999 This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published 1999 Printed in the United States of America Typeset in Trump Medieval 10/13 pt. in LATEX[tb] A catalog record for this book is available from the British Library. Library of Congress Cataloging-in-Publication Data The Cambridge companion to early Greek philosophy/edited by A. A. Long. p. cm. Includes bibliographical references (p. ) and indexes. isbn 0-521-44122-6 (hbk.) isbn 0-521-44667-8 (pbk.) 1. Philosophy, Ancient. 1. Long, A. A. B188.C35 1999 182 –dc21 98-38077 CIP isbn 0 521 44122 6 hardback isbn 0 521 44667 8 paperback iv P1: GNK/ABS P2: CSS/SCM P3: CSS/SCM QC: ANG/ADS T1: ADS CB162/Long CB162-FM1 January 29, 1999 13:56 contents Contributors page vii Preface xi Source abbreviations xv Lives and writings of the early Greek philosophers xvii Chronology xxix Map xxxi 1 The scope of early Greek philosophy a. -
A Cultural History of Physics
Károly Simonyi A Cultural History of Physics Translated by David Kramer Originally published in Hungarian as A fizika kultûrtörténete, Fourth Edition, Akadémiai Kiadó, Budapest, 1998, and published in German as Kulturgeschichte der Physik, Third Edition, Verlag Harri Deutsch, Frankfurt am Main, 2001. First Hungarian edition 1978. CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2012 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed in the United States of America on acid-free paper Version Date: 20111110 International Standard Book Number: 978-1-56881-329-5 (Hardback) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowl- edged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. -
Instructions for Plato's Solids
Includes 195 precision START HERE! Plato’s Solids The Platonic Solids are named Zometool components, Instructions according to the number of faces 50 foam dual pieces, (F) they possess. For example, and detailed instructions You can build the five Platonic Solids, by Dr. Robert Fathauer “octahedron” means “8-faces.” The or polyhedra, and their duals. number of Faces (F), Edges (E) and Vertices (V) for each solid are shown A polyhedron is a solid whose faces are Why are there only 5 perfect 3D shapes? This secret was below. An edge is a line where two polygons. Only fiveconvex regular polyhe- closely guarded by ancient Greeks, and is the mathematical faces meet, and a vertex is a point dra exist (i.e., each face is the same type basis of nearly all natural and human-built structures. where three or more faces meet. of regular polygon—a triangle, square or Build all five of Plato’s solids in relation to their duals, and see pentagon—and there are the same num- Each Platonic Solid has another how they represent the 5 elements: ber of faces around every corner.) Platonic Solid as its dual. The dual • the Tetrahedron (4-faces) = fire of the tetrahedron (“4-faces”) is again If you put a point in the center of each face • the Cube (6-faces) = earth a tetrahedron; the dual of the cube is • the Octahedron (8-faces) = water of a polyhedron, and connect those points the octahedron (“8-faces”), and vice • the Icosahedron (20-faces) = air to their nearest neighbors, you get its dual. -
WHAT's the BIG DEAL ABOUT GLOBAL HIERARCHICAL TESSELLATION? Organizer: Geoffrey Dutton 150 Irving Street Watertown MA 02172 USA Email: [email protected]
WHAT'S THE BIG DEAL ABOUT GLOBAL HIERARCHICAL TESSELLATION? Organizer: Geoffrey Dutton 150 Irving Street Watertown MA 02172 USA email: [email protected] This panel will present basic information about hierarchical tessellations (HT's) as geographic data models, and provide specific details about a few prototype systems that are either hierarchical tessellations, global tessellations, or both. Participants will advocate, criticize and discuss these models, allowing members of the audience to compare, contrast and better understand the mechanics, rationales and significance of this emerging class of nonstandard spatial data models in the context of GIS. The panel has 7 members, most of whom are engaged in research in HT data modeling, with one or more drawn from the ranks of informed critics of such activity. The panelists are: - Chairperson TEA - Zi-Tan Chen, ESRI, US - Nicholas Chrisman, U. of Washington, US - Gyorgy Fekete, NASA/Goddard, US - Michael Goodchild, U. of California, US - Hrvoje Lukatela, Calgary, Alberta, CN - Hanan Samet, U. of Maryland, US - Denis White, Oregon State U., US Some of the questions that these panelists might address include: - How can HT help spatial database management and analysis? - What are "Tessellar Arithmetics" and how can they help? - How does HT compare to raster and vector data models? - How do properties of triangles compare with squares'? - What properties do HT numbering schemes have? - How does HT handle data accuracy and precision? - Are there optimal polyhedral manifolds for HT? - Can HT be used to model time as well as space? - Is Orthographic the universal HT projection? Panelists were encouraged to provide abstracts of position papers for publication in the proceedings. -
Greek and Indian Cosmology: Review of Early History
Greek and Indian Cosmology: Review of Early History Subhash Kak∗ October 29, 2018 1 Introduction Greek and Indian traditions have profoundly influenced modern science. Ge- ometry, physics, and biology of the Greeks; arithmetic, algebra, and grammar of the Indians; and astronomy, philosophy, and medicine of both have played a key role in the creation of knowledge. The interaction between the Indi- ans and the Greeks after the time of Alexander is well documented, but can we trace this interaction to periods much before Alexander’s time so as to untangle the earliest connections between the two, especially as it concerns scientific ideas? Since science is only one kind of cultural expression, our search must encompass other items in the larger matrix of cultural forms so as to obtain a context to study the relationships. There are some intriguing parallels between the two but there are also important differences. In the ancient world there existed much interaction through trade and evidence for this interaction has been traced back to the third millennium BC, therefore there was sure to have been a flow of ideas in different directions. The evidence of interaction comes from the trade routes between India arXiv:physics/0303001v1 [physics.hist-ph] 28 Feb 2003 and the West that were active during the Harappan era. Exchange of goods was doubtlessly accompanied by an exchange of ideas. Furthermore, some ∗Louisiana State University, Baton Rouge, LA 70803-5901, USA, Email: [email protected] 1 communities migrated to places away from their homeland. For example, an Indian settlement has been traced in Memphis in Egypt based on the Indic themes of its art.1 The Indic element had a significant presence in West Asia during the second millennium BC and later.2 Likewise, Greek histori- ans accompanying Alexander reported the presence of Greek communities in Afghanistan.3 In view of these facts, the earlier view of the rise in a vacuum of Greek science cannot be maintained.4 Indian science must have also benefited from outside influences.