https://doi.org/10.5194/gchron-2020-30 Preprint. Discussion started: 13 October 2020 c Author(s) 2020. CC BY 4.0 License. 1 Eruptive history and 40Ar/39Ar geochronology of the Milos volcanic 2 field, Greece 3 4 Xiaolong Zhou1, Klaudia Kuiper1, Jan Wijbrans1, Katharina Boehm1, Pieter Vroon1 5 1Department of Earth Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands. 6 Correspondence to: Xiaolong Zhou (
[email protected]) 7 Abstract. High-resolution geochronology is essential to determine the growth-rate of volcanoes, which is one of the key factors 8 to establish the periodicity of explosive volcanic eruptions. However, there are less high-resolution eruptive histories (>106 9 years) determined for long-lived submarine arc volcanic complexes than for subaerial complexes, since the submarine 10 volcanoes are far more difficult to observe than subaerial ones. In this study, high-resolution geochronology and major element 11 data are presented for Milos Volcanic Field (VF) in the South Aegean Volcanic Arc, Greece. The Milos VF has been active 12 for over 3 Myrs, and the first two million years of its eruptive history occurred in a submarine setting that has emerged above 13 sea level nowadays. The long submarine volcanic history of the Milos VF makes it an excellent natural laboratory to study the 14 growth-rate of a long-lived submarine arc volcanic complex. This study reports twenty-one new high-precision 40Ar/39Ar ages 15 and major element compositions for eleven volcanic units of the Milos VF. This allows us to refine the volcanic evolution of 16 Milos into nine phases and five volcanic quiescence periods of longer than 200 kyrs, on the basis of age, composition, volcano 17 type and location.