University of Cincinnati

Total Page:16

File Type:pdf, Size:1020Kb

University of Cincinnati UNIVERSITY OF CINCINNATI Date:___________________ I, _________________________________________________________, hereby submit this work as part of the requirements for the degree of: in: It is entitled: This work and its defense approved by: Chair: _______________________________ _______________________________ _______________________________ _______________________________ _______________________________ Comprehensive Study of Internal Flow Field and Linear and Nonlinear Instability of an Annular Liquid Sheet Emanating from an Atomizer A dissertation submitted to the Division of Research and Advanced Studies of the University of Cincinnati in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in the Department of Mechanical, Industrial and Nuclear Engineering of the College of Engineering 2006 by Ashraf Ibrahim B.S.,Cairo University, 1997 M.S., Cairo University, 2002 Dissertation Committee: Dr. Milind Jog, Chair Dr. San-Mou Jeng Dr. Raj Manglik i ABSTRACT Performance of fuel injectors affects the combustion efficiency, pollutant emissions and combustion instability in gas turbine engines, internal combustion engines and industrial furnaces. In these combustion systems, either pressure swirl (simplex) atomizers, or prefilming airblast atomizers, or plain orifice pressure atomizers are used for fuel atomization. In this dissertation, a comprehensive model for pressure-swirl atomization is developed that includes computational treatment of the internal flow field and the nonlinear liquid sheet instability analysis for primary breakup. For a prefilming airblast atomizer and a plain orifice atomizer, nonlinear breakup processes for an annular liquid sheet and a liquid jet are analyzed using a perturbation method. Two-dimensional axi-symmetric numerical simulations have been carried out to study the unsteady, turbulent, swirling two-phase flow field inside pressure swirl atomizers with the volume of fluid (VOF) method. Internal flow field simulation results are validated using available experimental data for velocity measurements inside a large-scale prototype atomizer, the film thickness at orifice exit, the spray angle, and the discharge coefficient. The effect of air pressure and liquid viscosity on flow field inside the atomizer is investigated. The relationship between the internal flow characteristics and discharge parameters confirms that the internal flow structure plays a very important role in determining the atomizer performance. Linear and nonlinear asymmetric instability analyses are carried out to study the primary atomization of annular liquid sheets and liquid jets emanating from the pressure swirl (simplex) atomizer, prefilming airblast atomizer, and plain orifice pressure atomizer using a perturbation method with the initial amplitude of the disturbance as the perturbation parameter. For a coaxial liquid jet subjected to a swirling gas stream, the axisymmetric disturbance mode (n = 0) is the most dominant only when the gas swirl number is very small. However at higher swirl strength ii the helical (asymmetric) disturbance modes (n > 0) become dominant compared to the axisymmetric mode. The liquid jet breaks up over a shorter distance at higher gas swirl number. The gas swirl number for transition to a highly asymmetric breakup with a high circumferential wave number (n = 5) is found to vary as the inverse of the square root of the gas-to-liquid momentum ratio when the gas-to-liquid momentum ratio is less than 1. For annular liquid sheets, the breakup length is reduced by an increase in the liquid Weber number, initial disturbance amplitude and the inner and outer gas-liquid velocity ratios. The inner gas stream is found to be more effective in disintegrating and enhancing the instability of annular liquid sheets than the outer gas stream. Air swirl not only promotes the instability of the annular liquid sheet, but also switches the dominant mode from the axisymmetric mode to a helical mode (n > 0). As outer air swirl strength increases, the circumferential wave number (n) increases and the ligament shapes at the breakup time become highly asymmetric. Using the atomizer exit conditions as input, a non-linear sheet instability and breakup analysis has been carried out to predict the breakup length and the primary breakup for a simplex atomizer. The predictions of breakup length are compared with available experimental measurements which show good agreement. The coupled internal flow simulation and nonlinear sheet instability analysis provides a comprehensive approach to modeling atomization from a pressure-swirl atomizer. iii iv ACKNOWLEDGEMENTS I would like to express my most sincere gratitude to my dissertation advisor, Professor Milind Jog, for his insightful guidance, unending encouragement, financial support and personal help. He has been a constant source of inspiration. Together, we had numerous discussions where his creativity would help come up with new ideas and ways of looking at a problem. I would like to acknowledge and thank Professor San-Mou Jeng and Professor Raj Manglik for honoring me by serving on my committee. I would also like to thank Professor San- Mou Jeng for the knowledge in sprays and combustion that he taught me, giving me the opportunity to run some of the experiments with his students and his generous assistance and encouragement. I would like to thank Professor Raj Manglik for his continuous and generous assistance and encouragement. I would like to express my deepest sense of gratitude to my wife for her support and sacrifice throughout those years in the pursuit of my doctorate. I am indebted to my parents, for everything I am today is only from their sacrifices. v THIS DISSERTATION IS DEDICATED TO MY FAMILY WHO ALWAYS ENCOURAGED ME TO BE THE BEST vi TABLE OF CONTENTS ABSTRACT ii ACKNOWLEDGEMENTS v TABLE OF CONTENTS vii LIST OF TABLES xii LIST OF FIGURES xiii LIST OF SYMBOLS xx CHAPTER PAGE 1 INTRODUCTION 1 1.1 Motivation 1 1.2 Atomization and Atomizers 2 1.2.1 Plain orifice atomizer 3 1.2.2 Pressure Swirl (Simplex) Atomizer 3 1.2.3 Twin Fluid Atomizers 10 1.3 Fundamental Mechanisms of Spray Formation 11 1.3.1 Disintegration of Liquid Jets 12 1.3.1.1 Round Liquid Jets in Quiescent Air 13 1.3.1.2 Round Liquid Jets in Co-flowing Air 14 1.3.2 Disintegration of Liquid Sheets 17 1.3.2.1 Plane Liquid Sheets 17 1.3.2.2 Annular Liquid Sheets 18 1.4 Scope of the Dissertation 19 vii PART I TWO-PHASE FLOW FIELD IN PRESSURE SWIRL 23 ATOMIZERS 2 COMPUTATIONAL SIMULATION OF FLOW FIELD IN PRESSURE 24 SWIRL (SIMPLEX) ATOMIZER 2.1 Literature Review 24 2.1.1 Inviscid Analysis and Experimental Work 24 2.1.2 Review of Computational Modeling 28 2.1.2.1 The ALE method 29 2.2.2.2 The VOF Method 30 2.2 The Physical Model 31 2.3 Governing Equations 32 2.4 Results and Discussions 34 2.5 Summary and Conclusions 49 PART II LINEAR INSTABILITY OF ANNULAR LIQUID SHEETS 51 3 EFFECT OF LIQUID SWIRL VELOCITY PROFILE ON THE 52 INSTABILITY OF A SWIRLING ANNULAR LIQUID SHEET 3.1 Introduction 52 3.2 Linear Stability Analysis 55 3.2.1 Solid Vortex Swirl Profile 55 3.2.2 Free Vortex Swirl Profile 61 3.3 Results and Discussions 63 3.3.1 Effect of Liquid Axial Velocity 63 3.3.2 Effect of Liquid Swirl Velocity 64 viii 3.3.3 Effect of Density Ratio 70 3.3.4 Effect of Radius of Curvature Ratio 75 3.3.5 Effect of Surface Tension 78 3.3.6 Effect of Outer Axial Air Weber Number 78 3.4 Summary and Conclusions 80 4 EFFECT OF LIQUID AND AIR SWIRL STRENGTH AND RELATIVE 83 ROTATIONAL DIRECTION ON THE INSTABILITY OF AN ANNULAR LIQUID SHEET 4.1 Introduction 83 4.2 Mathematical Formulation 88 4.3 Results and Discussions 95 4.3.1 Model Validation 96 4.3.2 Liquid Swirl with Purely Axial Air Flow 96 4..3.3 Air Swirl with Purely Axial Liquid Flow 102 4.3.4 Liquid Swirl with Air Swirl 104 4.3.5 Effect of Relative Air Swirl Direction 108 4.3.6 Effect of High Air Pressure 111 4.4 Summary and Conclusions 114 PART III NONLINEAR INSTABILITY OF LIQUID JETS AND ANNULAR LIQUID SHEETS 116 5 NONLINEAR BREAKUP OF A COAXIAL LIQUID JET IN A SWIRLING GAS STREAM 117 5.1 Introduction 117 ix 5.2 Mathematical Formulation 121 5.2.1 Solution of the First and the Second Order Equations 125 5.3 Results and Discussions 128 5.3.1 Model Validation 132 5.3.2 Effect of Gas Swirl 135 5.4 Summary and Conclusions 142 6 NONLINEAR INSTABILITY OF AN ANNULAR LIQUID SHEET SUBJECTED TO UNEQUAL INNER AND OUTER GAS STREAMS 144 6.1 Literature Review 144 6.2 Mathematical Formulation 146 6.2.1 Solution of the First and the Second Order Equations 153 6.3 Results and Discussions 157 6.4 Summary and Conclusions 173 7 NONLINEAR INSTABILITY OF AN ANNULAR LIQUID SHEET SUBJECTED TO SWIRLING OUTER GAS STREAM 175 7.1 Introduction 175 7.2 Mathematical Formulation 176 7.2.1 Solution of the First and the Second Order Equations 183 7.3 Results and Discussions 187 7.4 Summary and Conclusions 196 PART IV A COMPREHENSIVE MODEL FOR PRESSURE SWIRL ATOMIZER 198 8 A COMPREHENSIVE MODEL TO PREDICT PRESSURE SWIRL 199 x ATOMIZER PERFORMANCE 8.1 Motivation 199 8.2 Results and Discussions 202 8.2.1 Internal Flow Field 202 8.2.1.1 Validation 205 8.3 Breakup Length Calculation and Validation 207 8.4 Summary and Conclusions 208 9 CONCLUSIONS AND RECOMMENDATIONS 209 9.1 Summary and Conclusions 209 9.2 Recommendations for Future Work 212 BIBLIOGRAPHY 213 APPENDICES 228 A 229 B 231 C 234 D 241 xi LIST OF TABLES TABLE PAGE 1.1 Classification and criteria of breakup regimes of round jets in 16 quiescent air (Liu 2000) 1.2 Classification and criteria of breakup regimes of round liquid jets in 16 co-flowing air (Liu 2000) 2.1 Flow rates and atomizer dimensions used for experiments 37 measurements (Ma 2001) 2.2 Film thickness at different water volume fractions for case 1 (15 GPM).
Recommended publications
  • Atomization of Viscous Fluids Using Counterflow Nozzle
    Atomization of Viscous Fluids using Counterflow Nozzle A THESIS SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Roshan Rangarajan IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE Prof.Vinod Srinivasan August, 2020 c Roshan Rangarajan 2020 ALL RIGHTS RESERVED Acknowledgements I would like to express my sincere gratitude to my academic advisor, Prof.V.Srinivasan for his continuous support throughout this pursuit. His consistent motivation guided me during the course of this rigorous experimental effort. He helped instill a deep sense of work ethic and discipline towards academic research. In addition, I would like to thank Prof.Strykowski (ME Dept, University of Minnesota- Twin Cities) and Prof.Hoxie (ME Dept, University of Minnesota-Duluth) for their en- gaging technical insights into my present work. In particular, I was able to develop a sound understanding of techniques used in Image processing through my interactions with Eric and Prof.Hoxie at UMN-Duluth. I would like to thank my fellow lab mates Akash, Ian, Chinmayi, Manish, Sankar, Ankit, Peter and Amber for simulating discussions and sleepless nights before important deadlines. Research becomes not just interesting but also fun when you have the right minds around. Besides my advisor, I would like to thank Prof.Hogan and Prof.Ramaswamy for their time and encouragement in this work. i Dedication Parents and my sister for always believing in me. ii Abstract In the present work, we study the enhanced atomization of viscous liquids by using a novel twin-fluid atomizer. A two-phase mixing region is developed within the nozzle us- ing counterflow configuration by supplying air and liquid streams in opposite directions.
    [Show full text]
  • Laboratory Experiments on Rain-Driven Convection: Implications for Planetary Dynamos Peter Olson, Maylis Landeau, Benjamin Hirsh
    Laboratory experiments on rain-driven convection: Implications for planetary dynamos Peter Olson, Maylis Landeau, Benjamin Hirsh To cite this version: Peter Olson, Maylis Landeau, Benjamin Hirsh. Laboratory experiments on rain-driven convection: Implications for planetary dynamos. Earth and Planetary Science Letters, Elsevier, 2017, 457, pp.403- 411. 10.1016/j.epsl.2016.10.015. hal-03271246 HAL Id: hal-03271246 https://hal.archives-ouvertes.fr/hal-03271246 Submitted on 25 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Laboratory experiments on rain-driven convection: 2 implications for planetary dynamos 3 Peter Olson*, Maylis Landeau, & Benjamin H. Hirsh Department of Earth & Planetary Sciences Johns Hopkins University, Baltimore, MD 21218 4 August 22, 2016 5 Abstract 6 Compositional convection driven by precipitating solids or immiscible liquids has been 7 invoked as a dynamo mechanism in planets and satellites throughout the solar system, 8 including Mercury, Ganymede, and the Earth. Here we report laboratory experiments 9 on turbulent rain-driven convection, analogs for the flows generated by precipitation 10 within planetary fluid interiors. We subject a two-layer fluid to a uniform intensity 11 rainfall, in which the rain is immiscible in the upper layer and miscible in the lower 12 layer.
    [Show full text]
  • Inkjet-Printed Light-Emitting Devices: Applying Inkjet Microfabrication to Multilayer Electronics
    Inkjet-Printed Light-Emitting Devices: Applying Inkjet Microfabrication to Multilayer Electronics by Peter D. Angelo A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Chemical Engineering & Applied Chemistry University of Toronto Copyright by Peter David Angelo 2013 Inkjet-Printed Light-Emitting Devices: Applying Inkjet Microfabrication to Multilayer Electronics Peter D. Angelo Doctor of Philosophy Department of Chemical Engineering & Applied Chemistry University of Toronto 2013 Abstract This work presents a novel means of producing thin-film light-emitting devices, functioning according to the principle of electroluminescence, using an inkjet printing technique. This study represents the first report of a light-emitting device deposited completely by inkjet printing. An electroluminescent species, doped zinc sulfide, was incorporated into a polymeric matrix and deposited by piezoelectric inkjet printing. The layer was printed over other printed layers including electrodes composed of the conductive polymer poly(3,4-ethylenedioxythiophene), doped with poly(styrenesulfonate) (PEDOT:PSS) and single-walled carbon nanotubes, and in certain device structures, an insulating species, barium titanate, in an insulating polymer binder. The materials used were all suitable for deposition and curing at low to moderate (<150°C) temperatures and atmospheric pressure, allowing for the use of polymers or paper as supportive substrates for the devices, and greatly facilitating the fabrication process. ii The deposition of a completely inkjet-printed light-emitting device has hitherto been unreported. When ZnS has been used as the emitter, solution-processed layers have been prepared by spin- coating, and never by inkjet printing. Furthermore, the utilization of the low-temperature- processed PEDOT:PSS/nanotube composite for both electrodes has not yet been reported.
    [Show full text]
  • Scenarios of Drop Deformation and Breakup in Sprays T´Imea Kékesi
    Scenarios of drop deformation and breakup in sprays by T´ımeaK´ekesi September 2017 Technical Report Royal Institute of Technology Department of Mechanics SE-100 44 Stockholm, Sweden Akademisk avhandling som med tillst˚andav Kungliga Tekniska H¨ogskolan i Stockholm framl¨aggestill offentlig granskning f¨oravl¨aggandeav teknologie dok- torsexamen fredagen den 15 september 2017 kl 10.15 i D3, Lindstedtsv¨agen5, Kungliga Tekniska H¨ogskolan, Stockholm. TRITA-MEK Technical report 2017:10 ISSN 0348-467X ISRN KTH/MEK/TR-2017/10-SE ISBN 978-91-7729-500-6 c T. K´ekesi 2017 Tryckt av Universitetsservice US-AB, Stockholm 2017 Scenarios of drop deformation and breakup in sprays T´ımeaK´ekesi Linn´eFLOW Centre, KTH Mechanics, The Royal Institute of Technology SE-100 44 Stockholm, Sweden Abstract Sprays are used in a wide range of engineering applications, in the food and pharmaceutical industry in order to produce certain materials in the desired powder-form, or in internal combustion engines where liquid fuel is injected and atomized in order to obtain the required air/fuel mixture for ideal combustion. The optimization of such processes requires the detailed understanding of the breakup of liquid structures. In this work, we focus on the secondary breakup of medium size liquid drops that are the result of primary breakup at earlier stages of the breakup process, and that are subject to further breakup. The fragmentation of such drops is determined by the competing disruptive (pressure and viscous) and cohesive (surface tension) forces. In order to gain a deeper understanding on the dynamics of the deformation and breakup of such drops, numerical simulations on single drops in uniform and shear flows, and on dual drops in uniform flows have been performed employing a Volume of Fluid (VOF) method.
    [Show full text]
  • Direct Numerical Simulation of Fragmentation of Droplets
    Direct Numerical Simulation of Fragmentation of Droplets by Maziyar Jalaal B.Sc., University of Tabriz, 2009 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIRMENTS FOR THE DEEGREE OF Master of Applied Science in The College of Graduate Studies (Mechanical Engineering) THE UNIVERSITY OF BRITISH COLUMBIA (Okanagan) May 2012 © Maziyar Jalaal, 2012 Abstract The work described in the present thesis is related to a series of projects that I worked on toward the better understanding of fragmentation phenomena. In the past decades, the science of fragmentation has attracted many attentions within the researchers due to its wide range of applications. However, because of the complexity of the subject, even its basic concepts need more investigations. This thesis starts with an introduction to fragmentation of droplets using experimental or numerical approaches. It is discussed that the current mathematical and experimental tools are not able to describe all the details. Thus, high performance numerical simulations are the best alternatives to study the breakup of droplets. The introduction is followed by a discussion on the numerical method and the ranges of the non-dimensional groups. It is described that an adaptive, volume of fluid (VOF) method based on octree meshing is used, providing a notable reduction of computational cost. The rest of the thesis basically discusses the obtained results using direct numerical simulations. Two main geometries are investigated: falling droplets and droplets in a stream. For the case of falling droplets, three simulations with different Eötvös numbers are performed. For the case of droplets in a stream, two-dimensional and three-dimensional simulations are performed for a range of Weber number.
    [Show full text]
  • Droplet Impact on Deep Liquid Pools: Secondary Droplets Formation from Rayleigh Jet Break-Up and Crown Splash
    DROPLET IMPACT ON DEEP LIQUID POOLS: SECONDARY DROPLETS FORMATION FROM RAYLEIGH JET BREAK-UP AND CROWN SPLASH by EDUARDO A. CASTILLO OROZCO B.S. Escuela Superior Politécnica del Litoral, 2012 A dissertation submitted in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering in the Department of Mechanical and Aerospace Engineering in the College of Engineering and Computer Science at the University of Central Florida Orlando, Florida Fall-Term 2015 Major Professor: Ranganathan Kumar © 2015 Eduardo A. Castillo Orozco ii ABSTRACT This work aims to study the impact of a droplet on liquid pools of the same fluid to understand the formation of secondary drops from the central jet and crown splash that occur after the impact. The impact of droplets on a deep pool has applications in cleaning up oil spill, spray cooling, painting, inkjet printing and forensic analysis, relying on the changes in properties such as viscosity, interfacial tension and density. Despite the exhaustive research on different aspects of droplet impact, it is not clear how liquid properties can affect the instabilities leading to the Rayleigh jet breakup and the number of secondary drops formed after it pinches off. In this work, through systematic experiments, the droplet impact phenomena is investigated by varying viscosity and surface tension of liquids as well as impact speeds. Further, using a Volume-of-Fluid (VOF) method, it is shown that Rayleigh-Plateau instability is influenced by these parameters, and capillary timescale is the appropriate scale to normalize the breakup time. Increase in impact velocity increases the height of the thin column of fluid that emerges from the liquid pool.
    [Show full text]
  • CHARACTERIZATION of SECONDARY ATOMIZATION at HIGH OHNESORGE NUMBERS by Vishnu Radhakrishna
    CHARACTERIZATION OF SECONDARY ATOMIZATION AT HIGH OHNESORGE NUMBERS by Vishnu Radhakrishna A Thesis Submitted to the Faculty of Purdue University In Partial Fulfillment of the Requirements for the degree of Master of Science in Aeronautics and Astronautics School of Aeronautics & Astronautics West Lafayette, Indiana December 2018 2 THE PURDUE UNIVERSITY GRADUATE SCHOOL STATEMENT OF COMMITTEE APPROVAL Dr. Paul E. Sojka, Co-Chair Department of Mechanical Engineering Dr. Timothée Pourpoint, Co-Chair Department of Aeronautics and Astronautics Dr. Guillermo Paniagua Perez Department of Mechanical Engineering Approved by: Dr. Weinong Chen Head of the Graduate Program 3 To my family 4 ACKNOWLEDGMENTS I would like to extend my deepest sense of gratitude to those who have been instrumental in making this thesis possible. Words cannot describe my gratefulness to Professor Paul E. Sojka, for first trusting me with this opportunity, and for being a great advisor. The kind of support and understanding he extended made my life much easier at Purdue. Coming into Purdue as a master’s student, it was my dream to work with him. Presenting this thesis under his guidance is the surely the proudest moment in my life. He always appreciated individual thinking and challenged me with thought provoking questions. The knowledge I have gained from him, not just as a student but also a human being is priceless. I thank him for making me realize that dreams come true indeed. I would like to thank my committee members, Dr. Guillermo Paniagua Perez and Dr. Timothée Pourpoint, for their valuable time, and especially Prof. Paniagua for being my well-wisher throughout the course of my masters.
    [Show full text]
  • 1 Introductory Remarks Ian M
    1 1 Introductory Remarks Ian M. Hutchings, Graham D. Martin, and Stephen D. Hoath 1.1 Introduction From newspapers to food packaging, from magazines to junk mail and roadside advertising,weliveinaworldofprintedmaterials.Theprocessofprintinginvolves the reproduction of a pattern on a substrate, usually in order to represent text or images or, in many cases, both. Conventional printing methods, including, for example, lithography, flexography, gravure, and screen printing, have evolved over several centuries and can now achieve remarkable levels of quality at very low cost. All these processes share a common feature: the pattern to be printed is embod- ied in a physical form such as on a roll, plate, or screen and transferred from this template during the act of printing through direct or indirect contact with the substrate. The pattern of ink that forms the printed text or image on the substrate thus originates in a pattern that is defined before the printing machine starts to run. Changes to the printed product can be achieved only by changing the mas- ter pattern, which involves making physical changes to the template within the printing machine. Inkjet printing, in contrast, employs a fundamentally different principle. Rather than the printed pattern being created by transfer of ink from a pre-existing master pattern, it is progressively built up directly on to the substrate by the deposition of a large number of individual, tiny drops of ink. Each small droplet, typically 10–100 μm in diameter, is created and deposited under digital control, so that each pattern printed in a sequence by the same machine can just as readily be different from all the others as it can be the same.
    [Show full text]
  • Workshop on Thin Films and Fluid Interfaces January 30Th – February 2Th, 2006
    Workshop on Thin Films and Fluid Interfaces January 30th { February 2th, 2006 supported by NSF #0244498 FRG-Collaborative Research Grant: New Challenges in the Dynamics of Thin Films and Fluid Interfaces Held at the Institute for Pure and Applied Mathematics, UCLA This workshop brings together an international group of researchers working on experimental, analytical, and computational problems related to thin films and fluid interfaces. Problems of current interest include solid-liquid- vapor interfaces, moving contact lines, and surface tension effects. Conference organizers • Robert Behringer, Duke University • Andrea Bertozzi, UCLA • Michael Shearer, NCSU • Dejan Slepcev, UCLA • Thomas Witelski, Duke University Monday, January 30, 2006 8:45 am-9:00 am Bertozzi Welcome and opening remarks 9:00 am-9:30 am Craster Flow down a vertical fibre 9:30 am-10:00 am Matar Dynamics, stability and pattern formation in surfactant-driven thin liquid films 10:00 am-10:30 am Coffee break 10:30 am-11:30 am Cazabat A short story of drops 11:30 am-1:30 pm Lunch 1:30 pm-2:00 pm Ben Amar Darcy versus Stokes: the case of suction 2:00 pm-2:30 pm Shen Evaporation and rheological effects on Sol-gel coating 2:30 pm-3:00 pm Witelski Fingering flows of Marangoni-driven thin films 3:00 pm-3:30 pm Coffee break 3:30 pm-4:00 pm Grun¨ Thin-Film Flow Influenced by Thermal Fluctuations 4:00 pm-4:30 pm Giacomelli Microscopic and effective spreading rates for shear-thinning droplets 4:30 pm-5:00 pm Slepˇcev Coarsening in thin liquid films 5:00 pm-7:00 pm Conference reception Tuesday,
    [Show full text]
  • Fls
    BREAKDOWN OF A LIQUID FILAMENT INTO DROPS UNDER THE ACTION OF ACOUSTIC DISTURBANCES BY Robert Henry Wickemeyer A. K. Oppenheim Faculty Investigator d - fi3c 7 (THRU) / > (PAGES) (CODE) i fls -3 GPO PRICE i - < /?k'"- p-p-3Lr- (CATEGORY) (,$&*>R OKTMX- OR AD NUMBER' CFSTI PRICE(S) $ Technical Note No. 1-67 Hard copy (HC) 2 2-29 NASA Grant NsG -702 /- Report No. As-67-6 Microfiche (MF) /L3 ff 653 July 65 June 1967 COLLEGE OF ENGINEERING UNIVERSITY OF CALIFORNIA, Berkeley -* 'T OFFICE OF RESEARCH SERVICES University of California Berkeley, California 94720 BREAKDOWN OF A LIQUID FILAMENT INTO DROPS UNDER THE ACTION OF ACOUSTIC DISTURBANCES BY Robert Henry Wickemeyer and c A. K. Oppenheim Technical Note No. 1-67 NASA Grant NsG-702 Report No. AS-67-6 1 ABSTRACT For the purpose of producing small uniform drops for spray combustion experimentation, the theoretical and experi- mental aspects of the breakdown of a liquid filament into drops under the action of acoustic disturbances are studied. The theory expands the Rayleigh criterion for capillary instability of jets by introducing additional terms to account for aero- dynamic forces and fluid viscosity. Experimental results in- dicate that there exists, at each flow rate, a spread of fre- quencies capable of producing uniform drops, rather than unique frequency as predicted by the theory and that, for Reynolds numbers in excess of 600, the size of drops is in- dependent of the filament velocity. 2 TABLE OF CONTENTS Abstract 1 Table of Contents 2 Acknowledgments 3 Nomenclature 4 Introduction 6 Capillary Instability 6 Formulation of the Problem 7 Non-Dimensional Formulation 10 General Solution 12 Surface Tension Pressure 15 Aerodynamic Pressure 16 Specific Solution 17 First Order Solution 18 c Instability Criterion 19 b Experimental Results of Mechanical Generation of Drops 21 Ultrasonic Drop Generation 26 Summary and Conclusions 27 References 28 Tables 31 Figure Captions 32 Figures 33 3 ACKNOWLEDGMENT The experimental work reported here was initiated by Dr.
    [Show full text]
  • Role of All Jet Drops in Mass Transfer from Bursting Bubbles Alexis Berny, Luc Deike, Thomas Séon, Stéphane Popinet
    Role of all jet drops in mass transfer from bursting bubbles Alexis Berny, Luc Deike, Thomas Séon, Stéphane Popinet To cite this version: Alexis Berny, Luc Deike, Thomas Séon, Stéphane Popinet. Role of all jet drops in mass transfer from bursting bubbles. Physical Review Fluids, American Physical Society, 2020, 5 (3), pp.033605. 10.1103/PhysRevFluids.5.033605. hal-02481349v2 HAL Id: hal-02481349 https://hal.archives-ouvertes.fr/hal-02481349v2 Submitted on 17 Mar 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Role of all jet drops in mass transfer from bursting bubbles Alexis Berny 1;2, Luc Deike 2;3, Thomas Seon´ 1, and Stephane´ Popinet 1 1 Sorbonne Universite,´ CNRS, UMR 7190, Institut Jean le Rond @’Alembert, F-75005 Paris, France 2 Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544 USA 3 Princeton Environmental Institute, Princeton University, Princeton, New Jersey 08544, USA When a bubble bursts at the surface of a liquid, it creates a jet that may break up and produce jet droplets. This phenomenon has motivated numerous studies due to its multiple applications, from bubbles in a glass of champagne to ocean/atmosphere interactions.
    [Show full text]
  • SASO-ISO-80000-11-2020-E.Pdf
    SASO ISO 80000-11:2020 ISO 80000-11:2019 Quantities and units - Part 11: Characteristic numbers ICS 01.060 Saudi Standards, Metrology and Quality Org (SASO) ----------------------------------------------------------------------------------------------------------- this document is a draft saudi standard circulated for comment. it is, therefore subject to change and may not be referred to as a saudi standard until approved by the boardDRAFT of directors. Foreword The Saudi Standards ,Metrology and Quality Organization (SASO)has adopted the International standard No. ISO 80000-11:2019 “Quantities and units — Part 11: Characteristic numbers” issued by (ISO). The text of this international standard has been translated into Arabic so as to be approved as a Saudi standard. DRAFT DRAFT SAUDI STANDADR SASO ISO 80000-11: 2020 Introduction Characteristic numbers are physical quantities of unit one, although commonly and erroneously called “dimensionless” quantities. They are used in the studies of natural and technical processes, and (can) present information about the behaviour of the process, or reveal similarities between different processes. Characteristic numbers often are described as ratios of forces in equilibrium; in some cases, however, they are ratios of energy or work, although noted as forces in the literature; sometimes they are the ratio of characteristic times. Characteristic numbers can be defined by the same equation but carry different names if they are concerned with different kinds of processes. Characteristic numbers can be expressed as products or fractions of other characteristic numbers if these are valid for the same kind of process. So, the clauses in this document are arranged according to some groups of processes. As the amount of characteristic numbers is tremendous, and their use in technology and science is not uniform, only a small amount of them is given in this document, where their inclusion depends on their common use.
    [Show full text]