Asphere Metrology Options for Measuring Aspheric Lenses ©Copyright Optimax Systems, Inc

Total Page:16

File Type:pdf, Size:1020Kb

Asphere Metrology Options for Measuring Aspheric Lenses ©Copyright Optimax Systems, Inc Asphere Metrology Options for measuring aspheric lenses ©Copyright Optimax Systems, Inc. 2009 Sales Department - Optimax Systems, Inc. An asphere is an optic that deviates from the spherical form and is defined by the polynomial equation shown in Figure 1. While spherical lenses have long been used because of optical properties that make them easier to manufacture and measure, aspheres can significantly reduce the number of elements, and therefore size and weight of an optical system, as well as many aberrations inherent to spherical lens systems. Optimax is working with industrial partners and researchers to develop manufacturing technology for improving both fabrication and metrology of aspheres. The specifications to which a lens is manufactured are only as good as the metrology available. It is helpful to consider the method of metrology that will be used before setting the tolerances on a lens. This paper will outline the numerous metrology options for aspheres at Optimax, including how they work, any requirements, and what is specified w i t h each m e t h o d in an effort to help reasonably tolerance aspheres. Effects on the fabrication and cost of the lens will also be discussed. Metrology of aspheres fits into three basic categories: physically measuring the form of the optical surface, reflected wavefront testing, and transmitted wavefront testing. Each category has different methods of testing with varying degrees of accuracy. Physical Measurements Before advancements in machining and computer software, aspheres were measured against an already existing physical object of near perfect form. Brass, easier and less fragile to work Optimax Systems 5 August 08 White Papers Figure 2: CMM1 with than glass, can be cut and shaped into gauges equal in shape to the desired lens but opposite in curvature. Lenses are subjectively judged by how well they fit with their brass gauge counterpart. Now only special cases are measured with brass gauges because there are programmable instruments that can physically measure and provide more accurate data on the profile and form of a lens. Optimax has two such methods to measure aspheres: a coordinate measuring machine and profilometers. Coordinate Measuring Machine (CMM) The FARO Gage Plus coordinate measuring machine, pictured in Figure 2, is a portable arm with six flexible joints. Precision rotary encoders in each joint provide extremely accurate data on the position of the arm.1 By defining certain geometrical characteristics (such as a plane, a line, and a point) with respect to the position of the arm, the shape and form of the rest of the lens can be determined using these calibration points. Also, the software can compare the lens to a 3D model and generate a report giving the deviation of the lens from that form. The CMM is generally used to measure acylinders and torics but can be applied to rotationally symmetric aspheric lenses as well. The arm is portable and has various mounting fixtures allowing it to be utilized without removing the lens from the machine it is being worked on. It is convenient to be able to measure, rework, and re-measure the lens without having to realign it with the polishing equipment. The arm has a 1.2m coverage sphere and, unlike most metrology options, a lens does not need to be rotationally symmetric to be measured by the CMM. If the desired lens is not axially symmetric, the CMM should be a strong consideration. Accuracy, dependent on the linear distance between measurement points, is ±5µm at best.1 Profilometry Optimax has Talysurf profilometers from Taylor Hobson that can be used to measure surface profiles of aspheric lenses. B y defining an initial position in the z-axis and a desired length of movement in the x-axis, the machine pulls the stylus across the surface of the part measuring the change in the z-axis throughout that movement. The instrument is pre-programmed with the asphere equation and any other unique characteristics. The data from the stylus tip and from this program are organized to output information about the lens as shown in Figure 3; this information can be viewed as height from the theoretical form as a function of radial distance or separated where vertex radius error and surface irregularity are similar to power and irregularity in a spherical lens. Any tilt inherent to the setup of the machine rather than the lens is r e m o v e d in this calculation. Figure 3: Profilometry Data2 Optimax Systems 5 August 08 White Papers The talysurf must measure through the axis of rotation; profiles are n o r m a l l y measured and provided at 0º and 90º on axis, but i f m o r e data is desired they can also be measured in other places, at 45º on axis for example . Optimax also has new software available to combine multiple measurements from the profilometer and generate a plot of the full surface of the lens. This allows for asymmetric corrections to be generated to help with final figuring. O p t i m a x frequently uses profilometers for surfaces that are tolerance at ±0.5µm or looser. As the sag of a lens increases or the slope of the lens becomes too steep or too flat, the lens becomes harder to measure accurately. The extreme slopes approach the limits of the resolution of the instrument, which vary depending on the arm length, stylus tool, and current calibration.2 Possible tolerances are largely dependent on the geometry of each individual lens. A sag table is required to aid in the manufacturing process of every asphere but can be used to tolerance the lens with profilometry. A lens can be toleranced by specifying acceptable m i c r o n s deviation from the theoretical form as a function of radial distance, or the tolerance can be specified as vertex radius and maximum allowable deviation from theoretical form throughout the profile. Profilometry is the most common way to measure aspheres at Optimax. Interferometric testing may be impossible for some lens designs or unnecessary for some tolerances. Tighter tolerances increase cost but using the profilometers is generally less expensive if they can obtain the desired specifications. Surface Testing in Reflection Profilometry can often provide the accuracy desired or is sometimes the only metrology option for an aspheric lens design, but if tighter tolerances are desired and the geometry is suitable, aspheres can also be measured using interferometers. There are many interferometric methods and it is important to choose one appropriate for the lens design. When testing a lens interferometrically, the most common way to do so is by imaging the reflected wavefronts. Wavefronts are emitted from the interferometer, reflected from the lens, and imaged into an interferogram to be analyzed for surface form and irregularity. There are many different ways to do this depending on the form of the lens, some of which are based on a null configuration, meaning a perfect lens would result in no interference fringes. The interferometer setup to measure spherical lenses is often only slightly modified to measure aspheres and many of the same principles are applied; a basic understanding of the way spherical lenses are measured will be helpful. Spherical lenses are tested using a phase shifting interferometer (PSI) and a displacement measuring interferometer (DMI) together in a null configuration so that a perfect lens would reflect a spherical wavefront in such a way that no interference fringes are formed on the interferogram. If any fringes do appear, each represents a deviation from spherical b y λ / 2 ; λ is the wavelength of light used in the test and equal to 632.8nm for the HeNe lasers in the interferometers at Optimax. The PSI analyzes the interferogram from the confocal position to determine irregularity. The resolution of interferometers at Optimax is approximately 0.04 fringes (λ/50), and 0.1 fringes (λ/20) is approaching the manufacturing limits of most of the interferometric tests. Any fringes that do form from the reflected wavefront of a spherical lens are interpreted to calculate the power and irregularity. Optimax Systems 5 August 08 White Papers Spherical Wavefront Interferometry with Zernike Subtraction An asphere can be tested in the same way as a sphere if the departure from spherical is mild enough that the fringes formed by the interferometer do not violate the Ny q u i s t condition, which states each fringe must cover two or more pixels for the pattern to be accurately resolvable by the sensor. A spherical wavefront reflects from an aspheric surface and fringes form based on the surface’s deviation from spherical; the larger the deviation or local slope, the more fringes that form in a smaller area, and the larger the fringe density. This is not a null configuration; there is an expected fringe pattern and an actual fringe pattern, and these are compared, if the Nyquist condition is not violated, to determine the form of the lens. One way this can be done is with Zernike based aberration subtraction. Allowable departure for this test varies proportionally to the diameter of the lens but depends mostly on the angle of localized slope. A large departure in a small area, which indicates a steep local slope, can lead to irresolvable fringes densities. This test is straightforward but can only be used for extremely mild aspheres. Approximately x/mm spherical departure is the limit of this test, but departure needs to be considered for the fringe density of each particular lens design. With this test, tolerances as small as 0.1 fringes (λ/20) are sometimes possible, but uncertainty may vary with the form and departure of the asphere.
Recommended publications
  • Determination of Focal Length of a Converging Lens and Mirror
    Physics 41- Lab 5 Determination of Focal Length of A Converging Lens and Mirror Objective: Apply the thin-lens equation and the mirror equation to determine the focal length of a converging (biconvex) lens and mirror. Apparatus: Biconvex glass lens, spherical concave mirror, meter ruler, optical bench, lens holder, self-illuminated object (generally a vertical arrow), screen. Background In class you have studied the physics of thin lenses and spherical mirrors. In today's lab, we will analyze several physical configurations using both biconvex lenses and concave mirrors. The components of the experiment, that is, the optics device (lens or mirror), object and image screen, will be placed on a meter stick and may be repositioned easily. The meter stick is used to determine the position of each component. For our object, we will make use of a light source with some distinguishing marking, such as an arrow or visible filament. Light from the object passes through the lens and the resulting image is focused onto a white screen. One characteristic feature of all thin lenses and concave mirrors is the focal length, f, and is defined as the image distance of an object that is positioned infinitely far way. The focal lengths of a biconvex lens and a concave mirror are shown in Figures 1 and 2, respectively. Notice the incoming light rays from the object are parallel, indicating the object is very far away. The point, C, in Figure 2 marks the center of curvature of the mirror. The distance from C to any point on the mirror is known as the radius of curvature, R.
    [Show full text]
  • How Does the Light Adjustable Lens Work? What Should I Expect in The
    How does the Light Adjustable Lens work? The unique feature of the Light Adjustable Lens is that the shape and focusing characteristics can be changed after implantation in the eye using an office-based UV light source called a Light Delivery Device or LDD. The Light Adjustable Lens itself has special particles (called macromers), which are distributed throughout the lens. When ultraviolet (UV) light from the LDD is directed to a specific area of the lens, the particles in the path of the light connect with other particles (forming polymers). The remaining unconnected particles then move to the exposed area. This movement causes a highly predictable change in the curvature of the lens. The new shape of the lens will match the prescription you selected during your eye exam. What should I expect in the period after cataract surgery? Please follow all instructions provided to you by your eye doctor and staff, including wearing of the UV-blocking glasses that will be provided to you. As with any cataract surgery, your vision may not be perfect after surgery. While your eye doctor selected the lens he or she anticipated would give you the best possible vision, it was only an estimate. Fortunately, you have selected the Light Adjustable Lens! In the next weeks, you and your eye doctor will work together to optimize your vision. Please make sure to pay close attention to your vision and be prepared to discuss preferences with your eye doctor. Why do I have to wear UV-blocking glasses? The UV-blocking glasses you are provided with protect the Light Adjustable Lens from UV light sources other than the LDD that your doctor will use to optimize your vision.
    [Show full text]
  • Holographic Optics for Thin and Lightweight Virtual Reality
    Holographic Optics for Thin and Lightweight Virtual Reality ANDREW MAIMONE, Facebook Reality Labs JUNREN WANG, Facebook Reality Labs Fig. 1. Left: Photo of full color holographic display in benchtop form factor. Center: Prototype VR display in sunglasses-like form factor with display thickness of 8.9 mm. Driving electronics and light sources are external. Right: Photo of content displayed on prototype in center image. Car scenes by komba/Shutterstock. We present a class of display designs combining holographic optics, direc- small text near the limit of human visual acuity. This use case also tional backlighting, laser illumination, and polarization-based optical folding brings VR out of the home and in to work and public spaces where to achieve thin, lightweight, and high performance near-eye displays for socially acceptable sunglasses and eyeglasses form factors prevail. virtual reality. Several design alternatives are proposed, compared, and ex- VR has made good progress in the past few years, and entirely perimentally validated as prototypes. Using only thin, flat films as optical self-contained head-worn systems are now commercially available. components, we demonstrate VR displays with thicknesses of less than 9 However, current headsets still have box-like form factors and pro- mm, fields of view of over 90◦ horizontally, and form factors approach- ing sunglasses. In a benchtop form factor, we also demonstrate a full color vide only a fraction of the resolution of the human eye. Emerging display using wavelength-multiplexed holographic lenses that uses laser optical design techniques, such as polarization-based optical folding, illumination to provide a large gamut and highly saturated color.
    [Show full text]
  • Davis Vision's Contact Lens Benefits FAQ's
    Davis Vision’s Contact Lens Benefits FAQ’s for Council of Independent Colleges in Virginia Benefits Consortium, Inc. How your contact lens benefit works when you visit a Davis Vision network provider. As a Davis Vision member, you are entitled to receive contact lenses in lieu of eyeglasses during your benefit period. When you visit a Davis Vision network provider, you will first receive a comprehensive eye exam (which requires a $15 copayment) to determine the health of your eyes and the vision correction needed. If you choose to use your eyewear benefit for contacts, your eye care provider or their staff will need to further evaluate your vision care needs to prescribe the best lens options. Below is a summary of how your contact lens benefit works in the Davis Vision plan. What is the Davis Vision Contact you will have a $60 allowance after a $15 copay plus Lens Collection? 15% discount off of the balance over that amount. You will also receive a $130 allowance toward the cost of As with eyeglass frames, Davis Vision offers a special your contact lenses, plus 15% discount/1 off of the balance Collection of contact lenses to members, which over that amount. You will pay the balance remaining after greatly minimizes out-of-pocket costs. The Collection your allowance and discounts have been applied. is available only at independent network providers that also carry the Davis Vision Collection frames. Members may also choose to utilize their $130 allowance You can confirm which providers carry Davis Vision’s towards Non-Collection contacts through a provider’s own Collection by logging into the member website at supply.
    [Show full text]
  • Lecture 37: Lenses and Mirrors
    Lecture 37: Lenses and mirrors • Spherical lenses: converging, diverging • Plane mirrors • Spherical mirrors: concave, convex The animated ray diagrams were created by Dr. Alan Pringle. Terms and sign conventions for lenses and mirrors • object distance s, positive • image distance s’ , • positive if image is on side of outgoing light, i.e. same side of mirror, opposite side of lens: real image • s’ negative if image is on same side of lens/behind mirror: virtual image • focal length f positive for concave mirror and converging lens negative for convex mirror and diverging lens • object height h, positive • image height h’ positive if the image is upright negative if image is inverted • magnification m= h’/h , positive if upright, negative if inverted Lens equation 1 1 1 푠′ ℎ′ + = 푚 = − = magnification 푠 푠′ 푓 푠 ℎ 푓푠 푠′ = 푠 − 푓 Converging and diverging lenses f f F F Rays refract towards optical axis Rays refract away from optical axis thicker in the thinner in the center center • there are focal points on both sides of each lens • focal length f on both sides is the same Ray diagram for converging lens Ray 1 is parallel to the axis and refracts through F. Ray 2 passes through F’ before refracting parallel to the axis. Ray 3 passes straight through the center of the lens. F I O F’ object between f and 2f: image is real, inverted, enlarged object outside of 2f: image is real, inverted, reduced object inside of f: image is virtual, upright, enlarged Ray diagram for diverging lens Ray 1 is parallel to the axis and refracts as if from F.
    [Show full text]
  • Super-Resolution Imaging by Dielectric Superlenses: Tio2 Metamaterial Superlens Versus Batio3 Superlens
    hv photonics Article Super-Resolution Imaging by Dielectric Superlenses: TiO2 Metamaterial Superlens versus BaTiO3 Superlens Rakesh Dhama, Bing Yan, Cristiano Palego and Zengbo Wang * School of Computer Science and Electronic Engineering, Bangor University, Bangor LL57 1UT, UK; [email protected] (R.D.); [email protected] (B.Y.); [email protected] (C.P.) * Correspondence: [email protected] Abstract: All-dielectric superlens made from micro and nano particles has emerged as a simple yet effective solution to label-free, super-resolution imaging. High-index BaTiO3 Glass (BTG) mi- crospheres are among the most widely used dielectric superlenses today but could potentially be replaced by a new class of TiO2 metamaterial (meta-TiO2) superlens made of TiO2 nanoparticles. In this work, we designed and fabricated TiO2 metamaterial superlens in full-sphere shape for the first time, which resembles BTG microsphere in terms of the physical shape, size, and effective refractive index. Super-resolution imaging performances were compared using the same sample, lighting, and imaging settings. The results show that TiO2 meta-superlens performs consistently better over BTG superlens in terms of imaging contrast, clarity, field of view, and resolution, which was further supported by theoretical simulation. This opens new possibilities in developing more powerful, robust, and reliable super-resolution lens and imaging systems. Keywords: super-resolution imaging; dielectric superlens; label-free imaging; titanium dioxide Citation: Dhama, R.; Yan, B.; Palego, 1. Introduction C.; Wang, Z. Super-Resolution The optical microscope is the most common imaging tool known for its simple de- Imaging by Dielectric Superlenses: sign, low cost, and great flexibility.
    [Show full text]
  • Full-Color See-Through Three-Dimensional Display Method Based on Volume Holography
    sensors Article Full-Color See-Through Three-Dimensional Display Method Based on Volume Holography Taihui Wu 1,2 , Jianshe Ma 2, Chengchen Wang 1,2, Haibei Wang 2 and Ping Su 2,* 1 Department of Precision Instrument, Tsinghua University, Beijing 100084, China; [email protected] (T.W.); [email protected] (C.W.) 2 Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; [email protected] (J.M.); [email protected] (H.W.) * Correspondence: [email protected] Abstract: We propose a full-color see-through three-dimensional (3D) display method based on volume holography. This method is based on real object interference, avoiding the device limitation of spatial light modulator (SLM). The volume holography has a slim and compact structure, which realizes 3D display through one single layer of photopolymer. We analyzed the recording mechanism of volume holographic gratings, diffraction characteristics, and influencing factors of refractive index modulation through Kogelnik’s coupled-wave theory and the monomer diffusion model of photopolymer. We built a multiplexing full-color reflective volume holographic recording optical system and conducted simultaneous exposure experiment. Under the illumination of white light, full-color 3D image can be reconstructed. Experimental results show that the average diffraction efficiency is about 53%, and the grating fringe pitch is less than 0.3 µm. The reconstructed image of volume holography has high diffraction efficiency, high resolution, strong stereo perception, and large observing angle, which provides a technical reference for augmented reality. Citation: Wu, T.; Ma, J.; Wang, C.; Keywords: holographic display; volume holography; photopolymer; augmented reality Wang, H.; Su, P.
    [Show full text]
  • Sunglasses for Pilots: Beyond the Image • Protecting a Pilots Most Important Sensory Asset • Selecting the Right Lenses • Radiation • Glare • New Materials • Frames
    Sunglasses for Pilots: Beyond the Image • Protecting a pilots most important sensory asset • Selecting the right lenses • Radiation • Glare • New materials • Frames OK-13-0170 unglasses help safeguard a pilot’s most important sensory asset – vision. A quality pair of sunglasses is essential in the cockpit environment to optimize Svisual performance. Sunglasses reduce the effects of harsh sunlight, decrease eye fatigue, and protect ocular tissues from exposure to harmful solar radiation. Additionally, they protect the pilot’s eyes from impact with objects (i.e., flying debris from a bird strike, sudden decompression, or aerobatic maneuvers). Sunglasses can also aid the dark adaptation process, which is delayed by prolonged exposure to bright sunlight. RADIATION. Radiation from the sun can damage skin and eyes when exposure is excessive or too intense. Fortunately, the Earth’s atmosphere shelters us from the more hazardous solar radiation (i.e., gamma and X-ray); however, both infrared (IR) and ultraviolet (UV) radiation are present in our environment in varying amounts. This is dependent upon factors such as the time of day and year, latitude, altitude, weather conditions, and the reflectivity of surrounding surfaces. For example, exposure Atmospheric IR energy consists of long- to UV radiation increases by approximately 5 wavelength radiation (780 – 1400 nanometers percent for every 1,000 feet of altitude. [nm], see Figure 1). The warmth felt from the sun is provided by IR radiation and is thought to be harmless to the skin and eyes at normal atmospheric exposure levels. More hazardous to human tissues is short-wavelength UV radiation. UV is divided into three bandwidths: UVA (400 – 315 nm), UVB (315 – 280 nm), and UVC (< 280 nm).1 Excessive or chronic exposure to UVA and, to a greater extent, UVB can cause sunburn, skin cancers, and is implicated in the formation of cataracts, macular degeneration, and other eye maladies.
    [Show full text]
  • Longitudinal Chromatic Aberration
    Longitudinal Chromatic Aberration Red focus Blue focus LCA Transverse Chromatic Aberration Decentered pupil Transverse Chromatic Aberration Chromatic Difference of Refraction Atchison and Smith, JOSA A, 2005 Why is LCA not really a problem? Chromatic Aberration Halos (LCA) Fringes (TCA) www.starizona.com digitaldailydose.wordpress.com Red-Green Duochrome test • If the letters on the red side stand out more, add minus power; if the letters on the green side stand out more, add plus power. • Neutrality is reached when the letters on both backgrounds appear equally distinct. Colligon-Bradley P. J Ophthalmic Nurs Technol. 1992 11(5):220-2. Transverse Chromatic Aberration Lab #7 April 15th Look at a red and blue target through a 1 mm pinhole. Move the pinhole from one edge of the pupil to the other. What happens to the red and blue images? Chromatic Difference of Magnification Chief ray Aperture stop Off axis source Abbe Number • Also known as – Refractive efficiency – nu-value –V-value –constringence Refractive efficiencies for common materials water 55.6 alcohol 60.6 ophthalmic crown glass 58.6 polycarbonate 30.0 dense flint glass 36.6 Highlite glass 31.0 BK7 64.9 Example • Given the following indices of refraction for BK7 glass (nD = 1.519; nF = 1.522; nC = 1.514) what is the refractive efficiency? • What is the chromatic aberration of a 20D thin lens made of BK7 glass? Problem • Design a 10.00 D achromatic doublet using ophthalmic crown glass and dense flint glass Carl Friedrich Gauss 1777-1855 Heinrich Seidel 1842-1906 Approximations to
    [Show full text]
  • Molecular Scale Imaging with a Smooth Superlens
    Molecular Scale Imaging with a Smooth Superlens Pratik Chaturvedi1, Wei Wu2, VJ Logeeswaran3, Zhaoning Yu2, M. Saif Islam3, S.Y. Wang2, R. Stanley Williams2, & Nicholas Fang1* 1Department of Mechanical Science & Engineering, University of Illinois at Urbana- Champaign, 1206 W. Green St., Urbana, IL 61801, USA. 2Information & Quantum Systems Lab, Hewlett-Packard Laboratories, 1501 Page Mill Rd, MS 1123, Palo Alto, CA 94304, USA. 3Department of Electrical & Computer Engineering, Kemper Hall, University of California at Davis, One Shields Ave, Davis, CA 95616, USA. * Corresponding author Email: [email protected] RECEIVED DATE Abstract We demonstrate a smooth and low loss silver (Ag) optical superlens capable of resolving features at 1/12th of the illumination wavelength with high fidelity. This is made possible by utilizing state-of-the-art nanoimprint technology and intermediate 1 wetting layer of germanium (Ge) for the growth of flat silver films with surface roughness at sub-nanometer scales. Our measurement of the resolved lines of 30nm half-pitch shows a full-width at half-maximum better than 37nm, in excellent agreement with theoretical predictions. The development of this unique optical superlens lead promise to parallel imaging and nanofabrication in a single snapshot, a feat that are not yet available with other nanoscale imaging techniques such as atomic force microscope or scanning electron microscope. λ = 380nm 250nm The resolution of optical images has historically been constrained by the wavelength of light, a well known physical law which is termed as the diffraction limit. Conventional optical imaging is only capable of focusing the propagating components from the source. The evanescent components which carry the subwavelength information exponentially decay in a medium with positive permittivity (ε), and positive permeability (µ) and hence, are lost before making it to the image plane.
    [Show full text]
  • Astronomical Optics 2. Fundamentals of Telescopes Designs 2.1
    Astronomical Optics 2. Fundamentals of Telescopes designs 2.1. Telescope types: refracting, reflecting OUTLINE: Shaping light into an image: first principles Telescope elements: lenses and mirrors Telescope types – refracting (lenses) – reflecting (mirrors) Keeping the image sharp on large telescopes: challenges Optical principle and notations (shown here with lenses) Diameter = D Focal length = F F ratio = F/D δ Focal plane Pupil plane = aperture stop (usually) F gives the plate scale at the focal plane (ratio between physical dimension in focal plane and angle on the sky): δ = angle x F F/D gives physical size of diffraction limit at the focal plane = (F/D) λ Afocal telescope (= beam reducer) Instrument Pupil plane Focal plane Pupil plane (exit pupil) Shaping light into an image: first principles A telescope must bend or reflect light rays to make them converge to a small (ideally smaller that the atmospheric seeing size for ground telescopes) zone in the focal plane At optical/nearIR wavelengths, this is done with mirrors or lenses • choice of materials is important for lenses and mirrors • coatings (especially for mirrors) are essential to the telescope performance • optical surfaces of mirrors and lenses must be accurately controlled At longer wavelength (radio), metal panels or grid can be used At shorter wavelength (X ray, Gamma ray), materials are poorly reflecive (see next slide) The telescope must satisfy the previous requirement over a finite field of view with high throughput Field of view + good image quality → telescope designs
    [Show full text]
  • 1 Laboratory 11 Geometrical Optics Ii: Lenses and Images
    LABORATORY 11 GEOMETRICAL OPTICS II: LENSES AND IMAGES Objectives To be able to explain the concepts of focal point and focal length To be able to explain image formation by a thin lens To be able to explain image formation by a pinhole To be able to determine the focal length by measurement and by calculation To be able to explain the concept of parallel rays To be able to explain the concepts of real image and virtual image To be able to explain the concept of magnification To be able to calculate the magnification To be able to explain the differences between different types of lenses To be able to draw and use ray diagrams To be able to discuss how the object distance, image distance and focal length are related To be able to use the thin lens equation to solve problems Overview: In this lab we will explore image formation by lenses. We will examine real and virtual images, upright and inverted images, the concepts of focal point and focal length for both converging and diverging lenses, discuss ray diagrams and verify the thin lens equation. Equipment: 1 optical bench 1 20cm lens 1 Pasco Light source 1 screen Exploration 1: Image Formation Exploraton 1.1 Take the pre-test for this lab. 1 Exploration 1.2 a. On the optical bench, start with the light source approximately 90cm away from the screen. Place the lens in between the light source and the screen, so that a clear image of the source appears on the screen. Remove the lens.
    [Show full text]