New Morphostructural Subdivision of the Western Carpathians: an Approach Integrating Geodynamics Into Targeted Morphometric Analysis
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Understanding Mediterranean Tectonics to Recognise Earthquake-Prone Zones
Understanding Mediterranean Tectonics to Recognise Earthquake-prone Zones Professor Enzo Mantovani UNDERSTANDING MEDITERRANEAN TECTONICS TO RECOGNISE EARTHQUAKE-PRONE ZONES Precisely predicting when earthquakes will happen is still a distant goal. However, local authorities could reduce the damage caused by such disasters if scientists could identify zones that are most likely to be affected by earthquakes. Gaining this information requires an in-depth knowledge of the ongoing tectonic situation in a given area. In the Mediterranean region, this knowledge is surrounded by considerable uncertainty, as different researchers have different hypotheses to explain tectonic processes in this area. Professor Enzo Mantovani and his team at the University of Siena, Italy, propose a new geodynamic interpretation that offers a plausible explanation for all major tectonic features observed in this area. Using their hypothesis, along with the seismic history of the region, the team has recognised a connection between the short-term development of tectonic processes and the distribution of major earthquakes. Tectonic Evolution of the and Eurasian plates. However, Mediterranean since convergence mostly produces ‘compressional’ deformations, causing Over the last 30 million years, the the Earth’s crust to become thicker and tectonic and morphological situation mountains to form, some researchers in the Mediterranean region has propose that other driving forces undergone profound change. In this caused the formation of basins in the area, elongated regions of deformation Mediterranean. where the African and Eurasian tectonic plates converge – called ‘orogenic The most frequently cited hypothesis belts’ – migrated by distances of several assumes that basin formation is hundreds of kilometres and some also driven by the gravitational sinking of underwent strong distortions. -
Geological Excursion BASE-Line Earth
Geological Excursion BASE-LiNE Earth (Graz Paleozoic, Geopark Karavanke, Austria) 7.6. – 9.6. 2016 Route: 1. Day: Graz Paleozoic in the vicinity of Graz. Devonian Limestone with brachiopods. Bus transfer to Bad Eisenkappel. 2. Day: Visit of Geopark Center in Bad Eisenkappel. Walk on Hochobir (2.139 m) – Triassic carbonates. 3. Day: Bus transfer to Mezica (Slo) – visit of lead and zinc mine (Triassic carbonates). Transfer back to Graz. CONTENT Route: ................................................................................................................................... 1 Graz Paleozoic ...................................................................................................................... 2 Mesozoic of Northern Karavanke .......................................................................................... 6 Linking geology between the Geoparks Carnic and Karavanke Alps across the Periadriatic Line ....................................................................................................................................... 9 I: Introduction ..................................................................................................................... 9 II. Tectonic subdivision and correlation .............................................................................10 Geodynamic evolution ...................................................................................................16 Alpine history in eight steps ...........................................................................................17 -
Boninite Volcanic Rocks from the Mélange of NW Dinaric-Vardar Ophiolite Zone (Mt
Mineralogy and Petrology https://doi.org/10.1007/s00710-018-0637-0 ORIGINAL PAPER Boninite volcanic rocks from the mélange of NW Dinaric-Vardar ophiolite zone (Mt. Medvednica, Croatia) – record of Middle to Late Jurassic arc-forearc system in the Tethyan subduction factory Damir Slovenec1 & Branimir Šegvić2 Received: 13 September 2017 /Accepted: 17 September 2018 # Springer-Verlag GmbH Austria, part of Springer Nature 2018 Abstract In the Late Jurassic to Early Cretaceous ophiolite mélange from the Mt. Medvednica (Vardar Ocean) blocks of boninite rocks have been documented. They emerge as massive lavas made of augite, spinel, albite and secondary hydrous silicates (e.g., chlorite, epidote, prehnite, and pumpellyite). An established crystallization sequence (spinel→clinopyroxene→plagioclase ±Fe-Ti oxides) was found to be typical for the boninite series from the suprasubduction zones (SSZ). Augite crystallization temperatures and low pressures of ~1048 to 1260 °C and ~0.24 to 0.77 GPa, respectively, delineated the SSZ mantle wedge as a plausible source of boninite parental lavas. Their whole-rock geochemistry is characterised by low Ti, P2O5, Zr, Y, high-silica, and high Mg# and Cr# values. Low and U-shaped REE profiles are consistent with the negative Nb-Ta, P and Ti anomalies indicative for SSZ. Thorium and LILE enrichment, and very low initial Nd-isotopic values (εNd(T = 150 Ma) +0.49to+1.27)actas vestiges of mantle-wedge metasomatism. The mantle source was likely depleted by the MORB and IAT melt extraction and was contemporaneously affected by subduction fluids, prior to the large-scale adiabatic melting of the mantle hanging wall. -
Numbers and Distribution
Numbers and distribution The brown bear used to occur throughout the whole Europe. In the beginning of XIX century its range in Poland had already contracted and was limited to the Carpathians, the Białowieża Forest, the currently non-existent Łódzka Forest and to Kielce region (Jakubiec and Buchalczyk 1987). After World War I bears occurred only in the Eastern Carpathians. In the 1950’ the brown bears was found only in the Tatra Mountains and the Bieszczady Mountains and its population size was estimated at 10-14 individuals only (Buchalczyk 1980). In the following years a slow population increase was observed in the Polish Carpathians. Currently the brown bear’s range in Poland is limited to the Carpathians and stretches along the Polish-Slovak border. Occasional observations are made in the Sudetes where one migrating individual was recorded in the 1990’ (Jakubiec 1995). The total range of the brown bear in Poland is estimated at 5400-6500 km2. The area available for bears based on the predicative model for the habitat is much larger and may reach 68 700km2 (within which approx. 29000 km2 offers suitable breeding sites) (Fernández et al. 2012). Currently experts estimate the numbers of bears in Poland at merely 95 individuals. There are 3 main area of bear occurrence: 1. the Bieszczady Mountains, the Low Beskids, The Sącz Beskids and the Gorce Mountains, 2. the Tatra Mountains, 3. the Silesian Beskids and the Żywiec Beskids. It must be noted, however, that bears only breed in the Bieszczady Mountains, the Tatra Mountains and in the Żywiec Beskids. Poland is the north limit range of the Carpathian population (Swenson et al. -
Introduction the Genus Aconitum L. (Ranunculaceae Juss.) Is an Interesting Taxonomical Group Which Is Characterized by High Leve
Modern Phytomorphology 9 (Suppl.): 35–73, 2016 SOME NOTES ON THE GENUS ACONITUM IN CHORNOHOra MTS. Andrew V. Novikoff 1*, Józef Mitka 2, Alexander Kuzyarin 1, Oleg Orlov 1, Marina Ragulina 1 Abstract. The paper is a contribution to ecology and chorology ofAconitum in high-mountain zone of the Ukrainian Carpathians. It was confirmed that genusAconitum in the Chornogora mountain range is represented by 14 taxa, and 7 more taxa were listed as potential for this region. These taxa belong to 3 subgenera and are divided on 4 main biomorphological groups delimited on the base of their habitat, life form, ecology and altitudinal distribution. The soil and vegetation types for all taxa have been identified and the maps of their distribution have been prepared. The most influent threats and their categories were identified. Threat category for A. × nanum was changed from DD to VU, and for A. firmum subsp. fussianum from NT to VU. Key words: Aconitum, Chornogora, sozology, ecology, chorology, soils, vegetation 1 State Natural History Museum NAS of Ukraine, Teatralna str. 18, 79008 Lviv, Ukraine; * [email protected] 2 Institute of Botany of Jagiellonian University, Botanical Garden, Jagiellonian University, Kopernika 27, 31-501 Kraków, Poland; [email protected] Introduction (19 confirmed + 3 unconfirmedAconitum taxa) 9 species and subspecies are listed as clearly The genusAconitum L. (Ranunculaceae endemic or subendemic and 2 more hybrid Juss.) is an interesting taxonomical group which subspecies are considered as probably endemic is characterized by high level of morphological (Novikoff & Hurdu 2015). From other side, diversity, presence of a number of subspecific if we consider all forms and varieties then we taxa, and high number of both infra- and can tell about 17 subendemic and endemic taxa interspecific natural hybrids Gáyer( 1922; in general. -
Settlement History and Sustainability in the Carpathians in the Eighteenth and Nineteenth Centuries
Munich Personal RePEc Archive Settlement history and sustainability in the Carpathians in the eighteenth and nineteenth centuries Turnock, David Geography Department, The University, Leicester 21 June 2005 Online at https://mpra.ub.uni-muenchen.de/26955/ MPRA Paper No. 26955, posted 24 Nov 2010 20:24 UTC Review of Historical Geography and Toponomastics, vol. I, no.1, 2006, pp 31-60 SETTLEMENT HISTORY AND SUSTAINABILITY IN THE CARPATHIANS IN THE EIGHTEENTH AND NINETEENTH CENTURIES David TURNOCK* ∗ Geography Department, The University Leicester LE1 7RH, U.K. Abstract: As part of a historical study of the Carpathian ecoregion, to identify salient features of the changing human geography, this paper deals with the 18th and 19th centuries when there was a large measure political unity arising from the expansion of the Habsburg Empire. In addition to a growth of population, economic expansion - particularly in the railway age - greatly increased pressure on resources: evident through peasant colonisation of high mountain surfaces (as in the Apuseni Mountains) as well as industrial growth most evident in a number of metallurgical centres and the logging activity following the railway alignments through spruce-fir forests. Spa tourism is examined and particular reference is made to the pastoral economy of the Sibiu area nourished by long-wave transhumance until more stringent frontier controls gave rise to a measure of diversification and resettlement. It is evident that ecological risk increased, with some awareness of the need for conservation, although substantial innovations did not occur until after the First World War Rezumat: Ca parte componentă a unui studiu asupra ecoregiunii carpatice, pentru a identifica unele caracteristici privitoare la transformările din domeniul geografiei umane, acest articol se referă la secolele XVIII şi XIX când au existat măsuri politice unitare ale unui Imperiu Habsburgic aflat în expansiune. -
(1957) : Vertical Distribution of World Population
POLISH ACADEMY OF SCIENCES INSTITUTE OF GEOGRAPHY GEOGRAPHICAL STUDIES No 14 JOZEF STASZEWSK1 i l r / VERTICAL DISTRIBUTION OF WORLD POPULATION WARSAW 19 5 7 STATE SCIENTIFIC PUBLISHING HOUSE http://rcin.org.pl POLISH ACADEMY OF SCIENCES INSTITUTE OF GEOGRAPHY * GEOGRAPHICAL STUDIES No 14 http://rcin.org.pl ГЕОГРАФИЧЕСКИЕ ТРУДЫ No 14 ЮЗЕФ СТАШЕВСКИ ВЕРТИКАЛЬНОЕ РАЗМЕЩЕНИЕ НАСЕЛЕНИЯ ЗЕМНОГО ШАРА * PRACE GEOGRAFICZNE No 14 JÓZEF STASZEWSKI PIONOWE ROZMIESZCZENIE LUDNOŚCI NA KULI ZIEMSKIEJ http://rcin.org.pl POLISH ACADEMY OF SCIENCES INSTITUTE OF GEOGRAPHY GEOGRAPHICAL STUDIES No 14 JOZEF STASZEWSKI VERTICAL DISTRIBUTION OF WORLD POPULATION WARSAW 1957 STATE SCIENTIFIC PUBLISHING HOUSE http://rcin.org.pl Editorial Committee Editor-in-Chief: S. LESZCZYCKI Members R. GALON. M. KLIMASZEWSKI, J. KOSTROWICKI, B. OLSZEWICZ, A. WRZOSEK Secretary to the Editorial Committee: A. PUFFOWA Editorial Council J. BARBAG, J. CZYŻEWSKI, J. DYLIK, K. DZIEWOŃSKI, R. GALON, M. KLIMASZEWSKI, J. KONDRACKI, J. KOS- TROWICKI, S. LESZCZYCKI, A. MALICKI, B. OLSZEWICZ, J. WĄSOWICZ, M.KIEŁCZEWSKA-ZALESKA, A. ZIERHOFFER Editor of this Volume M. KIEŁCZEWSKA-ZALESKA http://rcin.org.pl CONTENTS I. Methods of investigations 9 II. Hypsometry of continents H III. Methods of calculating the vertical distribution of population .... 14 IV. Vertical distribution of population by six levels selected 17 1. Survey of distribution throughout the world 17 2. European countries 24 3. The Soviet Union 51 4. Certain countries of Asia 56 5. Certain countries of Africa 68 6. North America "4 7. South America • 79 8. Australia 85 9. Vertical distribution of large towns on the Globe 87 V. Conclusion 90 General Tables 91 References 101 Summary in Polish 105 Summary in Russian 199 List of Tables H3 http://rcin.org.pl http://rcin.org.pl To the memory of my dear wife Julia http://rcin.org.pl http://rcin.org.pl I. -
Technical Report 08-05 Skb-Tr-98-05
SE9900011 TECHNICAL REPORT 08-05 SKB-TR-98-05 The Very Deep Hole Concept - Geoscientific appraisal of conditions at great depth C Juhlin1, T Wallroth2, J Smellie3, T Eliasson4, C Ljunggren5, B Leijon3, J Beswick6 1 Christopher Juhlin Consulting 2 Bergab Consulting Geologists 3 ConterraAB 4 Geological Survey of Sweden 5 Vattenfall Hydropower AB 6 EDECO Petroleum Services Ltd June 1998 30- 07 SVENSK KARNBRANSLEHANTERING AB SWEDISH NUCLEAR FUEL AND WASTE MANAGEMENT CO P.O.BOX 5864 S-102 40 STOCKHOLM SWEDEN PHONE +46 8 459 84 00 FAX+46 8 661 57 19 THE VERY DEEP HOLE CONCEPT • GEOSCIENTIFIC APPRAISAL OF CONDITIONS AT GREAT DEPTH CJuhlin1, T Wai froth2, J Smeflie3, TEIiasson4, C Ljunggren5, B Leijon3, J Beswick6 1 Christopher Juhlin Consulting 2 Bergab Consulting Geologists 3 Conterra AB 4 Geological Survey of Sweden 5 Vattenfall Hydropower AB 6 EDECO Petroleum Services Ltd. June 1998 This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the author(s) and do not necessarily coincide with those of the client. Information on SKB technical reports froml 977-1978 (TR 121), 1979 (TR 79-28), 1980 (TR 80-26), 1981 (TR 81-17), 1982 (TR 82-28), 1983 (TR 83-77), 1984 (TR 85-01), 1985 (TR 85-20), 1986 (TR 86-31), 1987 (TR 87-33), 1988 (TR 88-32), 1989 (TR 89-40), 1990 (TR 90-46), 1991 (TR 91-64), 1992 (TR 92-46), 1993 (TR 93-34), 1994 (TR 94-33), 1995 (TR 95-37) and 1996 (TR 96-25) is available through SKB. -
3D Modeling of a Geothermal Reservoir in the Central Part of Kosice Basin in Eastern Slovakia
3D Modeling of a Geothermal Reservoir in the Central Part of Kosice Basin in Eastern Slovakia Subtitle Katarína Kamenská 3D MODELING OF A GEOTHERMAL RESERVOIR IN THE CENTRAL PART OF KOSICE BASIN IN EASTERN SLOVAKIA Katarína Kamenská A 30 credit units Master’s thesis Supervisors: Dr. Stanislav Jacko Dr. Hrefna Kristmannsdottir Dr. Axel Björnsson A Master’s thesis done at RES │ the School for Renewable Energy Science in affiliation with University of Iceland & the University of Akureyri Akureyri, February 2009 3D Modeling of a Geothermal Reservoir in the Central Part of Kosice Basin in Eastern Slovakia A 30 credit units Master’s thesis © Katarína Kamenská, 2009 RES │ the School for Renewable Energy Science Solborg at Nordurslod IS600 Akureyri, Iceland telephone: + 354 464 0100 www.res.is Printed in 14/05/2009 at Stell Printing in Akureyri, Iceland ABSTRACT The question of energy needed for enhancing human comfort has recently become very popular and geothermal energy, as one of the most promising renewable energy sources, has started to be utilized not only for recreation purposes, but also for heating and probably electricity generation in Slovakia. Slovakia is a country which has proper geological conditions for geothermal source occurrence. Kosice Basin seems to be the most prospective geothermal area – the reservoir rocks are Middle Triassic dolomites with fissure karstic permeability and basal Karpathian clastic rocks at the depth of 2100 – 2600 m, with an average temperature around 135 °C. Seismic data from the central part of Kosice basin enabled the demonstration of position, spatial distribution, morphology and tectonic structure of reservoir rocks and their Neogene overlier as an insulator. -
Kinematics and Extent of the Piemont-Liguria Basin
https://doi.org/10.5194/se-2020-161 Preprint. Discussion started: 8 October 2020 c Author(s) 2020. CC BY 4.0 License. Kinematics and extent of the Piemont-Liguria Basin – implications for subduction processes in the Alps Eline Le Breton1, Sascha Brune2,3, Kamil Ustaszewski4, Sabin Zahirovic5, Maria Seton5, R. Dietmar Müller5 5 1Department of Earth Sciences, Freie Universität Berlin, Germany 2Geodynamic Modelling Section, German Research Centre for Geosciences, GFZ Potsdam, Germany 3Institute of Geosciences, University of Potsdam, Potsdam, Germany 4Institute for Geological Sciences, Friedrich-Schiller-Universität Jena, Germany 10 5EarthByte Group, School of Geosciences, The University of Sydney, NSW 2006, Australia Correspondence to: Eline Le Breton ([email protected]) Abstract. Assessing the size of a former ocean, of which only remnants are found in mountain belts, is challenging but crucial to understand subduction and exhumation processes. Here we present new constraints on the opening and width of the Piemont- Liguria (PL) Ocean, known as the Alpine Tethys together with the Valais Basin. We use a regional tectonic reconstruction of 15 the Western Mediterranean-Alpine area, implemented into a global plate motion model with lithospheric deformation, and 2D thermo-mechanical modelling of the rifting phase to test our kinematic reconstructions for geodynamic consistency. Our model fits well with independent datasets (i.e. ages of syn-rift sediments, rift-related fault activity and mafic rocks) and shows that the PL Basin opened in four stages: (1) Rifting of the proximal continental margin in Early Jurassic (200-180 Ma), (2) Hyper- extension of the distal margin in Early-Middle Jurassic (180-165 Ma), (3) Ocean-Continent Transition (OCT) formation with 20 mantle exhumation and MORB-type magmatism in Middle-Late Jurassic (165-154 Ma), (4) Break-up and “mature” oceanic spreading mostly in Late Jurassic (154-145 Ma). -
Flood Environmental Impact Risk Analysis
Urban Water Systems & Floods III 3 FLOOD ENVIRONMENTAL IMPACT RISK ANALYSIS MARTINA ZELEŇÁKOVÁ1, MÁRIA ŠUGAREKOVÁ1 & PETER MÉSÁROŠ2 1Department of Environmental Engineering, Technical University of Košice, Slovakia 2Department of Construction Technology and Management, Technical University of Košice, Slovakia ABSTRACT The aim of this paper is to determine the degree of threat in the floodplain of the Hornád river basin and to propose measures that can be used in practice at the time of the flood. The methodology is based on the principle of FEIRA (Flood Environmental Impact Risk Analysis), where the probability and consequence of the negative impact of floods on environmental components is determined on the basis of the analysis of selected stressors. From these indicators, the degree of risk in the Hornád river basin in the event of a flood is subsequently determined. Since there are several industrial sites in the solved area, which can cause extensive pollution of watercourses in case of floods, the work also presents the calculation of the threat according to the point evaluation of pollution sources. The combination of the FEIRA process and the proposed methodology for the assessment of flood environmental damage determined the overall risk of environmental damage due to floods in the Hornád catchment area. This paper is a proposal for measures to protect against floods in the area in case of floods. Keywords: flood, environmental impact analysis, risk analysis, Hornád river basin. 1 INTRODUCTION A wide range of models and case studies are used to assess flood risks. However, internationally, these models have significant economic differences. The authors Jongman et al. -
Univerzita Palackého V Olomouci
PALACKÝ UNIVERSITY IN OLOMOUC Faculty of Science Department of Ecology and Environmental Sciences Terrestrial isopods in the Western Carpathians Jana Štrichelová A thesis submitted to the Department of Ecology and Environmental Sciences, Faculty of Science, Palacky University, for the degree of Master of Science Supervisor: RNDr. & Mgr. Ivan H. Tuf, Ph.D. Olomouc 2010 © Jana Štrichelová, 2010 ii Štrichelová, J.: Suchozemské rovnakonôţky Západných Karpát. Diplomová práca. Katedra ekologie a ţivotního prostředí PřF UP v Olomouci, 37 strán, anglicky Abstrakt Predloţená diplomová práca sa skladá z dvoch samostatných manuskriptov, pričom obidva pojednávajú o suchozemských rovnakonôţkach v Západných Karpatoch. Prvý manuskript sa zaoberá spoločenstvami suchozemských rovnakonoţiek Bílých Karpát, s ohľadom na ich rozšírenie v Západných Karpatoch. Výskum prebiehal na 26 lokalitách (lesné, lúčne aj zmiešané biotopy) a študovaní ţivočíchovia boli získavaní v období rokov 2003 aţ 2009 pomocou 4 metód odchytu: zemné pasce, tepelná extrakcia pôdnych vzoriek, tepelná extrakcia priesevov opadu a individuálny zber. Celkovo bolo zaznamenaných 16 druhov a boli nájdené bohaté spoločenstvá (7-10 druhov na polovici lokalít). Medzi spoločenstvami obývajúcimi lesy a spoločenstvami lúk a pastvín existujú rozdiely. Armadillidium vulgare a Trachelipus rathkii prevládali na lúkach a pastvinách, zatiaľčo Protracheoniscus politus a Ligidium hypnorum dominovali v lesoch. Najzaujímavejšími faunistickými výsledkami boli nálezy 2 reliktných druhov a to karpatský endemit Hyloniscus mariae a Ligidium germanicum, ktorý má v Českej Republike len ploškovité rozšírenie. V druhom manuskripte sa pojednáva o spoločenstvách suchozemských rovnakonoţiek v dubovo-hrabových lesoch na území Bratislavy. Ţivočíchovia boli zbieraní pomocou metódy priesevu opadu v rokoch 1999, 2000, 2005 a 2006 na 8 lokalitách, pričom väčšina lokaliít prináleţí Malých Karpatom.