Iron Overload in Sub-Saharan Africa: to What Extent Is It a Public Health Problem?

Total Page:16

File Type:pdf, Size:1020Kb

Iron Overload in Sub-Saharan Africa: to What Extent Is It a Public Health Problem? Downloaded from British Journal of Nutrition (1999), 81, 427–434 427 https://www.cambridge.org/core Review article Iron overload in Sub-Saharan Africa: to what extent is it a public health problem? . IP address: 170.106.35.229 Alexander R. P. Walker1* and Isidor Segal2 1Human Biochemistry Research Unit, Department of Tropical Diseases, School of Pathology of the University of the Witwatersrand, and the South African Institute for Medical Research, Johannesburg, South Africa 2Gastroenterology Unit, Department of Medicine, Baragwanath Hospital and the University of the Witwatersrand, , on Johannesburg 2000, South Africa 26 Sep 2021 at 20:14:55 (Received 6 October 1997 – Revised 19 October 1998 – Accepted 7 January 1999) Excessive deposition of Fe in the organs and tissues of Sub-Saharan Africans was first described , subject to the Cambridge Core terms of use, available at in South Africa in 1929. Fe overload, or siderosis, was initially attributed to infections and to metallic poisoning (Cu, Sn, Zn), and then to malnutrition. In 1953 it was hypothesized that it was due primarily to excessive Fe intake derived from foods and drinks prepared in Fe vessels. Recently, in 1992 it was advanced that a gene distinct from any HLA-linked locus may also play a role. As to sequelae, in early research on series of hospital patients, the condition was linked to scurvy, osteoporosis, diabetes, cirrhosis, and latterly, to hepatocellular cancer and tuberculosis. Accordingly, many have concluded that Fe overload is responsible for considerable morbidity and mortality, that adventitious Fe intake should be reduced, and that phlebotomy be recom- mended for those severely affected. However, there are numerous limitations in the evidence. There are also problems in interpretation, since levels of Fe in the serum are affected additionally by a variety of factors: infection, inflammation, certain cancers and alcohol intake. These considerations complicate attempts to assess to what extent the associations described denote causation, and whether Fe overload has significant ramifications for ill in the general African population. While the adverse sequelae of overload may be less of significance than many believe, the precise pathogenicity of the phenomenon will remain uncertain until further investigations, including prospective studies, are undertaken. https://www.cambridge.org/core/terms Iron overload: Africa: Cirrhosis: Hepatocellular carcinoma ‘The first key to wisdom is assiduous and frequent public health problem. It is proposed, first to describe the questioning . For by doubting we come to inquiry, and by condition, then discuss its causation, its pathogenicity, inquiry we arrive at truth.’ Peter Abelard, 12th Century complicating factors, and subsequently, the need for further research. Fe overload in Africans in South Africa was first described . https://doi.org/10.1017/S000711459900077X by Strachan (1929). It is now believed that it results primarily from excessive intake of dietary Fe in a highly Iron overload in Sub-Saharan Africans bioavailable form (Walker & Arvidsson, 1953; Bothwell Early observations et al. 1964). Recently, it has been put forward that the overload in part may be genetically determined, and accord- As mentioned, Fe overload in Africans in South Africa was ingly is the result of the combined effects of environmental first described by Strachan (1929) in Johannesburg, in a and host factors (Gordeuk et al. 1992; Moyo et al. 1998). thesis entitled ‘Haemosiderosis and haemochromatosis in However, numerous questions remain unanswered. South African natives with a comment on the aetiology of In the present contribution, the aim is to seek to learn haemochromatosis’. The dissertation was based on a of the extent to which Fe overload in Africans presents a necropsy study of 876 individuals from several parts of Abbreviations: HBV, hepatitis B virus; HCC, hepatocellular carcinoma; HCV, hepatitis C virus. * Corresponding author: Dr A. R. P. Walker, fax +27 11 489 9001, email [email protected] Downloaded from 428 A. R. P. Walker and I. Segal https://www.cambridge.org/core southern and central Africa, who died in Johannesburg indicated that extremely high concentrations of Fe were between 1925 and 1928. Strachan concluded that ‘haemo- common; thus 15 % of bodies had concentrations exceeding chromatosis’ is a not uncommon disease in regional groups 10 g Fe/kg DM, i.e. about thirty times the proportion of African natives. In his view, the chief incriminating normally present. However, there appeared to be no clear- factor appeared to be the diet. The development of the cut correlation between Fe concentration, and ash and Ca complete picture of bronzed diabetes depended on the concentrations, reckoned on either percentage or volume degree of deposition of the pigment and of its rate of basis. It was therefore concluded that severe siderosis in deposition. He noted that in mild cases pigmentation alone vertebral bodies is not necessarily associated with low . IP address: may occur (as seen in younger Africans), but in slightly mineral density. more severe cases, cirrhosis may develop. Strachan con- In a study made on a random group of 100 African sidered Cu, Sn, or Zn, to be the probable aetiological factor. patients with diabetes, seven showed moderate siderosis Later, Gillman & Gillman (1947, 1951) also in South together with portal fibrosis (Seftel et al. 1961). 170.106.35.229 Africa, maintained that malnutrition and pellagra cause hepatic damage, with deposition of haemosiderin in the Later clinical and pathological observations liver cells (cytosiderosis); later, this is followed by the excretion of Fe in the bile, with consequent reabsorption Investigations have been made on series of patients and , on and widespread Fe deposition (siderosis). However, controls from a number of hospitals in Northern Province 26 Sep 2021 at 20:14:55 Higginson et al. (1953) from their post-mortem findings, and Mpumulanga, South Africa (Friedman et al. 1990). noted Fe deposition to be widespread in the reticulo- Levels of serum ferritin indicated diverse degrees of Fe endothelial system from the beginning, and the need for overload. In one group of patients, the majority of liver division into two stages was doubted. It was considered biopsies undertaken revealed heavy siderosis, associated unwise to isolate changes in the liver from those occurring with varying degrees of hepatic damage, namely fibrosis, in the rest of the body. It was argued that were Fe cirrhosis and hepatocellular carcinoma (HCC). Hepatitis B , subject to the Cambridge Core terms of use, available at deposition a feature of pellagra, an approximately similar virus (HBV) infection rate was found to be high, approxi- histologic picture would be expected in all cases of acute mately 70 % in both patients and controls in the same pellagra on admission to hospital, if the metabolic community. In terms of responsibility for HCC, the com- processes involved were similar in each. This was not plexity of the situation is such that as many as 80 % of cases reported by Gillman & Gillman (1951), nor was it the have been attributed to chronic HBV infection (Zhou et al. experience of Higginson et al. (1953). The latter noted 1987; Kew, 1995). The possible interaction of HBV with that liver biopsies from patients suffering from many hepatitis C virus (HCV) remains uncertain (Kew, 1994). different diseases showed the same range of histological According to this author, additional risk factors may include pattern of Fe deposition. aflatoxin, alcohol consumption and smoking. For example, In the study just mentioned (Higginson et al. 1953), an in 50 % of a large series of patients with HCC studied examination was made of forty-four necropsies of Africans at Baragwanath Hospital, Soweto, Johannesburg, South who represented cases of Fe overload of varying severity. Africa, a high consumption of alcohol was implicated Deposition of the element was found in the liver, spleen, (Paterson et al. 1985). heart, kidney and pancreas. Whereas normal Fe concentra- As regards Fe overload being a risk factor for HCC, a tions in liver and spleen averaged 0⋅7 and 1⋅4 g/kg respec- number of reports have provided potentially supportive https://www.cambridge.org/core/terms tively, they averaged 8 and 22 g/kg in the presence of data. At Baragwanath Hospital, in a study of tumour moderate siderosis, and 30 and 43 g/kg with severe side- morphology conducted on ninety patients of rural and rosis. Maximal concentrations of Fe in the liver and spleen urban origins, Fe content was graded in liver tissue; the were 55 and 105 g/kg DM respectively. Corresponding prevalence of severe hepatic Fe overload was 33⋅2% concentrations in haemochromatosis have been reported as (Paterson et al. 1985). This proportion was much higher 36 and 6 g/kg DM (Sheldon, 1935). From this small series of than the proportion with Fe overload (liver Fe concentration necropsies undertaken in Africans it was concluded that $ 10 g/kg DM), namely, 24⋅6 %, found in a necropsy series there was no constant correlation between the degree of of Africans dying from all causes at the same institution fibrosis and the amount of Fe pigment in the liver. Cases of (MacPhail et al. 1979). In a recent rural-based study made in . severe Fe deposition were seen without cirrhosis and vice Eastern Province, South Africa, 203 biopsy specimens of https://doi.org/10.1017/S000711459900077X versa. Later studies, however, undertaken in the 1960s, liver tissue from 246 African
Recommended publications
  • Primary Liver Cancer: Epidemiological And
    PRIMARY LIVER CANCER: EPIDEMIOLOGICAL AND BIOMARKER DISCOVERY STUDIES Nimzing Gwamzhi Ladep Imperial College London Department of Medicine December 2013 Thesis submitted for Doctor of Philosophy 1 THESIS ABSTRACT With previous reports indicating changes in mortality, risk factors and management of primary liver cancer (PLC), evaluation of current trends in the incidence and mortality rates was indicated. Late diagnosis has been implicated to be a major contributor to the high fatality rates of PLC. This work aimed at: studying trends of PLC by subcategories globally in general, and in England and Wales, in particular; investigating liver-related morbidities of HIV infected patients in an African setting; and discovering urinary biomarkers of hepatocellular carcinoma. The World Health Organisation (WHO) and Small Area Health Statistics Unit (SAHSU) databases were interrogated respectively, in order to achieve the first aim. The second aim was achieved through utilisation of databases of an African-based HIV treatment programme- AIDS Prevention Initiative in Nigeria (APIN), located in Jos, Nigeria. The European Union-funded Prevention of Liver Fibrosis and Cancer in Africa (PROLIFICA) case-control study in three West African countries was the platform through which urinary metabolic profiling was accomplished. Proton nuclear magnetic resonance spectroscopy (NMR) and parallel ultra-performance liquid chromatography mass spectrometry (UPLC-MS) were used for biomarker discovery studies. Mortality rates of intrahepatic bile duct carcinoma (IHBD) increased in all countries that were studied. Misclassification of hilar cholangiocarcinoma accounted for only a small increase in the rate of IHBD in England and Wales. With over 90% screening rate for viral hepatitides, the rates of hepatitis B (HBV), hepatitis C (HCV) and 2 HBV/HCV in HIV-infected patients in the APIN programme were 17.8%, 11.3% and 2.5% respectively.
    [Show full text]
  • Nutrient Deficiency and Drug Induced Cardiac Injury and Dysfunction
    Editorial Preface to Hearts Special Issue “Nutrient Deficiency and Drug Induced Cardiac Injury and Dysfunction” I. Tong Mak * and Jay H. Kramer * Department of Biochemistry and Molecular Medicine, The George Washington University Medical Center, Washington DC, WA 20037, USA * Correspondence: [email protected] (I.T.M.); [email protected] (J.H.K.) Received: 30 October 2020; Accepted: 1 November 2020; Published: 3 November 2020 Keywords: cardiac injury/contractile dysfunction; micronutrient deficiency; macromineral deficiency or imbalance; impact by cardiovascular and/or anti-cancer drugs; systemic inflammation; oxidative/nitrosative stress; antioxidant defenses; supplement and/or pathway interventions Cardiac injury manifested as either systolic or diastolic dysfunction is considered an important preceding stage that leads to or is associated with eventual heart failure (HF). Due to shifts in global age distribution, as well as general population growth, HF is the most rapidly growing public health issue, with an estimated prevalence of approximately 38 million individuals globally, and it is associated with considerably high mortality, morbidity, and hospitalization rates [1]. According to the US Center for Disease Control and The American Heart Association, there were approximately 6.2 million adults suffering from heart failure in the United States from 2013 to 2016, and heart failure was listed on nearly 380,000 death certificates in 2018 [2]. Left ventricular systolic heart failure means that the heart is not contracting well during heartbeats, whereas left ventricular diastolic failure indicates the heart is not able to relax normally between beats. Both types of left-sided heart failure may lead to right-sided failure. There have been an increasing number of studies recognizing that the deficiency and/or imbalance of certain essential micronutrients, vitamins, and macrominerals may be involved in the pathogenesis of cardiomyopathy/cardiac injury/contractile dysfunction.
    [Show full text]
  • Secondary Hemochromatosis As a Result of Acute Transfusion-Induced Iron Overload in a Burn Patient Michael Amatto1 and Hernish Acharya2*
    Amatto and Acharya Burns & Trauma (2016) 4:10 DOI 10.1186/s41038-016-0034-z CASE REPORT Open Access Secondary hemochromatosis as a result of acute transfusion-induced iron overload in a burn patient Michael Amatto1 and Hernish Acharya2* Abstract Background: Red blood cell transfusions are critical in burn management. The subsequent iron overload that can occur from this treatment can lead to secondary hemochromatosis with multi-organ damage. Case Presentation: While well recognized in patients receiving chronic transfusions, we present a case outlining the acute development of hemochromatosis secondary to multiple transfusions in a burn patient. Conclusions: Simple screening laboratory measures and treatment options exist which may significantly reduce morbidity; thus, we believe awareness of secondary hemochromatosis in those treating burn patients is critical. Keywords: Secondary hemochromatosis, Transfusion, Iron overload, Burn patients Background of parental iron or RBC transfusions, neonatal iron over- Acute and chronic treatment of the severely burned indi- load, aceruloplasminemia, and African iron overload [6, 7]. vidual is often complex due to many physical and psycho- Hemochromatosis is a disease characterized by iron logical factors [1, 2]. Resuscitation involving packed red accumulation in tissues. Initial symptoms and signs in- blood cell (RBC) transfusion is often essential [3]. How- clude skin pigmentation, fatigue, erectile dysfunction, ever, RBC transfusion carries potential risks including and arthralgia while later stages of the disease result in hemolytic reactions and infections, as well as other com- cardiomyopathy, diabetes mellitus, hypogonadism, hypo- plications that are often overlooked such as iron overload pituitarism, and hypoparathyroidism, as well as liver fi- [4, 5]. Each unit of RBCs contains 200–250 mg of iron, brosis and cirrhosis which can lead to hepatocellular and with no physiologic excretion mechanism, multiple carcinoma [6].
    [Show full text]
  • Orphanet Report Series Rare Diseases Collection
    Marche des Maladies Rares – Alliance Maladies Rares Orphanet Report Series Rare Diseases collection DecemberOctober 2013 2009 List of rare diseases and synonyms Listed in alphabetical order www.orpha.net 20102206 Rare diseases listed in alphabetical order ORPHA ORPHA ORPHA Disease name Disease name Disease name Number Number Number 289157 1-alpha-hydroxylase deficiency 309127 3-hydroxyacyl-CoA dehydrogenase 228384 5q14.3 microdeletion syndrome deficiency 293948 1p21.3 microdeletion syndrome 314655 5q31.3 microdeletion syndrome 939 3-hydroxyisobutyric aciduria 1606 1p36 deletion syndrome 228415 5q35 microduplication syndrome 2616 3M syndrome 250989 1q21.1 microdeletion syndrome 96125 6p subtelomeric deletion syndrome 2616 3-M syndrome 250994 1q21.1 microduplication syndrome 251046 6p22 microdeletion syndrome 293843 3MC syndrome 250999 1q41q42 microdeletion syndrome 96125 6p25 microdeletion syndrome 6 3-methylcrotonylglycinuria 250999 1q41-q42 microdeletion syndrome 99135 6-phosphogluconate dehydrogenase 67046 3-methylglutaconic aciduria type 1 deficiency 238769 1q44 microdeletion syndrome 111 3-methylglutaconic aciduria type 2 13 6-pyruvoyl-tetrahydropterin synthase 976 2,8 dihydroxyadenine urolithiasis deficiency 67047 3-methylglutaconic aciduria type 3 869 2A syndrome 75857 6q terminal deletion 67048 3-methylglutaconic aciduria type 4 79154 2-aminoadipic 2-oxoadipic aciduria 171829 6q16 deletion syndrome 66634 3-methylglutaconic aciduria type 5 19 2-hydroxyglutaric acidemia 251056 6q25 microdeletion syndrome 352328 3-methylglutaconic
    [Show full text]
  • Essential Trace Elements in Human Health: a Physician's View
    Margarita G. Skalnaya, Anatoly V. Skalny ESSENTIAL TRACE ELEMENTS IN HUMAN HEALTH: A PHYSICIAN'S VIEW Reviewers: Philippe Collery, M.D., Ph.D. Ivan V. Radysh, M.D., Ph.D., D.Sc. Tomsk Publishing House of Tomsk State University 2018 2 Essential trace elements in human health UDK 612:577.1 LBC 52.57 S66 Skalnaya Margarita G., Skalny Anatoly V. S66 Essential trace elements in human health: a physician's view. – Tomsk : Publishing House of Tomsk State University, 2018. – 224 p. ISBN 978-5-94621-683-8 Disturbances in trace element homeostasis may result in the development of pathologic states and diseases. The most characteristic patterns of a modern human being are deficiency of essential and excess of toxic trace elements. Such a deficiency frequently occurs due to insufficient trace element content in diets or increased requirements of an organism. All these changes of trace element homeostasis form an individual trace element portrait of a person. Consequently, impaired balance of every trace element should be analyzed in the view of other patterns of trace element portrait. Only personalized approach to diagnosis can meet these requirements and result in successful treatment. Effective management and timely diagnosis of trace element deficiency and toxicity may occur only in the case of adequate assessment of trace element status of every individual based on recent data on trace element metabolism. Therefore, the most recent basic data on participation of essential trace elements in physiological processes, metabolism, routes and volumes of entering to the body, relation to various diseases, medical applications with a special focus on iron (Fe), copper (Cu), manganese (Mn), zinc (Zn), selenium (Se), iodine (I), cobalt (Co), chromium, and molybdenum (Mo) are reviewed.
    [Show full text]
  • Genetic Disorder
    Genetic disorder Single gene disorder Prevalence of some single gene disorders[citation needed] A single gene disorder is the result of a single mutated gene. Disorder Prevalence (approximate) There are estimated to be over 4000 human diseases caused Autosomal dominant by single gene defects. Single gene disorders can be passed Familial hypercholesterolemia 1 in 500 on to subsequent generations in several ways. Genomic Polycystic kidney disease 1 in 1250 imprinting and uniparental disomy, however, may affect Hereditary spherocytosis 1 in 5,000 inheritance patterns. The divisions between recessive [2] Marfan syndrome 1 in 4,000 and dominant types are not "hard and fast" although the [3] Huntington disease 1 in 15,000 divisions between autosomal and X-linked types are (since Autosomal recessive the latter types are distinguished purely based on 1 in 625 the chromosomal location of Sickle cell anemia the gene). For example, (African Americans) achondroplasia is typically 1 in 2,000 considered a dominant Cystic fibrosis disorder, but children with two (Caucasians) genes for achondroplasia have a severe skeletal disorder that 1 in 3,000 Tay-Sachs disease achondroplasics could be (American Jews) viewed as carriers of. Sickle- cell anemia is also considered a Phenylketonuria 1 in 12,000 recessive condition, but heterozygous carriers have Mucopolysaccharidoses 1 in 25,000 increased immunity to malaria in early childhood, which could Glycogen storage diseases 1 in 50,000 be described as a related [citation needed] dominant condition. Galactosemia
    [Show full text]
  • Diseases of the Liver and Biliary System
    Diseases of the Liver and Biliary System SHEILA SHERLOCK DBE, FRS MD (Edin.), Hon. DSc (Edin., New York, Yale), Hon. MD (Cambridge, Dublin, Leuven, Lisbon, Mainz, Oslo, Padua, Toronto), Hon. LLD (Aberd.), FRCP, FRCPE, FRACP, Hon. FRCCP, Hon. FRCPI, Hon. FACP Professor of Medicine, Royal Free and University College Medical School University College London, London JAMES DOOLEY BSc, MD, FRCP Reader and Honorary Consultant in Medicine, Royal Free and University College Medical School, University College London, London ELEVENTH EDITION Blackwell Science DISEASES OF THE LIVER AND BILIARY SYSTEM Diseases of the Liver and Biliary System SHEILA SHERLOCK DBE, FRS MD (Edin.), Hon. DSc (Edin., New York, Yale), Hon. MD (Cambridge, Dublin, Leuven, Lisbon, Mainz, Oslo, Padua, Toronto), Hon. LLD (Aberd.), FRCP, FRCPE, FRACP, Hon. FRCCP, Hon. FRCPI, Hon. FACP Professor of Medicine, Royal Free and University College Medical School University College London, London JAMES DOOLEY BSc, MD, FRCP Reader and Honorary Consultant in Medicine, Royal Free and University College Medical School, University College London, London ELEVENTH EDITION Blackwell Science © 1963, 1968, 1975, 1981, 1985, 1989, 1993, 1997, 2002 by Blackwell Science Ltd a Blackwell Publishing Company Editorial Offices: Osney Mead, Oxford OX2 0EL, UK Tel: +44 (0)1865 206206 108 Cowley Road, Oxford OX4 1JF, UK Tel: +44 (0)1865 791100 Blackwell Publishing USA, 350 Main Street, Malden, MA 02148-5018, USA Tel: +1 781 388 8250 Iowa State Press, a Blackwell Publishing Company, 2121 State Avenue, Ames,
    [Show full text]
  • Diagnosis and Treatment of Wilson Disease: an Update
    AASLD PRACTICE GUIDELINES Diagnosis and Treatment of Wilson Disease: An Update Eve A. Roberts1 and Michael L. Schilsky2 This guideline has been approved by the American Asso- efit versus risk) and level (assessing strength or certainty) ciation for the Study of Liver Diseases (AASLD) and rep- of evidence to be assigned and reported with each recom- resents the position of the association. mendation (Table 1, adapted from the American College of Cardiology and the American Heart Association Prac- Preamble tice Guidelines3,4). These recommendations provide a data-supported ap- proach to the diagnosis and treatment of patients with Introduction Wilson disease. They are based on the following: (1) for- Copper is an essential metal that is an important cofac- mal review and analysis of the recently-published world tor for many proteins. The average diet provides substan- literature on the topic including Medline search; (2) tial amounts of copper, typically 2-5 mg/day; the American College of Physicians Manual for Assessing recommended intake is 0.9 mg/day. Most dietary copper 1 Health Practices and Designing Practice Guidelines ; (3) ends up being excreted. Copper is absorbed by entero- guideline policies, including the AASLD Policy on the cytes mainly in the duodenum and proximal small intes- Development and Use of Practice Guidelines and the tine and transported in the portal circulation in American Gastroenterological Association Policy State- association with albumin and the amino acid histidine to 2 ment on Guidelines ; (4) the experience of the authors in the liver, where it is avidly removed from the circulation. the specified topic.
    [Show full text]
  • Practical Management of Iron Overload Disorder (IOD) in Black Rhinoceros (BR; Diceros Bicornis)
    animals Review Practical Management of Iron Overload Disorder (IOD) in Black Rhinoceros (BR; Diceros bicornis) Kathleen E. Sullivan, Natalie D. Mylniczenko , Steven E. Nelson Jr. , Brandy Coffin and Shana R. Lavin * Disney’s Animal Kingdom®, Animals, Science and Environment, Bay Lake, FL 32830, USA; [email protected] (K.E.S.); [email protected] (N.D.M.); [email protected] (S.E.N.J.); Brandy.Coffi[email protected] (B.C.) * Correspondence: [email protected]; Tel.: +1-407-938-1572 Received: 29 September 2020; Accepted: 26 October 2020; Published: 29 October 2020 Simple Summary: Black rhinoceros under human care are predisposed to Iron Overload Disorder that is unlike the hereditary condition seen in humans. We aim to address the black rhino caretaker community at multiple perspectives (keeper, curator, veterinarian, nutritionist, veterinary technician, and researcher) to describe approaches to Iron Overload Disorder in black rhinos and share learnings. This report includes sections on (1) background on how iron functions in comparative species and how Iron Overload Disorder appears to work in black rhinos, (2) practical recommendations for known diagnostics, (3) a brief review of current investigations on inflammatory and other potential biomarkers, (4) nutrition knowledge and advice as prevention, and (5) an overview of treatment options including information on chelation and details on performing large volume voluntary phlebotomy. The aim is to use evidence to support the successful management of this disorder to ensure optimal animal health, welfare, and longevity for a sustainable black rhinoceros population. Abstract: Critically endangered black rhinoceros (BR) under human care are predisposed to non-hemochromatosis Iron Overload Disorder (IOD).
    [Show full text]
  • Essentials of Medical Genetics for Health Professionals
    59605_Gunder_FM_00i_xii_3 8/27/10 12:58 PM Page i Essentials of Medical Genetics for Health Professionals Laura M. Gunder, DHSc, MHE, PA-C Assistant Professor Physician Assistant Department School of Allied Health Sciences Medical College of Georgia Augusta, Georgia Adjunct Faculty Doctor of Health Sciences Program Arizona School of Health Sciences A.T. Still University Mesa, Arizona Staff Clinician Peachtree Medical Center Edgefield County Hospital Ridge Spring, South Carolina Scott A. Martin, MS, PhD, PA-C Dean Life Sciences Division Athens Technical College Athens, Georgia Clinical Professor Physician Assistant Department School of Allied Health Sciences Medical College of Georgia Augusta, Georgia Staff Clinician Family Medicine Athens, Georgia 59605_Gunder_FM_00i_xii_3 8/27/10 12:58 PM Page ii World Headquarters Jones & Bartlett Learning Jones & Bartlett Learning Canada Jones & Bartlett Learning International 40 Tall Pine Drive 6339 Ormindale Way Barb House, Barb Mews Sudbury, MA 01776 Mississauga, Ontario L5V 1J2 London W6 7PA 978-443-5000 Canada United Kingdom [email protected] www.jblearning.com Jones & Bartlett Learning books and products are available through most bookstores and online booksellers. To contact Jones & Bartlett Learning directly, call 800-832-0034, fax 978-443-8000, or visit our website, www.jblearning.com. Substantial discounts on bulk quantities of Jones & Bartlett Learning publications are available to corporations, profes- sional associations, and other qualified organizations. For details and specific discount information, contact the special sales department at Jones & Bartlett Learning via the above contact information or send an email to [email protected]. Copyright © 2011 by Jones & Bartlett Learning, LLC All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without written permission from the copyright owner.
    [Show full text]
  • Ferriprox (Deferiprone) Tablets Contain 500 Mg Deferiprone (3-Hydroxy-1,2-Dimethylpyridin-4-One), a Synthetic, Orally Active, Iron-Chelating Agent
    HIGHLIGHTS OF PRESCRIBING INFORMATION These highlights do not include all the information needed to use FERRIPROX safely and effectively. See full prescribing information for ------------------------------CONTRAINDICATIONS------------------------------- FERRIPROX. • Hypersensitivity to deferiprone or to any of the excipients in the FERRIPROX® (deferiprone) tablets, for oral use formulation. (4) Initial U.S. Approval: 2011 ------------------------WARNINGS AND PRECAUTIONS----------------------- WARNING: AGRANULOCYTOSIS/NEUTROPENIA • If infection occurs while on Ferriprox, interrupt therapy and monitor the See full prescribing information for complete boxed warning. ANC more frequently. (5.1) • Ferriprox can cause agranulocytosis that can lead to serious • Ferriprox can cause fetal harm. Women should be advised of the infections and death. Neutropenia may precede the development of potential hazard to the fetus and to avoid pregnancy while on this drug. agranulocytosis. (5.1) (5.3) • Measure the absolute neutrophil count (ANC) before starting Ferriprox and monitor the ANC weekly on therapy. (5.1) -----------------------------ADVERSE REACTIONS-------------------------------- • Interrupt Ferriprox if infection develops and monitor the ANC more frequently. (5.1) • The most common adverse reactions are (incidence ≥ 5%) chromaturia, • Advise patients taking Ferriprox to report immediately any nausea, vomiting and abdominal pain, alanine aminotransferase symptoms indicative of infection. (5.1) increased, arthralgia and neutropenia. (5.1, 6) -----------------------------INDICATIONS AND USAGE-------------------------- To report SUSPECTED ADVERSE REACTIONS, contact ApoPharma Inc. at: Telephone: 1-866-949-0995 FERRIPROX® (deferiprone) is an iron chelator indicated for the treatment of Email: [email protected] or FDA at 1-800-FDA-1088 or patients with transfusional iron overload due to thalassemia syndromes when www.fda.gov/medwatch current chelation therapy is inadequate. (1) Approval is based on a reduction in serum ferritin levels.
    [Show full text]
  • A Short Review of Iron Metabolism and Pathophysiology of Iron Disorders
    medicines Review A Short Review of Iron Metabolism and Pathophysiology of Iron Disorders Andronicos Yiannikourides 1 and Gladys O. Latunde-Dada 2,* 1 Faculty of Life Sciences and Medicine, Henriette Raphael House Guy’s Campus King’s College London, London SE1 1UL, UK 2 Department of Nutritional Sciences, School of Life Course Sciences, King’s College London, Franklin-Wilkins-Building, 150 Stamford Street, London SE1 9NH, UK * Correspondence: [email protected] Received: 30 June 2019; Accepted: 2 August 2019; Published: 5 August 2019 Abstract: Iron is a vital trace element for humans, as it plays a crucial role in oxygen transport, oxidative metabolism, cellular proliferation, and many catalytic reactions. To be beneficial, the amount of iron in the human body needs to be maintained within the ideal range. Iron metabolism is one of the most complex processes involving many organs and tissues, the interaction of which is critical for iron homeostasis. No active mechanism for iron excretion exists. Therefore, the amount of iron absorbed by the intestine is tightly controlled to balance the daily losses. The bone marrow is the prime iron consumer in the body, being the site for erythropoiesis, while the reticuloendothelial system is responsible for iron recycling through erythrocyte phagocytosis. The liver has important synthetic, storing, and regulatory functions in iron homeostasis. Among the numerous proteins involved in iron metabolism, hepcidin is a liver-derived peptide hormone, which is the master regulator of iron metabolism. This hormone acts in many target tissues and regulates systemic iron levels through a negative feedback mechanism. Hepcidin synthesis is controlled by several factors such as iron levels, anaemia, infection, inflammation, and erythropoietic activity.
    [Show full text]