Iron Overload and Iron Chelation: the Inside Story

Total Page:16

File Type:pdf, Size:1020Kb

Iron Overload and Iron Chelation: the Inside Story Iron Overload and Iron Chelation: The Inside Story Jerry L. Spivak, MD Professor of Medicine and Oncology Johns Hopkins University School of Medicine Baltimore, Maryland [email protected] Iron as a Prosthetic Group • Oxygen transport - Hemoglobin, myoglobin • Cell proliferation - Ribonucleotide reductase • Electron transport - Flavoproteins • Respiratory enzymes - Cytochromes • Oxidases - Catalase • Reductases - Cytochromes Body Iron Stores (♂) Hemoglobin 2.5 gm Myoglobin/heme and nonheme 0.4 gm enzymes Ferritin/hemosiderin 1.0 gm(2/1ratio) Transferrin 0.005 gm There is no normal mechanism for iron excretion above physiologic losses “Tales From the Crypt” Iron Absorption and the Mucosal Iron Block Stomach Sugars, Duodenum pHamino acids pH and Vitamin C Fe++ Heme-Fe Fe +++ Dctyd (ferri-reductase) Heme-Fe Mature enterocyte DMT1 HCP-1 Ferritin Fe++ Fe+++ Mitochondria Hephaestin FPN (Hepcidin) Other processes Plasma transferrin Enterocyte precursor Enterocyte precursor (Macrophage) (Macrophage) Noniron-loaded Iron-loaded FPN (Ceruloplasmin) Ferritin/Fe++ Fe+++ Fe++ Hepcidin Other cells Iron Balance in Adults Gastrointestinal Absorption 1-2 mg/day Storage Iron Functional iron Liver cells and 18 mg Plasma transferrin Bone marrow Macrophages 4 mg Red cell hemoglobin 1000 mg Myoglobin Cytochromes 2500 mg Physiologic daily iron loss 1-2 mg/day Natural Modifiers of Iron Absorption Iron Absorption Inhibitors Spinach ,whole grains such as buckwheat and amaranth, other vegetables such as chard and rhubarb, as well as beans and nuts, all contain significant levels of oxalic acid, which binds with iron, inhibiting its absorption. Soy beans contain phytic acid, which also bind iron. Tea and coffee contain tannins, which block iron absorption. Clay and heavy metals also inhibit iron absorption. Iron Absorption Enhancers •Meat/fish/poultry •Vitamin C-rich fruits: oranges, cantaloupe, strawberries, grapefruit •Vegetables: broccoli, brussel sprouts, tomato, tomato juice, potato, green & red peppers •White wine Iron Turnover in the Anemia of Chronic Disease Gastrointestinal Absorption <1 mg/day Hepcidin Storage Iron Hepcidin Functional iron Liver cells and Plasma transferrin Bone marrow RES 2 mg Red cell hemoglobin 1500 mg Myoglobin Cytochromes 2000 mg Physiologic daily iron loss 1 mg/day Hepcidin Regulation* *IL-6 and LPS also activate hepcidin expression Semin Liver Dis 31:280, 2011 Preservation of the MCHC at the Expense of the MCV Blood 20: 173, 1962 Iron Regulatory Proteins •HFE • Senses cellular iron uptake • Tfr-2 Iron overload • Senses cellular iron uptake • Hemojuvelin No anemia • Upregulates Hepcidin (with Tfr-2 (HJV) and HFE) • Hepcidin • Downregulates Ferroportin • DMT1 • Imports GI iron Iron overload • Ferroportin (FPN) • Exports intracellular iron to Tf anemia • Tfr-1 • Receptor for Tf-bound iron • Hephaestin and • Iron oxidases (cellular and ceruloplasmin circulating) Essential Factors in Erythropoiesis and the Effect of Cancer, Inflammation or Infection • Intensity of the stimulus • Erythropoietin production is suppressed by cytokines and iron overload • Functional capacity of the • Erythroid progenitor cell bone marrow proliferation is suppressed by cytokines and erythropoietin lack • Iron is sequestered and its • Available nutrients absorption is inhibited by hepcidin • Red cell survival • Red cell survival is reduced and blood loss is increased due to diagnostic testing Role of Iron Sequestration in the Anemia of Chronic Disease • There is no impairment of utilization of absorbed iron • There is no impairment of plasma transferrin iron uptake by erythroid cells • Reduced transferrin receptor expression and decreased iron utilization are primarily consequences of EPO deficiency • Iron therapy cannot correct the anemia of chronic disease in the absence of tissue iron deficiency • Pharmacologic concentrations of EPO can correct the anemia of chronic disease but not iron deficiency anemia • Correction of the anemia of chronic disease with EPO can occur without a change in the serum iron abnormalities • Correction of the anemia of chronic disease with EPO is associated with mobilization of iron stores and sometimes iron deficiency Hypoxic Regulation of Erythropoietin Production N Engl J Med 348:1282, 2003 Effect of Iron Administration on the Serum Erythropoietin Level 1600 10 sEpo, mU/mL 1400 Hb, g/dL 9 1200 1000 8 800 7 Hgb, g/dL 600 Serum Epo (mU/ml) 400 6 200 Fe Rx 0 5 –2 0 2 4 6 8 10 12 Time (days) Blood 91:2139, 1998 Br J Haematol 94:288, 1996 Hepcidin Expression is Subordinate to Tissue Hypoxia Increased storage iron J Clin Invest 110:1042, 2002 Serum Immunoreactive Erythropoietin in Iron Deficiency Anemia 100 80 60 P <.005 40 sEPO (mU/ml) 20 0 9.5–9.9 10.0–10.4 10.5–10.9 11.0–11.4 Hgb (g/dL) Transfusion According to the Hemoglobin Level in MDS Hemoglobin gm % Time (months) B J Haematol 94:288, 1996 Blood Transfusion – Bypassing a Natural Barrier Body Iron Homeostasis • After intake, iron is normally sequestered in complexes: – Serum transferrin • Iron transport protein in blood/extracellular fluid • Capacity can be exceeded resulting in Nontransferrin-Bound Iron (NTBI) – NTBI is the most toxic form of iron – Ferritin • Binds intracellular iron • High levels in the serum reflect iron overload but can be affected by NASH, inflammation (Still’s disease and cancer) infection (hematophagocytosis, hepatitis) • A transferrin saturation < 45 % with a high serum ferritin (>400 ng/mL) is characteristic of inflammation or liver disease, not iron overload, where the transferrin saturation is always > 50 % and often > 95 % Iron excess as a Toxin Increased transferrin saturation (>50 %) leads to deposition of iron in nonerythroid tissues such as the heart, liver and pancreas leading to: Congestive heart failure Hepatic fibrosis Diabetes mellitus and other endocrinopathies Increased susceptibility to infection Increased transferrin saturation leads to the accumulation of nontransferrin-bound iron (NBTI), labile or bound to other proteins, and free radical formation. (Fenton reaction) The generation of free hydroxyl radicals causes tissue damage through oxidative reactions with proteins, lipids and nuclei acids. Potential Mechanisms for Iron-induced Cellular Injury Int J Hematol 76:219, 2002 Measures of Body Iron Content • Serum iron • Diurnal variation, affected by diet inflammation and infection • Serum transferrin • Affected by nutrition, liver disease, inflammation, infection and FPN and ceruloplasmin mutations • Serum ferritin • An acute phase reactant, specific only if low. Correlation with LIC = 0.63 • Liver biopsy • Defines iron storage site and liver histology. May not correlate with cardiac iron burden • Liver iron by MRI • May not correlate with cardiac iron status • Cardiac MRI (T2*) • Correlates with cardiac function • Bone marrow aspirate • Considered the “gold standard” but is invasive and not always technically adequate Serum Ferritin: Disadvantages LIC Predicts Total Body Iron Liver MRI Correlation With Biopsy Correlation between Plasma Ferritin (Pl Fer) and Hepatic Iron Concentration LIC Pl Fer Months of chelation therapy R = 0.63 Brit J Haematol 89:880, 1995 Am J Hematol 42:81, 1993 Causes of Extreme Hyperferritinemia (>1500 µg/L) World J Gastroenterol 12:5866, 2006 BBA 1763:700, 2006 Hereditary (HFE) Hemochromatosis • An autosomal recessive disorder due to a C282Y mutation and rarely an H63D mutation in Northern Europeans (0.3-1.2 % prevalence) with variable penetrance • Serum ferritin is elevated in 84 % of men and 65 % of female C282Y homozygotes • Serum ferritin is > 1000 µg in 37 % of men and 3% of female C282Y homozygotes • If baseline ferritin is < 1000 µg , < 50 % of men and 20 % of females exceeded 1000 µg after 12 years • If baseline ferritin is < 1000 µg at age 55, < 15 % progressed to > 1000 µg in 12 years • Iron overload was present in 28 % of men and 1 % of women at age 65. • Iron overload with C282Y/H63D is rare without other risk factors such as liver disease • C282Y homozygosity doubles the colon cancer risk in everyone and the breast cancer risk in women’ • H63D homozygosity triples the hereditary nonpolyposis colon cancer risk • Environmental cofactors are alcohol, hepatic steatosis and viral hepatitis • Non-citrus fruits are protective • An elevated transferrin saturation (> 45 %) is the earliest clue • Phlebotomy should start if the ferritin is if there is evidence of iron overload to achieve a ferritin of 50 µg • Liver biopsy is indicated for a ferritin >1000 µg and abnormal liver function Major Complications of Iron Overload • Cirrhosis • Hepatic fibrosis (reversible with phlebotomy) • Hepatocellular cancer • Diabetes mellitus • Arthritis • Cardiomyopathy • Hypogonadism • Hypothyroidism • Pituitary-adrenal axis impairment • Increased susceptibility to infection (MDS) • Increased risk of leukemic transformation (MDS) • Impaired survival post BMT Terminal Heart Failure due to Cardiac Iron Overload Circulation 30: 698,1964 Cardiac Disease is the Major Cause of Death in β-Thalassemia Lancet 334:27, 1989 Correlation Between NTBI and Transferrin Saturation Am J Hematol 84:29, 2009 Survival in MDS According to Diagnosis (WHO criteria) J Clin Onc 23:7594, 2005 Survival of MDS patients by transfusion dependence (N = 467) Overall survival Leukaemia-free survival (HR = 1.91; p < 0.001) (HR = 1.84; p = 0.001) 1.0 Transfusion independent 1.0 Transfusion independent 0.9 Transfusion dependent 0.9 Transfusion dependent 0.8 0.8 0.7 0.7 0.6 0.6 0.5 0.5 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1 Cumulative proportion surviving
Recommended publications
  • Myoglobin Expression Under Hypoxic Condtions In
    THESIS IN THE FACE OF HYPOXIA: MYOGLOBIN EXPRESSION UNDER HYPOXIC CONDTIONS IN CULTURED WEDDELL SEAL SKELETAL MUSCLE CELLS Submitted by Michael Anthony De Miranda Jr. Department of Biology In partial fulfillment of the requirements For the degree of Master of Science Colorado State University Fort Collins, Colorado Spring 2012 Master’s Committee: Advisor: Shane Kanatous Gregory Florant Scott Earley Copyright by Michael A. De Miranda Jr. 2012 All Rights Reserved ABSTRACT IN THE FACE OF HYPOXIA: MYOGLOBIN EXPRESSION UNDER HYPOXIC CONDITIONS IN CULTURED WEDDELL SEAL SKELETAL MUSCLE CELLS The hallmark adaptation to breath-hold diving in Weddell seals (Leptonychotes weddellii) is enhanced concentrations of myoglobin in their skeletal muscles. Myoglobin is a cytoplasmic hemoprotein that stores oxygen for use in aerobic metabolism throughout the dive duration. In addition, throughout the duration of the dive, Weddell seals rely on oxygen stored in myoglobin to sustain aerobic metabolism in which lipid is the primary contributor of acetyl CoA for the citric acid cycle. Together, enhanced myoglobin concentrations and a lipid-based aerobic metabolism represent some of the unique adaptations to diving found in skeletal muscle of Weddell seals. This thesis presents data that suggests cultured Weddell seal skeletal muscle cells inherently possess adaptations to diving such as increased myoglobin concentrations, and rely on lipids to fuel aerobic metabolism. I developed the optimum culture media for this unique primary cell line based on myoblast confluence, myoblast growth rates, myotube counts, and myotube widths. Once the culture media was established, I then determined the de novo expression of myoglobin under normoxic and hypoxic oxygen conditions and the metabolic profile of the myotubes under each oxygen condition.
    [Show full text]
  • Iron Regulation by Hepcidin
    Iron regulation by hepcidin Ningning Zhao, … , An-Sheng Zhang, Caroline A. Enns J Clin Invest. 2013;123(6):2337-2343. https://doi.org/10.1172/JCI67225. Science in Medicine Hepcidin is a key hormone that is involved in the control of iron homeostasis in the body. Physiologically, hepcidin is controlled by iron stores, inflammation, hypoxia, and erythropoiesis. The regulation of hepcidin expression by iron is a complex process that requires the coordination of multiple proteins, including hemojuvelin, bone morphogenetic protein 6 (BMP6), hereditary hemochromatosis protein, transferrin receptor 2, matriptase-2, neogenin, BMP receptors, and transferrin. Misregulation of hepcidin is found in many disease states, such as the anemia of chronic disease, iron refractory iron deficiency anemia, cancer, hereditary hemochromatosis, and ineffective erythropoiesis, such as β- thalassemia. Thus, the regulation of hepcidin is the subject of interest for the amelioration of the detrimental effects of either iron deficiency or overload. Find the latest version: https://jci.me/67225/pdf Science in medicine Iron regulation by hepcidin Ningning Zhao, An-Sheng Zhang, and Caroline A. Enns Department of Cell and Developmental Biology, Oregon Health and Science University, Portland, Oregon, USA. Hepcidin is a key hormone that is involved in the control of iron homeostasis in the body. Physi- ologically, hepcidin is controlled by iron stores, inflammation, hypoxia, and erythropoiesis. The regulation of hepcidin expression by iron is a complex process that requires the coordination of multiple proteins, including hemojuvelin, bone morphogenetic protein 6 (BMP6), hereditary hemochromatosis protein, transferrin receptor 2, matriptase-2, neogenin, BMP receptors, and transferrin. Misregulation of hepcidin is found in many disease states, such as the anemia of chronic disease, iron refractory iron deficiency anemia, cancer, hereditary hemochromatosis, and ineffective erythropoiesis, such as β-thalassemia.
    [Show full text]
  • Iron Transport Proteins: Gateways of Cellular and Systemic Iron Homeostasis
    Iron transport proteins: Gateways of cellular and systemic iron homeostasis Mitchell D. Knutson, PhD University of Florida Essential Vocabulary Fe Heme Membrane Transport DMT1 FLVCR Ferroportin HRG1 Mitoferrin Nramp1 ZIP14 Serum Transport Transferrin Transferrin receptor 1 Cytosolic Transport PCBP1, PCBP2 Timeline of identification in mammalian iron transport Year Protein Original Publications 1947 Transferrin Laurell and Ingelman, Acta Chem Scand 1959 Transferrin receptor 1 Jandl et al., J Clin Invest 1997 DMT1 Gunshin et al., Nature; Fleming et al. Nature Genet. 1999 Nramp1 Barton et al., J Leukocyt Biol 2000 Ferroportin Donovan et al., Nature; McKie et al., Cell; Abboud et al. J. Biol Chem 2004 FLVCR Quigley et al., Cell 2006 Mitoferrin Shaw et al., Nature 2006 ZIP14 Liuzzi et al., Proc Natl Acad Sci USA 2008 PCBP1, PCBP2 Shi et al., Science 2013 HRG1 White et al., Cell Metab DMT1 (SLC11A2) • Divalent metal-ion transporter-1 • Former names: Nramp2, DCT1 Fleming et al. Nat Genet, 1997; Gunshin et al., Nature 1997 • Mediates uptake of Fe2+, Mn2+, Cd2+ • H+ coupled transporter (cotransporter, symporter) • Main roles: • intestinal iron absorption Illing et al. JBC, 2012 • iron assimilation by erythroid cells DMT1 (SLC11A2) Yanatori et al. BMC Cell Biology 2010 • 4 different isoforms: 557 – 590 a.a. (hDMT1) Hubert & Hentze, PNAS, 2002 • Function similarly in iron transport • Differ in tissue/subcellular distribution and regulation • Regulated by iron: transcriptionally (via HIF2α) post-transcriptionally (via IRE) IRE = Iron-Responsive Element Enterocyte Lumen DMT1 Fe2+ Fe2+ Portal blood Enterocyte Lumen DMT1 Fe2+ Fe2+ Fe2+ Fe2+ Ferroportin Portal blood Ferroportin (SLC40A1) • Only known mammalian iron exporter Donovan et al., Nature 2000; McKie et al., Cell 2000; Abboud et al.
    [Show full text]
  • Hepcidin Is Not a Marker of Chronic Inflammation in Atherosclerosis Hepcidin Aterosklerozda Kronik Inflamasyonun Bir Göstergesi De¤Ildir
    Original Investigation Orijinal Araflt›rma 239 Hepcidin is not a marker of chronic inflammation in atherosclerosis Hepcidin aterosklerozda kronik inflamasyonun bir göstergesi de¤ildir Aytekin O¤uz, Mehmet Uzunlulu, Nezih Hekim* Department of Internal Medicine, Göztepe Training and Research Hospital, ‹stanbul, Turkey *Pakize Tarz› Laboratory, ‹stanbul, Turkey ABSTRACT Objective: To investigate the relationship between atherosclerosis, an inflammatory disease and hepcidin which is reported as an indi- cator of inflammation Methods: A total of 75 subjects between 40 and 70 years of age were included in the study. The patient group consisted of 40 stable pa- tients who had previously experienced an atherosclerotic event (18 women, 22 men; mean age 56.4±7.1 years). There were two control groups. The first control group consisted of 19 healthy subjects (11 women, 8 men; mean age 52.6± 7.4 years), while the second group inc- luded 16 patients (11 women, 5 men; mean age 56.5±9.3 years) with rheumatoid arthritis and anemia (diseased control group). Hepcidin measurement was performed using Hepcidin Prohormone ELISA (Solid Phase Enzyme-Linked Immunosorbent Assay) test kit. Results: Mean serum hepcidin levels were 243.2±48.8 ng/ml, 374.5±86.4 ng/ml, and 234±59.9 ng/ml in the patient group, in diseased cont- rols, and in healthy controls, respectively. Hepcidin levels were higher in diseased controls compared to the patient group and healthy controls (p=0.001). There were no significant differences between the patient group and healthy controls. Conclusion: These findings did not support the hypothesis that hepcidin levels could be increased in atherosclerotic cardiovascular di- seases as a marker of chronic inflammation.
    [Show full text]
  • Ferroportin Mutation in Autosomal Dominant Hemochromatosis: Loss of Function, Gain in Understanding
    Ferroportin mutation in autosomal dominant hemochromatosis: loss of function, gain in understanding Robert E. Fleming, William S. Sly J Clin Invest. 2001;108(4):521-522. https://doi.org/10.1172/JCI13739. Commentary Normal iron homeostasis requires close matching of dietary iron absorption with body iron needs (1). Hereditary hemochromatosis (HH), a common abnormality of iron metabolism, is characterized by excess absorption of dietary iron despite elevated stores, and secondary damage to the liver, pancreas, and other organs (2). Classic HH is caused by mutation of the HFE gene and is inherited as an autosomal recessive trait. However, a substantial percentage of individuals with hemochromatosis, especially in non–Northern European populations, have no mutations in HFE (3). Many such cases differ from classic HH in the relative distribution of iron between the plasma, hepatocytes, and reticuloendothelial (RE) cells (4). Pietrangelo et al. recently reported a pedigree with atypical hemochromatosis inherited as an autosomal dominant trait (5). In this issue of the JCI, Montosi et al. report the surprising finding that the gene mutated in these patients (SLC11A3) encodes the iron export protein ferroportin1 (also known as IREG1, or MTP1) (6). They conclude that the identified mutation (A77D) probably results in loss of ferroportin1 function, suggesting that the affected individuals are haploinsufficient for this gene product. In a nearly simultaneous report, Njajou et al. (7) describe a similar pedigree with autosomal dominant hemochromatosis and a different missense mutation (N144H) in the same gene. Njajou et al., however, conclude that the iron overload phenotype was likely […] Find the latest version: https://jci.me/13739/pdf Ferroportin mutation in autosomal Commentary dominant hemochromatosis: loss See related article, pages 619–623.
    [Show full text]
  • Emerging and Dynamic Biomedical Uses of Ferritin
    pharmaceuticals Review Emerging and Dynamic Biomedical Uses of Ferritin Brian Chiou and James R. Connor * Department of Neurosurgery, Penn State College of Medicine, Hershey, PA 17033, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-717-531-4541 Received: 24 October 2018; Accepted: 12 November 2018; Published: 13 November 2018 Abstract: Ferritin, a ubiquitously expressed protein, has classically been considered the main iron cellular storage molecule in the body. Owing to the ferroxidase activity of the H-subunit and the nucleation ability of the L-subunit, ferritin can store a large amount of iron within its mineral core. However, recent evidence has demonstrated a range of abilities of ferritin that extends well beyond the scope of iron storage. This review aims to discuss novel functions and biomedical uses of ferritin in the processes of iron delivery, delivery of biologics such as chemotherapies and contrast agents, and the utility of ferritin as a biomarker in a number of neurological diseases. Keywords: ferritin; iron; iron delivery; nanotechnology; nanocage; drug delivery; inflammation; serum biomarker 1. Ferritin Introduction Ferritin, a protein originally identified in 1937 by Vilém Laufberger [1], is a ubiquitously expressed iron storage protein most commonly characterized by its ability to accumulate and store up to 4500 atoms of iron [2]. Ferritin consists of 24 subunits, typically comprised of different ratios of the H and L chain subunit. The ratios vary by organ and even by cell type. Importantly, the different subunits have divergent functions—H-ferritin utilizes ferroxidase activity that is necessary for the oxidation of ferrous (Fe2+) to ferric (Fe3+) iron while L-ferritin contains acidic residues on the surface cavity of the protein that facilitate ferroxidase turnover and are crucial for the nucleation of ferric iron within the core of the fully formed protein.
    [Show full text]
  • Cold Type Autoimmune Hemolytic Anemia- a Rare Manifestation Of
    Dematapitiya et al. BMC Infectious Diseases (2019) 19:68 https://doi.org/10.1186/s12879-019-3722-z CASE REPORT Open Access Cold type autoimmune hemolytic anemia- a rare manifestation of infectious mononucleosis; serum ferritin as an important biomarker Chinthana Dematapitiya1*, Chiara Perera2, Wajira Chinthaka1, Solith Senanayaka1, Deshani Tennakoon1, Anfas Ameer1, Dinesh Ranasinghe1, Ushani Warriyapperuma1, Suneth Weerarathna1 and Ravindra Satharasinghe1 Abstract Background: Infectious mononucleosis is one of the main manifestations of Epstein – Barr virus, which is characterized by fever, tonsillar-pharyngitis, lymphadenopathy and atypical lymphocytes. Although 60% of patients with IMN develop cold type antibodies, clinically significant hemolytic anemia with a high ferritin level is very rare and validity of serum ferritin as an important biomarker has not been used frequently. Case presentation: 18-year-old girl presented with fever, malaise and sore throat with asymptomatic anemia, generalized lymphadenopathy, splenomegaly and mild hepatitis. Investigations revealed that she had cold type autoimmune hemolysis, significantly elevated serum ferritin, elevated serum lactate dehydrogenase level with serological evidence of recent Epstein Barr infection. She was managed conservatively and her hemoglobin and serum ferritin levels normalized without any intervention following two weeks of the acute infection. Conclusion: Cold type autoimmune hemolytic anemia is a rare manifestation of infectious mononucleosis and serum ferritin is used very rarely as an important biomarker. Management of cold type anemia is mainly supportive and elevated serum ferritin indicates severe viral disease. Keywords: Infectious mononucleosis (IMN), Hemolytic anemia, Ferritin Background mainly Mycoplasma pneumoniae and infectious mono- Epstein – Barr virus is one of the most ubiquitous human nucleosis (IMN). Diagnosis of cold type AIHA due to viruses, infecting more than 95% the adult population IMN is confirmed by demonstrating red cell aggregates in worldwide.
    [Show full text]
  • Hepcidin Therapeutics
    pharmaceuticals Review Hepcidin Therapeutics Angeliki Katsarou and Kostas Pantopoulos * Lady Davis Institute for Medical Research, Jewish General Hospital, Department of Medicine, McGill University, Montreal, QC H3T 1E2, Canada; [email protected] * Correspondence: [email protected]; Tel.: +1-(514)-340-8260 (ext. 25293) Received: 3 November 2018; Accepted: 19 November 2018; Published: 21 November 2018 Abstract: Hepcidin is a key hormonal regulator of systemic iron homeostasis and its expression is induced by iron or inflammatory stimuli. Genetic defects in iron signaling to hepcidin lead to “hepcidinopathies” ranging from hereditary hemochromatosis to iron-refractory iron deficiency anemia, which are disorders caused by hepcidin deficiency or excess, respectively. Moreover, dysregulation of hepcidin is a pathogenic cofactor in iron-loading anemias with ineffective erythropoiesis and in anemia of inflammation. Experiments with preclinical animal models provided evidence that restoration of appropriate hepcidin levels can be used for the treatment of these conditions. This fueled the rapidly growing field of hepcidin therapeutics. Several hepcidin agonists and antagonists, as well as inducers and inhibitors of hepcidin expression have been identified to date. Some of them were further developed and are currently being evaluated in clinical trials. This review summarizes the state of the art. Keywords: iron metabolism; hepcidin; ferroportin; hemochromatosis; anemia 1. Systemic Iron Homeostasis Iron is an essential constituent of cells and organisms and participates in vital biochemical activities, such as DNA synthesis, oxygen transfer, and energy metabolism. The biological functions of iron are based on its capacity to interact with proteins and on its propensity to switch between the ferrous (Fe2+) and ferric (Fe3+) oxidation states.
    [Show full text]
  • Hepcidin the Key Regulator of Iron in the Blood St
    Hepcidin The Key Regulator of Iron in the Blood St. Dominic Middle School SMART Team Eclaire Jessup, Dominic Kowalik, Allyssa Larcheid, Samuel Larcheid, Claire Lois, Sara Maslowski, I. Introduction to Hepcidin and Iron Homeostasis Emma Pittman, Joseph Platz, Marissa Puccetti, Tyler Shecterle, Nicole Simson, Emma Wenger Abstract Hepcidin, a peptide hormone, is the key regulator of plasma iron levels in humans, and is known to play an important role in Iron is found everywhere on Earth and is essential to life. The human body contains 3-4 grams of iron Teacher: Ms. LaFlamme Mentor: Dr. Matthew S. Karafin, various human diseases, such as hemochromatosis. Hepcidin inhibits the entry of iron into circulation by binding to and over fifty percent is found in red blood cells (RBCs). Without iron, the oxygen carrying protein ferroportin, a trans-membrane iron export channel found primarily on enterocytes, hepatocytes and macrophages where iron Medical College of Wisconsin, The Blood Center of Wisconsin hemoglobin that fills RBCs cannot be made and the bone marrow cannot carry out erythropoiesis is sequestered. When hepcidin binds to ferroportin, both are drawn into the cell by endocytosis and degraded in a lysosome. When hepcidin levels increase, ferroportin levels on cells decrease and iron cannot be released from cells into the blood. (RBC production). All iron in the body is absorbed from the diet in the duodenum. Hepcidin production by the liver is affected by erythropoiesis in bone marrow, blood oxygenation, certain inflammatory The peptide hormone, hepcidin, controls the release of the dietary iron from duodenal enterocytes III. Hepcidin Structure & Function cytokines, intracellular iron storage, and plasma transferrin.
    [Show full text]
  • Nutrient Deficiency and Drug Induced Cardiac Injury and Dysfunction
    Editorial Preface to Hearts Special Issue “Nutrient Deficiency and Drug Induced Cardiac Injury and Dysfunction” I. Tong Mak * and Jay H. Kramer * Department of Biochemistry and Molecular Medicine, The George Washington University Medical Center, Washington DC, WA 20037, USA * Correspondence: [email protected] (I.T.M.); [email protected] (J.H.K.) Received: 30 October 2020; Accepted: 1 November 2020; Published: 3 November 2020 Keywords: cardiac injury/contractile dysfunction; micronutrient deficiency; macromineral deficiency or imbalance; impact by cardiovascular and/or anti-cancer drugs; systemic inflammation; oxidative/nitrosative stress; antioxidant defenses; supplement and/or pathway interventions Cardiac injury manifested as either systolic or diastolic dysfunction is considered an important preceding stage that leads to or is associated with eventual heart failure (HF). Due to shifts in global age distribution, as well as general population growth, HF is the most rapidly growing public health issue, with an estimated prevalence of approximately 38 million individuals globally, and it is associated with considerably high mortality, morbidity, and hospitalization rates [1]. According to the US Center for Disease Control and The American Heart Association, there were approximately 6.2 million adults suffering from heart failure in the United States from 2013 to 2016, and heart failure was listed on nearly 380,000 death certificates in 2018 [2]. Left ventricular systolic heart failure means that the heart is not contracting well during heartbeats, whereas left ventricular diastolic failure indicates the heart is not able to relax normally between beats. Both types of left-sided heart failure may lead to right-sided failure. There have been an increasing number of studies recognizing that the deficiency and/or imbalance of certain essential micronutrients, vitamins, and macrominerals may be involved in the pathogenesis of cardiomyopathy/cardiac injury/contractile dysfunction.
    [Show full text]
  • Gamma-Glutamyltransferase: a Predictive Biomarker of Cellular Antioxidant Inadequacy and Disease Risk
    Hindawi Publishing Corporation Disease Markers Volume 2015, Article ID 818570, 18 pages http://dx.doi.org/10.1155/2015/818570 Review Article Gamma-Glutamyltransferase: A Predictive Biomarker of Cellular Antioxidant Inadequacy and Disease Risk Gerald Koenig1,2 and Stephanie Seneff3 1 Health-e-Iron, LLC, 2800 Waymaker Way, No. 12, Austin, TX 78746, USA 2Iron Disorders Institute, Greenville, SC 29615, USA 3Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA Correspondence should be addressed to Gerald Koenig; [email protected] Received 2 July 2015; Accepted 20 September 2015 Academic Editor: Ralf Lichtinghagen Copyright © 2015 G. Koenig and S. Seneff. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Gamma-glutamyltransferase (GGT) is a well-established serum marker for alcohol-related liver disease. However, GGT’s predictive utility applies well beyond liver disease: elevated GGT is linked to increased risk to a multitude of diseases and conditions, including cardiovascular disease, diabetes, metabolic syndrome (MetS), and all-cause mortality. The literature from multiple population groups worldwide consistently shows strong predictive power for GGT, even across different gender and ethnic categories. Here, we examine the relationship of GGT to other serum markers such as serum ferritin (SF) levels, and we suggest a link to exposure to environmental and endogenous toxins, resulting in oxidative and nitrosative stress. We observe a general upward trend in population levels of GGT over time, particularly in the US and Korea. Since the late 1970s, both GGT and incident MetS and its related disorders have risen in virtual lockstep.
    [Show full text]
  • Increasing Ferritin Predicts Early Death in Adult Hemophagocytic Lymphohistiocytosis
    Henry Ford Health System Henry Ford Health System Scholarly Commons Pathology Articles Pathology 2-17-2021 Increasing ferritin predicts early death in adult hemophagocytic lymphohistiocytosis Rand Abou Shaar Charles S. Eby Suzanne van Dorp Theo de Witte Zaher K. Otrock Follow this and additional works at: https://scholarlycommons.henryford.com/pathology_articles Received: 13 November 2020 | Accepted: 29 January 2021 DOI: 10.1111/ijlh.13489 ORIGINAL ARTICLE Increasing ferritin predicts early death in adult hemophagocytic lymphohistiocytosis Rand Abou Shaar1 | Charles S. Eby2 | Suzanne van Dorp3 | Theo de Witte3 | Zaher K. Otrock1 1Department of Pathology and Laboratory Medicine, Henry Ford Hospital, Detroit, MI, Abstract USA Introduction: Hemophagocytic lymphohistiocytosis (HLH) is a rare syndrome of 2 Department of Pathology and Immunology, pathologic immune activation. Most studies on adult HLH have evaluated prognostic Washington University School of Medicine, St. Louis, MO, USA factors for overall survival; factors predicting early mortality have not been suffi- 3Radboud University Medical Center, ciently investigated. Nijmegen, Netherlands Methods: This was a collaborative study between Henry Ford Hospital and Barnes- Correspondence Jewish Hospital. We identified all adult HLH patients with at least 2 ferritin levels Zaher K. Otrock, Transfusion Medicine Division, Department of Pathology and within 30 days from admission. Laboratory Medicine, Henry Ford Hospital, Results: One- hundred twenty- four patients were identified. There were
    [Show full text]