Bibliografía

Total Page:16

File Type:pdf, Size:1020Kb

Bibliografía 1 Bibliografía “7 Million Premature Deaths Annually Linked to Air Pollution”, Organización Mundial de la Salud (25 de marzo de 2014). http://www.who.int/mediacentre/news/releases/2014/air-pollution/en/. “10-Year Treasury Inflation-Indexed Security, Constant Maturity”, FRED Economic Data (17 de marzo de 2014). http://research.stlouisfed.org/fred2/series/DFII10/. Acemoglu, Daron, Philippe Aghion, Leonardo Bursztyn y David Hemous. “The Environment and Directed Technical Change”, American Economic Review 102.1 (2012): 131–166. http://dspace.mit.edu/openaccess- disseminate/1721.1/61749. “Acid Test”, Economist (23 de noviembre de 2013). http://www.economist.com/news/science-and-technology/21590349- worlds-seas-are-becoming-more-acidic-how-much-matters-not-yet-clear. Alderman, Liz. “A Greener Champagne Bottle”, New York Times (1 de septiembre de 2010): B1. http://www.nytimes.com/2010/09/01/business/energy- environment/01champagne.html. Aldy, Joseph E., y William A. Pizer. “Comparability of Effort in International Climate Policy Architecture”, The Harvard Project on Climate Agreements Discussion Paper 14–62 (enero de 2014). http://belfercenter.ksg.harvard.edu/files/dp62_aldy-pizer.pdf. Allison, Graham T. Nuclear Terrorism: The Ultimate Preventable Catastrophe. Times Books, 2004. http://books.google.com/books?id=jDFY6FY4aakC&dq=isbn:0805076514. Altshuller, A. P. “Assessment of the Contribution of Chemical Species to the Eye Irritation Potential of Photochemical Smog”, Journal of the Air Pollution Control Association 28.6 (1978): 594–598. http://www.tandfonline.com/doi/abs/10.1080/00022470.1978.10470634# .UfkVeSTD99. “Ambient (Outdoor) Air Quality and Health”, Organización Mundial de la Salud (marzo de 2014). http://www.who.int/mediacentre/factsheets/fs313/en/. Anthoff, David, Robert J. Nicholls, Richard SJ Tol, y Athanasios T. Vafeidis. “Global and Regional Exposure to Large Rises in Sea-Level: A Sensitivity Analysis”, Tyndall Centre for Climate Change Research Working Paper 96 (2006). http://www.tyndall.ac.uk/sites/default/files/wp96_0.pdf. Anttila-Hughes, Jesse Keith y Solomon M. Hsiang. “Destruction, Disinvestment, and Death: Economic and Human Losses Following Environmental Disaster” (18 de febrero de 2013). Disponible en SSRN: http://dx.doi.org/10.2139/ssrn.2220501. 2 Archer, David, Michael Eby, Victor Brovkin, Andy Ridgwell, Long Cao, Uwe Mikolajewicz, Ken Caldeira y otros, “Atmospheric Lifetime of Fossil Fuel Carbon Dioxide”, Annual Review of Earth and Planetary Sciences 37 (2009): 117–134. Arrhenius, Svante. “On the Influence of Carbonic Acid in the Air upon the Temperature of the Ground”, London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 41.251 (1896): 237–276. http://www.tandfonline.com/doi/abs/10.1080/14786449608620846#.Ufl 0myTD99A. Arrow, K., M. Cropper, C. Gollier, B. Groom, G. Heal, R. Newell, W. Nordhaus y otros, “Determining Benefits and Costs for Future Generations”, Science 341.6144 (2013): 349–350. http://www.sciencemag.org/content/341/6144/349.full. Ashenfelter, Orley. “Measuring The Value of A Statistical Life: Problems and Prospects”, Economic Journal, 116.510 (2006): C10–C23. http://www.nber.org/papers/w11916. Avila, Lixion A., y John Cangialosi. “Tropical Cyclone Report: Hurricane Irene”, National Hurricane Center (diciembre de 2011). http://www.nhc.noaa.gov/data/tcr/AL092011_Irene.pdf. Axelrad, Daniel A., David C. Bellinger, Louise M. Ryan, y Tracey J. Woodruff. “Dose–Response Relationship of Prenatal Mercury Exposure and IQ: An Integrative Analysis of Epidemiologic Data”, Environmental Health Perspectives 115. 4 (2007): 609. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1852694. Bamber, Jonathan L., Riccardo E. M. Riva, Bert L. A. Vermeersen, y Anne M. LeBrocq. “Reassessment of the Potential Sea-Level Rise from a Collapse of the West Antarctic Ice Sheet”, Science 324.5929 (2009): 901–903. http://www.sciencemag.org/content/324/5929/901.short. Barreca, Alan, Karen Clay, Olivier Deschênes, Michael Greenstone, y Joseph S. Shapiro. “Adapting to Climate Change: The Remarkable Decline in the U.S. Temperature-Mortality Relationship over the 20th Century”, NBER Working Paper No. 18692 (enero de 2013). http://www.nber.org/papers/w18692. Barrett, Scott. “Climate Treaties and Approaching Catastrophes”, Journal of Environmental Economics and Management 66.2 (2013): 235–250. http://www.sciencedirect.com/science/article/pii/S0095069612001222. ———. “Solar Geoengineering’s Brave New World: Thoughts on the Governance of an Unprecedented Technology”, Review of Environmental Economics and Policy 8.2 (2014): 249–269. http://reep.oxfordjournals.org/content/8/2/249.abstract. Barrett, Scott, y Astrid Dannenberg. “Climate Negotiations under Scientific Uncertainty”, Proceedings of the National Academy of Sciences 109.43 (2012): 17372–76. http://www.pnas.org/content/109/43/17372.short 3 Barrett, Steven R. H., Rex E. Britter, y Ian A. Waitz. “Global Mortality Attributable to Aircraft Cruise Emissions”, Environmental Science & Technology 44.19 (2010): 7736–7742. http://pubs.acs.org/doi/abs/10.1021/es101325r. Barro, Robert J. “Rare Disasters, Asset Price, and Welfare Costs”, American Economic Review 99.1 (2009): 243–264. http://www.nber.org/papers/w13690. Bazilian, Morgan, Ijeoma Onyeji, Michael Liebreich, Ian MacGill, Jennifer Chase, Jigar Shah, Dolf Gielen, Doug Arent, Doug Landfear [[pág. 210]] y Shi Zhengrong “Re-considering the Economics of Photovoltaic Power”, Renewable Energy 53 (2013): 329–338. http://www.sciencedirect.com/science/article/pii/S0960148112007641. Bem, Daryl. “Self-Perception Theory”, En Advances in Experimental Social Psychology, editado por Leonard Berkowitz, vol. 6. Academic Press, 1972. 1–62. Benedick, Richard Elliot. Ozone Diplomacy: New Directions in Safeguarding the Planet. Harvard University Press, 1998. http://www.amazon.com/Ozone-Diplomacy- DirectionsSafeguardingEnlarged/dp/0674650034. Benenson Strategy Group and GS Strategy Group. “Recent Polling on Youth Voters” (julio de 2013). http://www.lcv.org/issues/polling/recent-polling- on-youth.pdf. Berg, Paul. “Asilomar and Recombinant DNA”, Nobelprize.org (17 de julio de 2013). http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1980/berg- article.html. Berg, Paul, D. Baltimore, S. Brenner, R. O. Robin, y M. F. Singer. “Summary Statement of the Asilomar Conference on Recombinant DNA Molecules. Proceedings of the National Academy of Sciences of USA 72.6 (1975): 1981– 84. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC432675/pdf/pnas00049– 0007.pdf. “Bicycling History”, Cycling Embassy of Denmark. http://www.cycling- embassy.dk/facts-about-cycling-in-denmark/cycling-history/. “Bike City”, Visitcopenhagen.com. http://www.visitcopenhagen.com/copenhagen/bike-city. Black, Fischer, y Robert B. Litterman. “Global Portfolio Optimization”, Financial Analysts Journal 48.5 (1992): 28–43. http://www.jstor.org/discover/10.2307/4479577?uid=2&uid=4&sid=21102 739263593. Blake, Eric S., Todd B. Kimberlain, Robert J. Berg, John P. Cangialosi y John L. Beven II. Tropical Cyclone Report: Hurricane Sandy. National Hurricane 4 Center (febrero de 2013). http://www.nhc.noaa.gov/data/tcr/AL182012_Sandy.pdf. Bluth, Gregg J. S., Scott D. Doiron, Charles C. Schnetzler, Arlin J. Krueger, y Louis S. Walter. “Global Tracking of the SO2 Clouds from the June, 1991 Mount Pinatubo Eruptions”, Geophysical Research Letters 19.2 (1992): 151–154. http://so2.gsfc.nasa.gov/pdfs/Bluth_Pinatubo1991_GRL91GL02792.pdf. Borgerson, Scott G. “The Coming Arctic Boom”, Foreign Affairs (julio/agosto 2013). http://www.foreignaffairs.com/articles/139456/scott-g- borgerson/the-coming-arctic-boom. Bradsher, Keith, y David Barboza. “Pollution from Chinese Coal Casts a Global Shadow”, New York Times (11 de junio de 2006): A1. http://www.nytimes.com/2006/06/11/business/worldbusiness/11chinacoal .html. Brauer, Michael, G. Hoek, H. A. Smit, J. C. de Jongste, J. Gerritsen, D. S. Postma, M. Kerkhof, y B. Brunekreef. “Air Pollution and Development of Asthma, Allergy and Infections in a Birth Cohort”, European Respiratory Journal 29.5 (2007): 879–888. http://erj.ersjournals.com/content/29/5/879.full. Brennan, Jason. The Ethics of Voting. Princeton University Press, 2011. http://press.princeton.edu/titles/9704.html. British American Tobacco Australasia Limited and Ors v. the Commonwealth of Australia, no. S389/2411 (High Court of Australia 2012). http://www.hcourt.gov.au/cases/case-s389/2011. Broecker, Wallace S. “Climatic Change: Are We on the Brink of a Pronounced Global Warming?” Science 189.4201 (1975). http://www.sciencemag.org/content/189/4201/460.abstract. Butler, James H., y Stephen A. Montzka. “The NOAA Annual Greenhouse Gas Index (AGGI)”, NOAA Earth System Research Laboratory (2013). http://www.esrl.noaa.gov/gmd/ccgg/aggi.html. Carlowicz, M. “World of Change: Global Temperatures”, NASA Earth Observatory (2010). http://earthobservatory.nasa.gov/Features/WorldOfChange/decadaltemp.p hp. Chakravarty, Shoibal, Ananth Chikkatur, Heleen de Coninck, Stephen Pacala, Robert Socolow, y Massimo Tavoni. “Sharing Global CO2 Emission Reductions among One Billion High Emitters”, Proceedings of the National Academy of Sciences 106.29 (2009): 11884–11888. http://cmi.princeton.edu/research/pdfs/one_billion_emitters.pdf. Charney, Jule G., Akio Arakawa, D. James Baker, Bert Bolin, Robert E. Dickinson, Richard M. Goody, Cecil E. Leith, Henry M. Stommel, y Carl I. Wunsch. “Carbon Dioxide and Climate: A Scientific Assessment”, National 5 Academy of Sciences, 1979. http://www.atmos.ucla.edu/~brianpm/download/charney_report.pdf.
Recommended publications
  • Ken Caldeira
    Curriculum Vitae for Ken Caldeira PRESENT POSITION Senior Scientist Professor (by courtesy) Department of Global Ecology Department of Environmental Earth System Sciences Carnegie Institution Stanford University 260 Panama Street 450 Serra Mall Stanford, CA 94305 USA Stanford, California 94305 USA [email protected] [email protected] (650) 704-7212; fax: (650) 462-5968 EDUCATION Ph.D.,1991, New York University, Atmospheric Sciences, Department of Applied Science M.S.,1988, New York University, Atmospheric Sciences, Department of Applied Science B.A.,1978 Rutgers College, Philosophy PRIOR RESEARCH EXPERIENCE Physicist/Environmental Scientist (Lawrence Livermore National Laboratory, 1995 to 2005) Research ocean carbon cycle, atmospheric CO2, ocean/sea-ice physics, climate, and energy systems Post-Doctoral Researcher (Lawrence Livermore National Laboratory; 1993 to 1995) Research the ocean carbon cycle, atmospheric CO2 and climate NSF Earth Sciences Postdoctoral Fellow (Earth Systems Science Center & Dept. of Geosciences, The Pennsylvania State University; 1991 to 1993) Role of the carbonate-silicate cycle in long-term atmospheric CO2 content and climate GENERAL RESEARCH INTERESTS Ocean acidification; climate/carbon-cycle interactions; numerical simulation of climate and biogeochemistry; marine biogeochemical cycles; global carbon cycle; long-term evolution of climate and geochemical cycles; intentional intervention in the climate system; energy technology and policy ADVISORY PANELS / DISSERTATION COMMITTEES National Academy of Sciences,
    [Show full text]
  • Ken Caldeira
    Curriculum Vitae for Ken Caldeira PRESENT POSITION Senior Scientist Professor (by courtesy) Department of Global Ecology Department of Earth System Science Carnegie Institution Stanford University 260 Panama Street 450 Serra Mall Stanford, CA 94305 USA Stanford, California 94305 USA [email protected] [email protected] (650) 704-7212; fax: (650) 462-5968 EDUCATION Ph.D.,1991, New York University, Atmospheric Sciences, Department of Applied Science M.S.,1988, New York University, Atmospheric Sciences, Department of Applied Science B.A.,1978, Rutgers College, Philosophy PRIOR RESEARCH EXPERIENCE Physicist/Environmental Scientist (Lawrence Livermore National Laboratory, 1995 to 2005) Research ocean carbon cycle, atmospheric CO2, ocean/sea-ice physics, climate, and energy systems Post-Doctoral Researcher (Lawrence Livermore National Laboratory; 1993 to 1995) Research the ocean carbon cycle, atmospheric CO2 and climate NSF Earth Sciences Postdoctoral Fellow (Earth Systems Science Center & Dept. of Geosciences, The Pennsylvania State University; 1991 to 1993) Role of the carbonate-silicate cycle in long-term atmospheric CO2 content and climate GENERAL RESEARCH INTERESTS Ocean acidification; climate/carbon-cycle interactions; numerical simulation of climate and biogeochemistry; marine biogeochemical cycles; global carbon cycle; long-term evolution of climate and geochemical cycles; intentional intervention in the climate system; energy technology and policy ADVISORY PANELS / DISSERTATION COMMITTEES / ETC National Academy of Sciences, Geoengineering Climate Panel Member (2014) IPCC AR5 Report Climate Change 2013: The Physical Science Basis, Contributing Author (2013) Fellow of the American Geophysical Union (2010) National Academy of Sciences, America's Climate Choices Panel Member (2009) UK Royal Society Geoengineering Report Panel Member (2009) Global Carbon Project, Scientific Steering Committee Member (2009-2013) European Project on Ocean Acidification (EPOCA), Advisory Board Member (2008-2012) Intergovernmental Oceanographic Commission, Rep.
    [Show full text]
  • Carbon Budgetbudget 20092009 GCP-Carbon Budget2009 Contributors
    Budget09 released on 21 November 2010 ppt version 20 January 2011 CarbonCarbon BudgetBudget 20092009 GCP-Carbon Budget2009 Contributors Karen Assmann Peter E. Levy University of Bergen, Norway Centre for Ecology and Hydrology, Bush Estate, Penicuik, UK Thomas A. Boden Sam Levis Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak National Centre for Atmospheric Research, Boulder, Co, USA Ridge, Tennessee USA Mark R. Lomas Gordon Bonan Department of Animal and Plant Sciences, University of Sheffield, U National Centre for Atmospheric Research, Boulder, CO, USA Joseph Majkut Laurent Bopp AOS Program, Princeton University, Princeton, New Jersey, USA Laboratoire des Sciences du Climat et de l’Environnement, UMR, CEA-CNRS- Nicolas Metzl UVSQ, France LOCEAN-IPSL, CNRS, Institut Pierre Simon Laplace, Université Pierre et Marie Erik Buitenhuis Curie, Paris, France School of Environment Sciences, University of East Anglia, Norwich, UK Corinne Le Quéré Ken Caldeira School of Environment Sciences, University of East Anglia, Norwich, UK Depart. of Global Ecology, Carnegie Institution of Washington, Stanford, USA British Antarctic Survey, Cambridge, UK Josep G. Canadell Andrew Lenton Global Carbon Project, CSIRO Marine and Atmospheric Research, Canberra, CSIRO Marine and Atmospheric Research, Tasmania, Australia Australia Ivan Lima Philippe Ciais Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA Laboratoire des Sciences du Climat et de l’Environnement, UMR CEA-CNRS- Gregg Marland UVSQ, France Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Thomas J. Conway Ridge, Tennessee, USA NOAA Earth System Research Laboratory, Boulder, Colorado, USA Glen P. Peters Steve Davis Center for International Climate and Environmental Research, Oslo, Norway Depart. of Global Ecology, Carnegie Institution of Washington, Stanford, USA Michael R.
    [Show full text]
  • Cairns Human Society Passed T
    Asian J. Exp. Sci., Vol. 24, No. 2, 2010; 297-299 Has Human Society Passed a Tipping Point for Effective Reduction of Greenhouse Gas Emissions? John Cairns, Jr. Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA Abstract : Recent publications have indicated that a 2°C increase of global average temperature, once thought acceptable, may involve serious risks (Greg, 2004). A global mean temperature increase of 4°C would be hotter than any time in the last 30 million years, and this increase could be realized as early as 2060–2070 (Leahy, 2009). The prospects of plans for major, immediate reduction of anthropogenic greenhouse gas emissions at the climate conference at Copenhagen in December 2009 do not seem likely. A climate bill in the US Congress probably will be weakened by numerous amendments, and China and India are not eager to implement major reductions in greenhouse gas emissions. Even if the Copenhagen Conference recommends major reductions, they are likely to be fiercely resisted because of present economic conditions. Neither politicians nor citizens seem prepared to make the “sacrifices” needed for rapid reductions of greenhouse gas emissions. Key words : Rapid climate change, Reduced agricultural productivity, Inadequate freshwater, Societal tipping points, Climate tipping points, Climate conferences. Political reality must be grounded in physical Assimilative Capacity reality or it’s completely useless. In nature, energy and nutrients keep moving John Schellnhuber because the output (wastes) of some species is input Director, Potsdam Institute (resources) for other species. Humans take resources for Climate Impact Research and turn them into things that nature cannot assimilate Two degrees C is already gone as a target.
    [Show full text]
  • An Economic Anatomy of Optimal Climate Policy Faculty Research Working Paper Series
    An Economic Anatomy of Optimal Climate Policy Faculty Research Working Paper Series Juan B. Moreno-Cruz Georgia Institute of Technology Gernot Wagner Harvard John A. Paulson School of Engineering and Applied Sciences David W. Keith Harvard Kennedy School July 2017 Updated May 2018 RWP17-028 Visit the HKS Faculty Research Working Paper Series at: https://research.hks.harvard.edu/publications/workingpapers/Index.aspx The views expressed in the HKS Faculty Research Working Paper Series are those of the author(s) and do not necessarily reflect those of the John F. Kennedy School of Government or of Harvard University. Faculty Research Working Papers have not undergone formal review and approval. Such papers are included in this series to elicit feedback and to encourage debate on important public policy challenges. Copyright belongs to the author(s). Papers may be downloaded for personal use only. www.hks.harvard.edu An Economic Anatomy of Optimal Climate Policy By Juan B. Moreno-Cruz, Gernot Wagner and David W. Keith∗ Draft: 8 May 2018 This paper introduces geoengineering into an optimal control model of climate change economics. Together with mitigation and adaptation, carbon and solar geoengineering span the universe of possible climate policies. Their wildly different characteristics have important implications for climate policy. We show in the context of our model that: (i) the optimal carbon tax equals the marginal cost of carbon geoengineering; (ii) the introduction of either form of geoengineering leads to higher emissions yet lower temperatures; (iii) in a world with above-optimal cumulative emissions, only a complete set of instruments can minimize climate damages.
    [Show full text]
  • Steering the Climate System: Using Inertia to Lower the Cost of Policy: Comment
    Steering the Climate System: Using Inertia to Lower the Cost of Policy: Comment The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Mattauch, Linus, et al. "Steering the Climate System: Using Inertia to Lower the Cost of Policy: Comment." American Economic Review, 110, 4 (April 2020): 1231-37. As Published http://dx.doi.org/10.1257/aer.20190089 Publisher American Economic Association Version Final published version Citable link https://hdl.handle.net/1721.1/125321 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. American Economic Review 2020, 110(4): 1231–1237 https://doi.org/10.1257/aer.20190089 Steering the Climate System: Using Inertia to Lower the Cost of Policy: Comment† By Linus Mattauch, H. Damon Matthews, Richard Millar, Armon Rezai, Susan Solomon, and Frank Venmans* Lemoine and Rudik 2017 argues that it is efficient to delay reduc- ing carbon emissions(, due )to supposed inertia in the climate system’s response to emissions. This conclusion rests upon misunderstand- ing the relevant earth system modeling: there is no substantial lag between CO2 emissions and warming. Applying a representation of the earth system that captures the range of responses seen in complex earth system models invalidates the original article’s implications for climate policy. The least-cost policy path that limits warming to 2°C implies that the carbon price starts high and increases at the interest rate.
    [Show full text]
  • Ocean Acidification Due to Increasing Atmospheric Carbon Dioxide
    Ocean acidification due to increasing atmospheric carbon dioxide Policy document 12/05 June 2005 ISBN 0 85403 617 2 This report can be found at www.royalsoc.ac.uk ISBN 0 85403 617 2 © The Royal Society 2005 Requests to reproduce all or part of this document should be submitted to: Science Policy Section The Royal Society 6-9 Carlton House Terrace London SW1Y 5AG email [email protected] Copy edited and typeset by The Clyvedon Press Ltd, Cardiff, UK ii | June 2005 | The Royal Society Ocean acidification due to increasing atmospheric carbon dioxide Ocean acidification due to increasing atmospheric carbon dioxide Contents Page Summary vi 1 Introduction 1 1.1 Background to the report 1 1.2 The oceans and carbon dioxide: acidification 1 1.3 Acidification and the surface oceans 2 1.4 Ocean life and acidification 2 1.5 Interaction with the Earth systems 2 1.6 Adaptation to and mitigation of ocean acidification 2 1.7 Artificial deep ocean storage of carbon dioxide 3 1.8 Conduct of the study 3 2 Effects of atmospheric CO2 enhancement on ocean chemistry 5 2.1 Introduction 5 2.2 The impact of increasing CO2 on the chemistry of ocean waters 5 2.2.1 The oceans and the carbon cycle 5 2.2.2 The oceans and carbon dioxide 6 2.2.3 The oceans as a carbonate buffer 6 2.3 Natural variation in pH of the oceans 6 2.4 Factors affecting CO2 uptake by the oceans 7 2.5 How oceans have responded to changes in atmospheric CO2 in the past 7 2.6 Change in ocean chemistry due to increases in atmospheric CO2 from human activities 9 2.6.1 Change to the oceans
    [Show full text]
  • Climate Scientists Say It Is Time to Go 'Nuclear'; Letter Stirs Debate in Utah Page 1 of 3
    Climate scientists say it is time to go 'nuclear'; letter stirs debate in Utah Page 1 of 3 Climate scientists say it is time to go 'nuclear'; letter stirs debate in Utah By Amy Joi O'Donoghue , Deseret News Published: Tuesday, Nov. 5 2013 3:20 p.m. MST SALT LAKE CITY — Four world- renowned climate scientists have penned a letter to the environmental community, urging its support for developing a new generation of nuclear power as a way to address climate change. "With the planet warming and carbon dioxide emissions rising faster than ever, we cannot afford to turn away from any technology that has the A letter penned by four potential to displace a large fraction climate scientists urges the environmental community to embrace nuclear power as a way to reduce global warming and climate change. The missive stirs up debate of our carbon emissions," they wrote. in Utah, where a nuclear power plant is planned. (Shutterstock) "Much has changed since the 1970s. The time has come for a fresh approach to nuclear power in the 21st century." The letter distributed over the weekend was signed by Ken Caldeira, senior scientist with the Department of Global Ecology at the Carnegie Institution; Kerry Emanuel, atmospheric scientist at Massachusetts Institute of Technology; Tom Wigley, climate scientist, University of Adelaide in Australia and the National Center for Atmospheric Research; and James Hansen, climate scientist at Columbia University Earth Institute. Hansen is a controversial figure who left NASA to embrace a full-time climate activist role. In 1988, he testified before Congress on the effects of man-caused emissions and their role in a warming climate, raising the climate alarm that has since been echoed by a growing scientific community.
    [Show full text]
  • The Economic and Institutional Foundations of the Paris Agreement on Climate Change: the Political Economy of Roadmaps to a Sustainable Electricity Future
    THE ECONOMIC AND INSTITUTIONAL FOUNDATIONS OF THE PARIS AGREEMENT ON CLIMATE CHANGE: THE POLITICAL ECONOMY OF ROADMAPS TO A SUSTAINABLE ELECTRICITY FUTURE Mark Cooper Senior Fellow for Economic Analysis Institute for Energy and the Environment, Vermont Law School Adjunct Fellow, Silicon Flatirons, University of Colorado Abstract Three recent “roadmap” analyses outline routes to a low-carbon economy that model the decarbonization of the electricity sector and the pervasive electrification of the transportation and industrial sectors. Two of these also impose a pollution constraint on electricity resources that rejects the use of nuclear power and fossil fuels with carbon capture and storage. Using independent cost estimates and sequentially “relaxing” the constraints on resource selection, this paper compares the resource costs of the resulting portfolios of assets needed to meet the need for electricity. Reflecting the continuing decline of the cost of renewable resources, the paper supports the claim that the long run costs of the 100% renewable portfolios are not only less than business-as-usual portfolios, but that the “environmental merit order” of asset selection is quite close to the “economic merit order.” Neither fossil fuels with carbon capture and storage nor nuclear power enters the least-cost, low-carbon portfolio. As long as a rigorous least-cost constraint is imposed on decarbonization, the pollution constraint is superfluous. The paper evaluates the Paris Agreement on climate change in light of these findings. The Agreement is described as a progressive, mixed market economic model with a governance structure based on a polycentric, multi-stakeholder approach for management of a common pool resource.
    [Show full text]
  • Destination Net Zero:Setting and Delivering Ambitious, Credible Targets
    COP26 Universities Network Briefing / march 2021 Destination net zero: setting and delivering ambitious, credible targets Key messages • Stabilising global temperatures at any level requires reaching net zero emissions. Stabilising at 1.5°C would mean reaching net zero global emissions of CO2 by mid-century and substantial reduction of other greenhouse gas emissions; the Paris Agreement also commits to a balance in human-caused sources and sinks of all greenhouse gases in the second half of the century. • Net zero means balancing emissions (sources) with removals (sinks), which requires deep and widespread emissions cuts, as well as scaling up both nature-based and technological removal methods. • Allied to net zero targets, immediate reductions of greenhouse gas emissions are essential, as global temperature rise is driven by cumulative carbon dioxide emissions over time. Reductions in emissions at source (as opposed to offsets and removals) should form the bulk of action to achieve net zero targets. • Individual net zero targets and the pathways to achieve them should be driven by considerations of responsibility and capacity. To reflect their equity obligations under the Paris Agreement, industrialised nations should, as a matter of best practice, consider setting targets for delivering net zero before 2050. • In order to be truly comprehensive, net zero targets should include all seven greenhouse gas groups reported under national inventories (while ensuring net zero CO2 specifically) and cover all economic sectors of activity. • Plans should be specified for how an agreed net zero target will be delivered, and immediate policy action should be taken to put them on track. These plans should be published, as should regular updates on progress towards achieving them.
    [Show full text]
  • Characterizing Impacts and Implications of Proposals for Solar Radiation Management, a Form of Climate Engineering
    Characterizing Impacts and Implications of Proposals for Solar Radiation Management, a Form of Climate Engineering Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Engineering and Public Policy Katharine L. Ricke S.B., Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology Carnegie Mellon University Pittsburgh, Pennsylvania August, Abstract Even under optimistic emissions scenarios, rising concentrations of greenhouse gases in the atmosphere will result in significant increases in global mean tempera- tures and associated effects for the foreseeable future (IPCC, a,b). Concerns that mitigation may be too slow in coming have lead to renewed dialogue within the sci- entific community regarding potential strategies for counteracting global warming through geoengineering, defined as “the deliberate large-scale intervention in the Earth’s climate system, in order to moderate global warming.” (Shepherd et al., ) The geoengineering schemes that are considered most feasible today involve plan- etary albedo modification, or “solar radiation management” (SRM). This thesis ad- dresses several outstanding questions regarding uncertainty in global and regional effects of SRM activities. The technical components of this work are centered on two modeling experiments which use a coupled atmosphere-ocean general circulation model (AOGCM) implemented through climateprediction.net. Drawing upon knowl- edge gained through these experiments and interaction with the broader research community, I explore the international relations implications of SRM and the global governance issues associated with it. The first experiment explored regional differences in climate modified by SRM using a large-ensemble modeling experiment that examines the effects of global temperature stabilization scenarios.
    [Show full text]
  • This Paper Is a Non-Peer Reviewed Preprint Submitted to Eartharxiv
    Expert judgements on solar geoengineering research priorities and challenges Peter J. Irvine1,2, Elizabeth Burns2, Ken Caldeira3, Frank N. Keutsch2, Dustin Tingley4, and David W. Keith2 1Earth Sciences, University College London, London, WC1E 6BT, UK 2Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA 02138, USA 3Department of Global Ecology, Carnegie Institution, Stanford, California, USA 4Department of Government, Harvard University Faculty of Arts and Sciences, Cambridge, Massachusetts, USA Corresponding author: Peter Irvine ([email protected]), ORCID: 0000-0002-5469-1543 Twitter handle: @peteirvine Keywords: Solar Geoengineering, Expert elicitation, climate change, climate research, research priorities, Solar Radiation Management This paper is a non-peer reviewed preprint submitted to EarthArxiv. 1 Abstract Solar geoengineering describes a set of proposals to deliberately alter the earth’s radiative balance to reduce climate risks. We elicit judgements on natural science research priorities for solar geoengineering through a survey and in-person discussion with 72 subject matter experts, including two thirds of all scientists with ≥10 publications on the topic. Experts prioritized Earth system response (33%) and impacts on society and ecosystems (27%) over the human and social dimensions (17%) and developing or improving solar geoengineering methods (15%), with most allocating no effort to weather control or counter-geoengineering. While almost all funding to date has focused on geophysical modeling and social sciences, our experts recommended substantial funding for observations (26%), perturbative field experiments (16%), laboratory research (11%) and engineering for deployment (11%). Of the specific proposals, stratospheric aerosols received the highest average priority (34%) then marine cloud brightening (17%) and cirrus cloud thinning (10%).
    [Show full text]