VERMONT YANKEE NUCLEAR POWER STATION

OFF-SITE DOSE CALCULATION MANUAL

REVISION 32

This document contains Vermont Yankee proprietary information. This information may not be transmitted, in whole or in part, to any other organization without permission of Vermont Yankee.

Effective Date: 06/24/08 _

Originator:

Reviewed:":'~'::~~~~~'>-L,C-~~~~~~-L ---,-~~~ __ PrintiSi

Approved:-t..L..:...!..!.1hZ-....lL.::.:...:..!..:....:.....=::-.._--/---=-_~:--I-111='---- {/=-I---I-I _ Date

Off-Site Dose Calculation Manual Rev. 32 Page i of x Vermont Yankee Nuclear Power Station REVISION SUMMARY

DATE REVISION DESCRIPTION

06124/08 32 Section 6.11 Factors revised in accordance with AREV A Calc. #32-9068362-000 recommendations REFERENCE Section - Added ARE VA Calc. Reference

Off-Site Dose Calculation Manual Rev. 32 Page ii of x Vermont Yankee Nuclear Power Station ABSTRACT

The VYNPS ODCM (Vermont Yankee Nuclear Power Station Off-Site Dose Calculation Manual) contains the effluent and environmental control limits, and approved methods to estimate the maximum individual doses and radionuclide concentrations occurring at or beyond the boundaries of the plant due to normal plant operation. The effluent dose models are based on the U.S. NRC Regulatory Guide 1.109. Revision 1.

With initial approval by the U.S. Nuclear Regulatory Commission and the VYNPS Plant Management and approval of subsequent revisions by the Plant Management (as per the Technical Specifications) the methods contained in the ODCM are suitable to demonstrate compliance with effluent controls.

Off-Site Dose Calculation Manual Rev. 32 Page iii of x Vermont Yankee Nuclear Power Station TABLE OF CONTENTS REVISION SUMMARY ii ABSTRACT iii TABLE OF CONTENTS iv LIST OF TABLES viii LIST OF FIGURES x

Section-Page

1.0 INTRODUCTION 1-1

1.1 Summary of Methods, Dose Factors, Limits, Constants, and Radiological Effluent Control Cross References 1-2

2.0 DEFINITIONS 2-1

3/4.0 EFFLUENT AND ENVIRONMENTAL CONTROLS 3/4-1

3/4.1 Instrumentation 3/4-1 3/4.1.1 Radioactive Liquid Effluent Instrumentation 314-1 3/4.1.2 Radioactive Gaseous Effluent Instrumentation 3/4-6 3/4.2 Radioactive Liquid Effluents 3/4-11 3/4.2.1 Liquid Effluents: Concentration 3/4-11 3/4.2.2 Dose - Liquids 3/4-15 3/4.2.3 Liquid Radwaste Treatment 3/4-16 3/4.3 Radioactive Gaseous Effluents 3/4-17 3/4.3.1 Gaseous Effluents: Dose Rate 3/4-17 3/4.3.2 Gaseous Effluents: Dose from Noble Gases 3/4-20 3/4.3.3 Gaseous Effluents: Dose from 1-131,1-133, Tritium, and Radionuclides in Particulate Form 3/4-21 3/4.3.4 Gaseous Radwaste Treatment 3/4-22 3/4.3.5 Ventilation Exhaust Treatment 3/4-23 3/4.3.6 Primary Containment 3/4-24 3/4.3.7 Steam Jet Air Ejector (SJAE) 3/4-25 3/4.4 Total Dose 3/4-26 3/4.4.1 Total Dose 3/4-26 3/4.5 Radiological Environmental Monitoring 3/4-27 3/4.5.1 Radiological Environmental Monitoring Program 3/4-27 3/4.5.2 Land Use Census 3/4-36 3/4.5.3 Intercomparison Program 3/4-37 3/4.6 Effluent and Environmental Control Bases 3/4-38

Off-Site Dose Calculation Manual Rev. 32 Page iv of x Vermont Yankee Nuclear Power Station Section-Page

5.0 METHODS TO CALCULATE OFF-SITE LIQUID CONCENTRATIONS 5-1

5.1 Method to Determine F I ENG and C I NG •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 5-1 5.2 Method to Determine Radionuclide Concentration for Each Liquid Effluent Pathway 5-3 5.2.1 Sample Tanks Pathways 5-3 5.2.2 Service Water Pathway 5-3 5.2.3 Circulating Water Pathway 5-4

6.0 OFF SITE DOSE CALCULATION METHODS 6-1 6.1 Introductory Concepts 6-1 6.2 Method to Calculate the Total Body Dose from Liquid Releases 6-3 6.3 Method to Calculate Maximum Organ Dose from Liquid Releases 6-9 6.4 Method to Calculate the Total Body Dose Rate from Noble Gases 6-11 6.5 Method to Calculate the Skin Dose Rate from Noble Gases 6-16 6.6 Method to Calculate the Critical Organ Dose Rate from Iodines, Tritium and Particulates with Tl/2 Greater Than 8 Days 6-22 6.7 Method to Calculate the Gamma Air Dose from Noble Gases 6-26 6.8 Method to Calculate the Beta Air Dose from Noble Gases 6-29 6.9 Method to Calculate the Critical Organ Dose from Iodines Tritium and Particulates 6-32 6.10 Receptor Points and Annual Average Atmospheric Dispersion Factors for Important Exposure Pathways 6-39 6.11 Method to Calculate Direct Dose From Plant Operation 6-45 6.12 Cumulative Doses 6-55

7.0 ENVIRONMENTAL MONITORING PROGRAM 7-1

8.0 SETPOINT DETERMINATIONS 8-1

8.1 Liquid Effluent Instrumentation Setpoints 8-1 8.2 Gaseous Effluent Instrumentation Setpoints 8-10

9.0 LIQUID AND GASEOUS EFFLUENT STREAMS, RADIATION MONITORS, AND RADWASTE TREATMENT SYSTEMS 9-1

9.1 In-Plant Radioactive Liquid Effluent Pathways 9-1 9.2 In-Plant Radioactive Gaseous Effluent Pathways 9-4

10.0 REPORTING REQUIREMENTS 10-1

R. REFERENCES R-I

Off-Site Dose Calculation Manual Rev. 32 Page v of x Vermont Yankee Nuclear Power Station Section-Page

APPENDIX A: Method I Example Calculations Deleted

APPENDIX B: Approval of Criteria for Disposal of Slightly Contaminated Septic Waste On-Site at Vermont yankee B-1

APPENDIX C: Response to NRCIEG&G Evaluation of ODCM Update Through Revision 4 *On File

APPENDIX D: Assessment of Surveillance Criteria for Gas Releases from Waste Oil Incineration D-1

APPENDIX E: NRC Safety Evaluation for Disposal of Slightly Contaminated Soil On-Site at VY (Below the Chern Lab Floor) - TAC No. M82152 *On File

APPENDIX F: Approval Pursuant to lOCFR20.2002 for On-Site Disposal of Cooling Tower Silt F-1

APPENDIX G: Maximum Permissible Concentrations (MPCs) in Air and Water Above Natural Background Taken from lOCFR20.1 to 20.602, Appendix B G-1

APPENDIX H: H-1

1) "Request to Amend Previous Approvals Granted Under 10CFR20.302(a) for Disposal of Contaminated Septic Waste and Cooling Tower Silt to Allow for Disposal of Contaminated Soil," dated June 23,1999, BVY 99-80 H-2

2) "Supplement to Request to Amend Previous Approvals Granted Under lOCFR20.302(a) to Allow for Disposal of Contaminated Soil," dated January 4, 2000, BVY 00-02. H-19

3) "Vermont Yankee Nuclear Power Station, Request to Amend Previous Approvals Granted Under lOCFR20.302(a) to Allow for Disposal of Contaminated Soil (TAC No. MA5950)", dated June 15, 2000, NVY 00-58 H-37

Off-Site Dose Calculation Manual Rev. 32 Page vi of x Vermont Yankee Nuclear Power Station Section-Page

APPENDIX I: 1-1

1) "Request to Amend Previous Approval Granted Under lOCFR20.2002 for Disposal of Contaminated Soil", dated September 11, 2000 BVY 00-71 1-2

"Vermont Yankee Nuclear Power Station - Safety Evaluation for an Amendment to an Approved 10CFR20.2002 Application (TAC No. MA9972)", dated June 26, 2001, NVY 01-66 1-5

APPENDIX J: J-l

2) "Request to Amend Previous Approval Granted Pursuant to lOCFR20.200 1 for Increase of the Annual Volume Limit and One-time Spreading of Current Inventory," dated October 4, 2004, BVY 04-110 J-2

3) "Safety Evaluation of Request to Amend Previous Approvals Granted Pursuant to lOCFR20.2002 - Vermont Yankee Nuclear Power Station (TAC No. MC5104)" dated July 19,2005, NVY 05-090 J-51

* To access this document, go to the Electronic Document Management System. Search using ODCM.

Off-Site Dose Calculation Manual Rev. 32 Page vii of x Vermont Yankee Nuclear Power Station LIST OF TABLES

Number Title Section-Page 1.1.1 Summary of Radiological Effluent Controls and Implementing Equations 1-3 1.1.2 Summary of Methods to Calculate Unrestricted Area Liquid 1-6 Concentrations 1.1.3 Summary of Methods to Calculate Off-Site Doses from Liquid 1-7 Concentrations 1.1.4 Summary of Methods to Calculate Dose Rates 1-8 1.1.5 Summary of Methods to Calculate Doses to Air from Noble Gases 1-9 1.1.6 Summary of Methods to Calculate Dose to an Individual from Tritium, 1-10 Iodine, and Particulates in Gas Releases and Direct Radiation 1.1.7 Summary of Methods for Setpoint Determinations 1-12 1.1.8 Effluent and Environmental Controls Cross-Reference 1-13 1.1.9 (Table Deleted) 1.1.10 Dose Factors Specific for Vermont Yankee for Noble Gas Releases 1-16 1.1.lOA Combined Skin Dose Factors Specific for Vermont Yankee Ground Level 1-17 Noble Gas Releases 1.1.11 Dose Factors Specific for Vermont Yankee for Liquid Releases 1-18 1.1.12 Dose and Dose Rate Factors Specific for Vermont Yankee for Iodines, 1-19 Tritium, and Particulate Releases 2.1.1 Definitions 2-2 2.1.2 Summary of Variables 2-4 3.1.1 Liquid Effluent Monitoring Instrumentation 3/4-2 3.1.2 Gaseous Effluent Monitoring Instrumentation 3/4-7 4.1.1 Liquid Effluent Monitoring Instrumentation Surveillance Requirements 3/4-4 4.1.2 Gaseous Effluent Monitoring Instrumentation Surveillance Requirements 3/4-9 4.2.1 Radioactive Liquid Waste Sampling and Analysis Program 3/4-12 4.3.1 Radioactive Gaseous Waste Sampling and Analysis Program 3/4-18 3.5.1 Radiological Environmental Monitoring Program 3/4-28 3.5.2 Reporting Levels for Radioactivity Concentrations in Environmental 3/4-33 Samples 4.5.1 Direction Capabilities for Environmental Sample Analysis 3/4-34 6.2.1 Environmental Parameters for Liquid Effluents at Vermont Yankee 6-7 6.2.2 Usage Factors for Various Liquid Pathways at Vermont Yankee 6-8

Off-Site Dose Calculation Manual Rev. 32 Page viii of x Vermont Yankee Nuclear Power Station Number Title Section-Page 6.9.1 Environmental Parameters for Gaseous Effluents at Vermont Yankee 6-36 6.9.2 Usage Factors for Various Gaseous Pathways at Vermont Yankee 6-38 6.10.1 Atmospheric Dispersion Factors 6-42 6.10.2 Site Boundary Distances 6-43 6.10.3 Recirculation Correction Factors 6-44 7.1 Radiological Environmental Monitoring Stations 7-4 8.2.1 Relative Fractions of Core Inventory Noble Gases After Shutdown 8-21

Off-Site Dose Calculation Manual Rev. 32 Page ix of x Vermont Yankee Nuclear Power Station LIST OF FIGURES

Number

7-1 Environmental Sampling Locations in Close Proximity to Plant 7-7

7-2 Environmental Sampling Locations Within 5 km of Plant. 7-8

7-3 Environmental Sampling Locations Greater Than 5 km from Plant 7-9

7-4 TLD Locations in Close Proximity to Plant 7-10

7-5 TLD Locations Within 5 km of Plant 7-11

7-6 TLD Locations Greater than 5 km from Plant 7-12

9-1 Liquid Effluent Streams, Radiation Monitors, and Radwaste Treatment System at Vermont Yankee 9-9

9-2 Gaseous Effluent Streams, Radiation Monitors, and Radwaste Treatment System at Vermont Yankee 9-10

Off-Site Dose Calculation Manual Rev. 32 Page x of x Vermont Yankee Nuclear Power Station .,- INTRODUCTION

Yif RDCO "Rgg)Vkwf Drvf Cbndxnbwkrp Obpxbn& surykefv gruobn bpe bssuryfe ofwirev gru wif dbndxnbwkrp rg rgg)vkwf drpdfpwubwkrp' rgg)vkwf ervfv' bpe fggnxfpw orpkwru vfwsrkpwv kp ruefu wr drosn zkwi wif _fuorpw abpmff Crpwurn Nkokwv zikdi kosnfofpw wif surhubo uftxkufofpwv rg Yfdipkdbn Vsfdkgkdbwkrp 7,:,D, Yif RDCO gruov wif cbvkv gru snbpw surdfexufv bpe kv efvkhpfe gru xvf c wif surdfexuf zukwfu, Mp beekwkrp' wif RDCO zknn cf xvfgxn wr wif zukwfu rg sfukrekd ufsruwv uftxkufe c wif PTC rp wif ervf drpvftxfpdfv rg snbpw rsfubwkrp, Yif ervf ofwirev drpwbkpfe ifufkp grnnrz bddfswfe PTC hxkebpdf gru dbndxnbwkrp rg ervfv pfdfvvbu wr eforpvwubwf drosnkbpdf zkwi wif ervf rclfdwkyfv rg =ssfpek M wr .-CIT3- "Tfhxnbwru Jxkef .,.-;& xpnfvv rwifuzkvf prwfe kp wif wfw,

Dforpvwubwkrp rg drosnkbpdf zkwi wif ervf nkokwv rg 1-CIT .;- "vff Crpwurn 0,1, .& zknn cf drpvkefufe bv efuprpvwubwkphdrosnkbpdf zkwi wif -,. ufo nkokw rg nRCIT/-,.0-."b&".& gru ofocfuv rg wif sxcnkd kp xpufvwukdwfe bufbv "Tfgfufpdf 37 IT /00:1' wikue drnxop,&

Mw vibL cf wif ufvsrpvkcknkw rg wif Cifokvwu Vxsfukpwfpefpw bpe Tbekbwkrp Surwfdwkrp Obpbhfu wr fpvxuf wibw wif RDCO kv xvfe kp wif sfugruobpdf rg wif vxuyfknnbpdf uftxkufofpwv rg wif bssursukbwf sruwkrpv rg RDCO Crpwurnv, Yif beokpkvwubwkrp rg wif surhubo gru wif rpvkwf ekvsrvbn rg vnkhiwn drpwbokpbwfe zbvwf' bv efvdukcfe kp =ssfpekdfv' kv bnvr wif ufvsrpvkcknkw rg wif Cifokvwu Vxsfukpwfpefpw,

=nn dibphfv wr wif RDCO oxvw cf ufykfzfe c wif Rpvkwf Vbgfw Tfykfz Crookwwff "RVTC& bpe bssuryfe c wif Jfpfubn Obpbhfu' kp bddruebpdf zkwi Yfdipkdbn Vsfdkgkdbwkrp 7,:,A' sukru wr kosnfofpwbwkrp, =nn bssuryfe dibphfv vibnn cf vxcokwwfe wr wif PTC gru wifku kpgruobwkrp kp wif Tbekrbdwkyf Eggnxfpw Tfnfbvf Tfsruw gru wif sfukre kp zikdi wif dibphf"v& zbv obef fggfdwkyf, Yif snbpw~v Drdxofpw Crpwurn Cfpwfu "DCC& vibnn obkpwbkp wif dxuufpw yfuvkrp rg wif RDCO bpe kvvxf xpefu drpwurnnfe ekvwukcxwkrp bnn bssuryfe dibphfv wr kw,

Rgg)Vkwf Drvf Cbndxnbwkrp Obpxbn Vfdwkrp .,- Tfy, 0. Sbhf M rg .; _fuorpw abpmff Pxdnfbu Srzfu Vwbwkrp )&) MpggSmt ia D_ociYn~ :in_ =SVoimn~ Cdgdon~ 7ihnoShon~ ShY LSYdifibdVSf ;aafp_ho 7ihomif 7minn"L_a_m_hV_n

Ncdn n_Vodih npggSmdu_n oc_ Yin_ VSfVpfSodih g_ociYn& Nc_ VihV_homSodih ShY n_okidho g_ociYn Sm_ Sfni npggSmdu_Y dh NSTf_ )&)&, ocmipbc NSTf_ )&)&/~ Sn s_ff Sn oc_ D_ociY A :in_ _lpSodihn& Pc_m_ gim_ SVVpmSo_ Yin_ VSfVpfSodihn Sm_ h__Y_Y pn_ oc_ D_ociY AA aim oc_ SkkmikmdSo_ Yin_ Sn Y_nVmdT_Y dh M_Vodihn .&, ocmipbc .&1 ShY .&))& Nc_ Yin_ aSVoimn pn_Y dh oc_ _lpSodihn Sm_ dh NSTf_n )&)&)' ocmipbc )&)&), ShY oc_ L_bpfSoimt Cdgdon Sm_ npggSmdu_Y dh NSTf_1.1.1.

3 Vminn"m_a_m_hV_ ia ifY N_VchdVSf Mk_VdadVSodih n_Vodihn/!~, oi oc_ h_s n_Vodihn VihoSdhdhb oc_ _lpdrSf_ho 7ihomifn dn km_n_ho_Y dh NSTf_ )&)&0&

Mk_VdSf Y_adhdodihn ShY _lpSodih rSmdSTf_n pn_Y/!~, dh oc_Sm_ dh NSTf_n ,&)&) ShY ,&)&,&

Iaa"Mdo_ :in_ 7SfVpfSodih DShpSf M_Vodih )&' L_r& -) JSb_ , ia )1 O_mgiho RShe__ EpVf_Sm Jis_m MoSodih _CDOJ .,.,. Yzrrew tk Vehntptlngep Jkkpzisy Etsywtpx esh Nrupirisynsl Jvzeyntsx

~ ~ Piymth "N& Onrny 0,/,. Onvznh Jkkpzisy Etsgisyweynts Yzr tk ymi Lwegyntsx tk Jv,3). ~.- Jkkpzisy Etsgisyweynts Onrnyx cJgpzhnsl Rtfpi Mexixd

_tyep Rtfpi Mex Etsgisyweynts Jv,3)/ ~/ .- ~!/M,JM;; 0,/,/ Onvznh Jkkpzisy Itxi _tyep Dth Itxi Jv,7). ~.,3 rwir ns e vyw, ~0,- rwir ns e w, Swles Itxi Jv,7)0 ~3 rwir ns e vyw, ~.- rwir ns e w, 0,/,0 Onvznh Vehexyi _wieyrisy _tyep Dth Itxi Jv,7). ~-,-7 rwir ns e rt, Suiwefnpny Swles Itxi Jv,7)0 ~-,/ rwir ns e rt, 0,0,. Mexitzx Jkkpzisyx Itxi Veyi _tyep Dth Itxi Veyi kwtr Jv,7)3 ~3-- rwirpw, Rtfpi Mexix Jv,7)0= Yons Itxi Veyi kwtr Rtfpi Jv,7): ~0--- rwirpw, Mexix Jv,7)0; 0,0,. "Etsynszih& Swles Itxi Veyi kwtr Nthnsix' Jv,7).7 ~.3-- rwirpw, _wnynzr esh Tewyngzpeyix nymJv,7)1- _ N./A; Iex

Skk)Ynyi Itxi Eepgzpeynts Peszep Yigynts .,- Vi, 0. Teli 0 tk .= aiwrtsy besoii Rzgpiew Ttiw Yyeynts aDEPL -)-)- ~Isrxmryhg"

_yppdv si Ydgmsoskmfdo Liioyhrx Isrxvsow drg Optohphrxmrk Luydxmsrw

- Rhxlsg ~O" I ~+ !! Pmpmx /)/). Ndwhsyw Liioyhrxw Jswh ivsp Sseoh Ndppd Dmv Jswh ivsp Lu)3'.- ===A1vrvdg mr d uxv) Ndwhw Sseoh Ndwhw Lu)3'0- ===A-,vrvdg mr d v)

Ehxd Dmv Jswh ivsp Sseoh Lu)3'./ ===A-,vrvdg mr d uxv) Ndwhw Lu)3'0/ ===A., pvdg mr d v)

/)/)/ Ndwhsyw Liioyhrxw Jswh ivsp Osgmrhw& Tvkdr Jswh ivsp -'-/-& Lu)3'.1 ===A7)1 vrvhp mr d uxv) avmxmyp& drg Vdvxmfyodxhw -'-//& avmxmyp& drg Lu)3'00 ===A-1vrvhp mr d v) Vdvxmfyodxhw mxl--. a C: Jdw

/)/)1 bhrxmodxmsr Lldywx avhdxphrx Tvkdr Jswh Lu)3'.1 ===A,)/vrvhp mr d ps) /)0)- asxdo Jswh ~ivsp Doo _syvfhw" asxdo Esg Jswh Mssxrsxh ~." ===A.1vrvhp mr d v) Tvkdr Jswh ===A.1vrvhp mr d v) alvsmg Jswh ===A71vrvhp mr d v)

Tii'_mxh Jswh Idofyodxmsr Rdrydo _hfxmsr -), Yhz) /- Vdkh 0 si -; bhvpsrx cdrnhh Syfohdv Vshv _xdxmsr Y=ANE 1.1.1 ~Cpovkowfe"

Vwnnbt pg Tbekpmphkdbm Eggmwfov Cpovtpmu boe Jnrmfnfovkoh Eswbvkpou

C ' ''' '' Ofvipe~m" ~ Nknkv'''''''' /)-)- Nkswke Eggmwfov Opokvpt Vfvrpkov

Nkswke Tbeybuvf Dkudibthf =mbtn Vfvrpkov Es):'- Cpovtpm /).)- Opokvpt

/)-). Ibufpwu Eggmwfov Opokvpt Vfvrpkov

Smbov Vvbdl boe =RI Rgghbu =mbtnggtkr Vfvrpkov gpt Ypvbm Es):'; CpovtpJ/)/)-)b Vuvfn Ppcmf Ibu =dvkxkv Ape Dpuf Tbvf ~Ypvbm Ape" Opokvptu

=mbtnggtkr Vfvrpkov gpt Vlko Es):'-R CpovtpJ/)/)-)b Dpuf Tbvf ~Vlko" VL=E Ppcmf Ibu =dvkxkv =mbtn Vfvrpkov Es):'.- Y)V) /):)M)m boe Opokvptu Cpovtpm /)/)7

~-" Optf bddwtbvf nfvipeu nb cf bxbkmbcmf ~uff uwcufswfov dibrvftu") ~." Eggmwfov Cpovtpm /)0)- tfswktfu viku fxbmwbvkpo pom kg vykdf vif mknkv pg Eswbvkpou 3'-& 3'/& 3'.-& 3'./& pt 3'.1 ku tfbdife) Jg viku pddwtu b Ofvipe JJ dbmdwmbvkpo uibmm cf nbef dpoukeftkoh bxbkmbcmf kogptnbvkpo gpt rbviybu pg fzrpuwtf vp tfbm koekxkewbmu gtpn mkswke& hbufpwu& boe ektfdv tbekbvkpo upwtdfu)

Rgg'Vkvf Dpuf Cbmdwmbvkpo Obowbm Vfdvkpo -), Tfx) /- Sbhf 1 pg -; _ftnpov abolff Pwdmfbt Spyft Vvbvkpo YACNI -)-).

Vzrrew tk Oiymthx yt Depgzpeyi _swixywngyih Awie Nnvznh Dtsgisyweyntsx

Ivzeynts Tikiwisgi Pzrfiw Deyiltw Ivzeynts Vigynts

1'- Vzr tk ymi Jwegyntsx tk Dtrfnsih 1)- f8\: =~ Dun ; -, Ikkpzisy Dtsgisyweyntsx ns Nnvznhx = +84I! ~ cIgiuy Ptfpi Lexixd =

1'. Ytyep Agynny tk Enxxtpih esh 1)- \: Isywensih Ptfpi Lexix kwtr epp D "MpDn&. ~D \: - .I',0 = rp 7 _ ~ Vyeynts Vtzwgix

Rkk'Vnyi Etxi Depgzpeynts Oeszep Vigynts -), Ti)/p Seli 3 tk -: aiwrtsy besoii Pzgpiew Stiw Vyeynts R:;EC -)-)/

PskkYow md Icrfmbp rm =YiasiYrc Ldd'Pgrc Ampcp domk Egnsgb =mlaclroYrgmlp

CnsYrgml Ocdcoclac Jsk_co =Yrcemow CnsYrgml Pcargml

0'- RmrYi ;mbw Ampc Ar_"kock&7 ~NgADEr_ 0).)- ~

0'/ IYvgksk LoeYl Ampc Akm"kockV 7 ~Ng ADEkm 0)/)- ~

Ldd'Pgrc Ampc =YiasiYrgml IYlsYi Pcargml -), Oct) /- MYec 1 md -3 Scokmlr TYlhcc JsaicYo Mmuco PrYrgml dEISM .,.,1

cttgx vm Tlzovky zv Jgsisgzl Lvyl bgzly

Mwgzpvu blmlxluil Vthlx Jgzlnvx Mwgzpvu clizpvu

7)3 dvzgs Ivk Lvyl bgzl mxvt 7,1,. Vvhsl Ogyly blslgylk mxvt czgir

7)0= dvzgs Ivk Lvyl bgzl mxvt 7,1,. Vvhsl Ogyly blslgylk mxvt Oxvssuk

7): crpu Lvyl bgzl mxvt Vvhsl 7,3,. Ogyly blslgylk mxvt czgir

7)0; crpu Lvyl bgzl mxvt Vvhsl 7,3,. + &txltR , OS ' Ogyly blslgylk mxvt Oxvuk yrpun x ~ . a- LNAn

7).7 Jxpzpigs Yxngu Lvyl bgzl mxvt 7,7,. &txltR ~a" cd_LNO"' czgir blslgyl vmP).0.' .).00' + ivy C /~ P cPJY dxpzpt' guk _gxzpisgzly pzo x - dsm/ D; Lgy

7)1- Jxpzpigs Yxngu Lvyl bgzl mxvt 7,7,. &txltR ~ ~a" OS_LNO" Oxvuk Slls blslgyl vm P).0.' b ivn ,,, ! npiv P).00' dxpzpt' guk _gxzpisgzly x - pzo d!!, D; Lgy

Ymm)cpzl Lvyl Jgsisgzpvu Tgugs clizpvu .,- bl, 0. _gnl ; vm .= elxtvuz fgurll Vislgx _vlx czgzpvu YACMI 1.1.5

Vvnnbsy pg Nfuipet up Dbmdvmbuf Eptft up Aks gspn Opcmf Lbtft

Irvbukpo Dbufhpsy Irvbukpo Tfgfsfodf Ovncfs Vfdukpo

1'.- Lbnnb Eptf up Aks gspn E~kst"nsbe&; P),.0MS~YEJ= 1)3)- Opcmf Lbtft Tfmfbtfe gspn k Vubdl

1'0- Lbnnb Eptf up Aks gspn E~ksh"nsbe&; P)./~S~MEJ" 1)3)- Opcmf Lbtft Tfmfbtfe gspn ~ Lspvoe Mfwfm

1'./ Cfub Eptf up Aks gspn Opcmf E~kst"nsbe&; ;-./.:O~_48 1)7)- Lbtft Tfmfbtfe gspn Vubdl k

1'0/ Cfub Eptf up Aks gspn Opcmf E~ksh"nsbe&; -)-1~S~MEJg 1)7)- Lbtft Tfmfbtfe gspn Lspvoe ~ Mfwfm

Pgg'Vkuf Eptf Dbmdvmbukpo Nbovbm Vfdukpo -), Tfw) /- Rbhf : pg -: _fsnpou abolff Ovdmfbs Rpxfs Vubukpo cDERL .,.,7

bwwk yp Sosyn y Ikvmvko Jyo y kx Oxnttnkv pyw cttw' Oyntxo' kxn Yktmvko tx Nk aovoko kxn Jtom akntktyx

Lzktyx aopooxmo Twlo Ikory Lzktyx bomtyx 7)/3 Jyo y Ittmkv Vrkx pyw 7,=,. Jmy"wowi C; _~cYJMN tmy bkmu aovoko yp .).0.' . .).00' cttw' kxn Yktmvko

7)11 Jyo y Ittmkv Vrkx pywJmyr"wow&C R_~RYJMNrtIV 7,=,. Nyxn Roov aovoko yp .) ! .0.'.).00' cttw' kxn Yktmvko Jtom Jyo cltxo Etvntxr 7)/:k 7,..,. ;/ ~ _ J~!, _ _: ; 7)/:l 7,..,. ; ~ ~.O-.4 tCv M/a

7)/:m 7,..,.

7)/:n 7,..,. 8 ~ OTA tCv Tys fkosyo

7)/; bstovnon Lxn J' ~ -,/3a 7,..,/

7)/= dxstovnon Lxn 7,..,/ J' ~ -,30a+ RRf bykro Ykn 7)0- Jtom Rtxo "Synvo bsy 7,..,0 btno V&

7)0. Jtom Rtxo "Synvo Ryxr Jk' ~ -,0=an gpn 7,..,0 btno V&

7)0/ bustxo "aotx Rtxo& JbPa ~ -,-.7aPa gpP 7,..,0 7)00 bustxo "JD f& JbPJ ~ -,-.3abPJ gpP 7,..,0

Vpp)bto Jyo Ikvmvktyx Skxkv bomtyx .,- ao, 0. Ykro .- yp .= eowyx hkxuoo Tmvok Yyo bktyx Y=ANE ,','1 ~Ctsynszih"

Evzeynts Tikiwisgi Pzrfiw Ceyiltw Evzeynts Vigynts 1&./ Tixns Nnsiw Ywesxkiw 1',,'. DYwes; )'))-0 T Ywes + Y Ywes ~_sxmniphih"

1&.0 Msyiwrthzpew Jeu Dtxi DJeu ; -'//E&-bJeu =TNkJeu 1',,'.

1&.1 MVIVM Mshnnhzep Cexo DtxiDig&-11r; .',:E&0 c L 1',,'/ ey bixy Vnyi Atzshew& -11 riyiwx

1&.3 MVIVM Mshnnhzep Cexo DtxiDig&.))r ; -')0E&0 c ! 1',,'/ ey bixy Vnyi Atzshew& .)) riyiwx

1&.7 Dtxi ey bixy Vnyi Deg&Ytyep; ~Dig&-11rc P~-11r 1',,'/ Atzshew kwtr epp gexox ts ~ ~Dig&.))r c P~.))r ymi MVIVM Seh

Rkk&Vnyi Dtxi Cepgzpeynts Oeszep Vigynts ,') Ti' ., Seli MM tk ,: aiwrtsy desoii Pzgpiew Stiw Vyeynts eJLVO 1.1.=

dxxl zr Yptzo rz dpzuy Nppxuyluzy

Oluzy cprppynp _xmp Mlpsz Oluzy dpnuzy

A-1 Vuuo OrrwpyD Vuuo clolp Nuntlsp A.1.1.1 Yzyuz &1=/7:0' cE&niI ~~uy dh ~ n,

Rlpz OrrwpyD bwly dlnv &cc-10A-1J, cc-10A-1L' lyo JaR arrsl dpx &713=,713A' _zmwp Rl Jnuu Yzyuz A-C ezlw Lzo A.3.1.1 c~~&nx'I ;;;ds~k1- PNPLn A-10 dvuy A.3.1.1 c vuy&nxiI 7000d !~k1k s P NP"n

A-31 dTJO _zmwp Rl Jnuu A.3.3.1 cdTJO&xcSt' I 1 ;O) ~!, 1 Yzyuz s + &1=/1:0J, 1=/1:0L'

arr-dup Nzp Mlwnwluzy Ylylw dpnuzy 1.0 cp. 71 blsp 13 zr 1C fpxzy glyvpp _nwpl bzp dluzy cACRI .).);

Immtlv gvk Ivpzwvulvgt Dwvzwt Dzw'almlzlvil

Vzpnpvgt cliovpigt alplk VEDS Dwvzwt cwxpi bxlipmpigpwv blipwv Dwvzwt blipwv NTbcadSITcAcNVT agkpwgipl Rpypk Immtlv 0,1)=)A 0,1).). Nvzulvgpwv Immtlv pvzulvgpwv tp cghtl 0)=). cghtl 0).). Nvzulv zlpttgvil zlypzlulv cghtl 1)=). cghtl 1).). agkpwgipl Lglw Immtlv 0,1)=)C 0,1).)/ Nvzulvgpwv Immtlv pvzulvgpwv tp cghtl 0)=)/ cghtl 0).)/ Nvzulvgpwv zlypzlulv cghtl 1)=)/ cghtl 1).)/ aAENVADcNeI RN_dNE )IJJRdITcb Dwvilvzgpwv 0,1);)A 0,1)/). Rpypk gl guxtpvn ~ gvgtp cghtl 1);). cghtl 1)/). xzwnzgu Ewl ' Rpypk 0,1);)C 0,1)/)/ Rpypk agkgl czlgulv 0,1);)D 0,1)/)0 aAENVADcNeI LAbIVdb IJJRdITcb Ewl agl 0,1);)I 0,1)0). Lglw gl guxtpvn ~ gvgtp cghtl 1);)/ cghtl 1)0). xzwnzgu Ewl mzwu Twhtl Lgl 0,1);)J 0,1)0)/ Ewl mzwu .'.0.&.'.00& czppu gvk 0,1);)L 0,1)0)0 agkpwvitpkl pv Ygzpitgl Jwzu Lglw agkgl czlgulv 0,1);)M 0,1)0)1 elvptgpwv Iog czlgulv 0,1);). 0,1)0)3 Yzpugz Dwvgpvulv 0,1);)R 0,1)0)7 blgzv Ol Apz Irliwz /.4-8-:~ 0,1)0):" cVcAR EVbI cwgt Ewl 0,1);)S 0,1)1).

~ bxlipmpigpwv 0,1);)P zlugpv pv xtgv cliovpigt bxlipmpigpwv gvk p kxtpiglk pv gEDS Dwvzwt 0,1)0):) Vmm'bpl Ewl Dgtitgpwv Sgvgt blipwv .)- al) 0. Ygnl .0 wm .= elzuwv fgvsll Titlgz Ywlz bgpwv aCDOJ .).); ~Evuouki"

Syomoufs akhnuohfs Ykozki SIEP Evuyvs avwoh _wkholohfovu _khovu Evuyvs _khovu YCINSOSMNECO JRcNYSRPJRaCO PSRNaSYNRM Yfiovsvmohfs Juoyvutkufs Pvuovyoum 0,1)=)E 0,1)3). Tyvmyft Oozoum vl ykxoyki tvuovyoum hyokyof afgsk 0)=)0 afgsk 0)3). Ykwvyoum skksz lvy yfiovfhoo ou afgsk 0)=)1 afgsk 0)3)/ zftwskz Ikkhvy hfwfgoso lvy kuoyvutkufs afgsk 1)=)0 afgsk 1)3). fufszoz Ofui bzk Ekuzz 0,1)=)I 0,1)3)/ Nukyhvtwfyozvu Tyvmyft 0,1)=)J 0,1)3)0

JLLObJRa ESRaYSO DC_J_ DfzkzA 0);~ 0)= 0,1)7 bRNVbJ YJTSYaNRM YJVbNYJPJRa_ Cuufs Yfiovfhok Jllsku Ykskfzk 7):)E)s .-). Ykwvy Juoyvutkufs Yfiovsvmohfs Pvuovyoum 7):)E)0 .-)/ _wkhofs Ykwvyz 7):)E)/ .-)0 Pfpvy Enfumkz v Yfiovfhok Ooxoi& 7).1 .-)1 Mfzkvz& fui _vsoi dfzk aykftku _zktz

Sll'_ok Ivzk Efshsfovu Pfufs _khovu .)- Yk) 0. Tfmk .1 vl .= ckytvu efurkk Rhskfy Tvky _fovu J01;: ,','/

~7R_RfRP"

CSS&IVfR 7ceR 3N_Og_NfVcb =NbgN_ IROfVcb ,') ERh' -, DNTR ,. cS ,/ LRdacbf MNbYRR AgO_RNd DciRd IfNfVcb cDESL r,r,.Y Juxl Mgiyuwx bvliomoi muw dlwsuty fgtpll muw Vuhrl Ngx alrlgxlx

agkoutzi.okl Ngssg cuygr Euk Elyg bpot Iushotlk bpot Elyg Dow Ngssg Dow Juxl Mgiyuw Juxl Mgiyuw Juxl Mgiyuw Juxl Mgiyuw Juxl Mgiyuw "bygip alrlgxl& JME4 JMb 4 +- 4! JMm JM= 0 s0 0 "swls) s & " wtwls) & "swls~ xli& 0 vIo) w "swgC) s & " swgC) s & vIo) w P,y IO) w vIr) w vIr) w . Dw)1. :,:1L)-0' /,3;L)-0 .,/-L)-/ 0,/:L)-0 ;,0-L)-0 Rw):0s . d!al~,f ----- r,3.L)Yb /,::L)-1 r,;0L)Yb £~f . .,.7L)-0 .,13L)-0 J!Jl~,J .,;7L)-0 .,/0L)-0 £~f r,3.L)Yb . r,01L)-0 /,.bL)-0 r,;bL)-0 /!d;l~« Rw):7 . !i;l~,J ;,70L)-0 /,-3L)-/ r,-0L)-/ 3,.7L)-0 Rw):: .,17L)-/ . /,07L)-0 .,31L)-/ /,;0L)-0 y!;l~,; Rw):; . r,33L)-/ r,YOL)-/ 0,-bL)-/ r,-3L)-/ r,70L)-/ Rw);- . y!al~,; 7,/;L)-0 ;!;l~,; 7,:0L)-0 .,30L)-/ el).0.s . i!/l~« 1,73L)-1 :,:7L)-1 r,r.L)-0 y!al~,M el).00s . ;!/l~,M ;,;1L)-1 /!fl~,J .,1:L)-0 0,/7L)-1 el).00 . /,;1L)-1 0,-3L)-1 7,:.L)-1 .,-bL)-0 J!Jl~,M el).0bs . 0,./L)-0 7, rrL)-1 0,;0L)-0 7,0;L)-1 0,03L)-0 el).0b .,:.L)-0 . .,:3L)-0 M!al~,J /,13L)-0 .,;/L)-0 el).07 . .,1/L)-0 .,//L)-/ /,-7L)-/ .,/7L)-/ r,brL)-0 el).0: . :,:0L)-0 1, .0L)-0 .,10L)-/ M!dl~,J ;,/.L)-0

~ :,:1L)-0 A :,:1 e .-) 0

Ymm)boyl Juxl Igrizrgyout Tgtzgr bliyout .,- al, 0. _gnl .3 um.; dlwsuty fgtpll Vzirlgw _ulw bygyout Y=ANE -)-)mR=

Cpndkogf Vlko Dptg Iceupst Vrgekhke hps _gsnpou bcolgg Jspvof Ngwgm Ppdmg Jct Tgmgctgt

Tcfkpovemkfg & ~nsgn' tge" .4! C) ~ -+ ys

=s'0- -)70E'R- Ms':/O -)1:E',0 Ms':1O 3)/0E',. Ms':1 0);-E',. Ms':7 0),3E'Rm Ms':: .) mmE'RL Ms':; 1)mRE'RL Ms';, /);;E'Rm ag'-/-O -):7E',. ag'-//O /);,E',. ag'-// -)0-E',. ag'-/1O 1)/0E',. ag'-/1 :)/3E',. ag'-/7 0)1:E'Rm ag'-/: .).3E'Rm

Rhh'Vkug Dptg Ccmevmcukpo Ocovcm Vgeukpo -), Tgw)/m Scig -7 ph -; _gsnpou bcolgg Pvemgcs Spxgs Vucukpo T=ALE 1.1.11

Dotf Ibduost Spfdigid gos Vfsmonu _bnkff gos Lirvie Rflfbtft

Rbeionvdlief Toubl Aoez Mbyimvm Oshbn Dotf Ibduos Dotf Ibduos ~ msfm" DILiuclCi DILimolCi~ msfm"

J'/ .),3E',0 .),3E',0 Nb'.0 /)/:E',. /)/:E',. Cs'1- /)-,E',0 3);3E',. Mn'10 .),:E'Ol /),,E&OO :)S/E',3 1).;E',/ 0)g:E',. .)10:',- .)0;E'Ol -):0E&OO 1);7E',. 0)/0E'Ol Co'3, .) -/E'Ol -).:E&OO an'31 :),3E&OO -)30E&O- Ss':; .)11E'Ol :);-E&OO Ss';, 0)./E&Ol -)37E&,. as';1 0).-E',0 -)/3E'Ol Mo';; 0)7;E',/ 0)1-E',. Td';;m 1),0E',3 .)//E',0 =h'l l Om 3);,E',/ 7),.E'Ol Sc'-.0 :)00E',/ .)..E'Ol Sc'-.1 7)1.E',/ -)-1E'Ol -'-/- .)17E',. -)07E&,- -'-/. /)lOE',3 -).;E',0 -'-// /)/-E',/ -)3/E&OO -'-/1 /) -3E',0 1);,E',. Ct'-/0 -).:E&,. -)3,E&,. Ct'-/7 7)1:E&Ol -).-E&,. Ab'-0, 0),:E',/ ;)7.E',. Cf'-0- .)/-E',1 0)lOE',. Y'-:7 -)-:E',. :);,E&,,

Ogg'Siuf Dotf Cbldvlbuion Mbnvbl Sfduion -), Rfw) /- Pbhf -: og -; Vfsmonu _bnkff Nvdlfbs Poxfs Subuion bDERL 1.1.12

Jvyk fui Jvyk _fzk Mfhzvxy awkholoh lvx ckxtvuz efurkk lvx sviouky, bxozot, fui Yfxzohsfzk _kskfyky

azfhr _kskfyk Nxvui Rkks _kskfyk~ _fiov- Ixozohfs Vxmfu Ixozohfs Vxmfu Ixozohfs Vxmfu Ixozohfs Vxmfu uhsoik Jvyk Mfhzvx Jvyk _fzk Mfhzvx Jvyk Mfhzvx Jvyk _fzk Mfhzvx &txkt' , &txkt-ykh ' & txkt' , & txkt-ykh ' JMN yohv --f- JMN yohf I" JMN mohv JMN mohv I" x -P~ 0 --f- .+!- 0

O-3 7.=CL-/7 0.:0L-/1 0.sVL-/1 3.7=L-Vs I-07 1.C0L-Vs C.0AL)VV ;.;AL)VV 1. ssL)/1 Ix-:0 A.0:L-/3 1.A1L-Vs 7.7:L-/1 0.:3L)VV Su-:7 C.37L-Vs 3.;CL)Vs 7.C=L)VV 0.C:L)/1 Mk-:: 7.11L-Vs 0.33L)Vs 1.1/L)VV ;.C7L)Vs Mk-:C C.33L-Vs 3./CL)Vs 7.C1L)VV 0.;3L)/1 Iv-:= 1.=3L-Vs 0./3L)Vs 0.71L)VV :.3/L)Vs Iv-:A 7.A3L-Vs 0.=3L)Vs 1.:;L)VV C.01L)Vs Iv-;/ 0./1L)Vs 7.:7L)/1 :.31L)Vs 1.31L)/3 1u-;: 7.C;L)VV 0.;/L)/1 1.:3L)Vs A.1/L)/1 ak-=: 3.0CL)VV 0./3L)/1 0.;3L)Vs :.1=L)/1 au-003 0.7=L)VV 7.=;L)Vs =.:;L)VV 1.7;L)/1 ax-AC 0.:1L)Vs 7.=CL)/1 =.=CL)Vs 1.7;L)/3 ax-C/ :.=:L)/1 0.A0L)/7 3./3L)/3 C.:;L)/7 1x-C: C.13L-Vs 3./7L)Vs 7.A7L)VV 0.:CL)/1 ag-017 0.;CL)VV :.;:L)Vs A.C:L)VV 1.CCL)/1 ag-01: 0.;=L)VV ;.:3L)Vs A.:CL)VV 3.37L)/1 0-030 0./3L)/1 3.1:L)/3 :.3AL)/1 0.=/L)/7 0-033 0.0VL)VV 3.7=L)Vs A.=:L)VV 1.=;L)/1 Iy-037 1.01L)Vs =./;L)/1 0./CL)/1 3.;3L)/3 Iy-03= 1.0=L)Vs =.70L)/1 0.00L)/1 3.=AL)/3 Ef-07/ 0.:/L-Vs 7.A;L)VV 1.1;L)VV =.0CL)Vs Ik-070 1.1;L-Vs =.11L)VV 0.1=L)VV 7./7L)Vs Ik-077 :. 07L)VV 0.;1L)/1 1.;CL)Vs A.:1L)/1

~ bnk xkskfyk wvouz xklkxkuhk oy znk Tvxzn dfxknvyk. bnkyk ivyk fui ivyk xfzk lfhzvxy fxk hvuykxfzok lvx wvzkuzofs xkskfyk fwwsohfzovuy fyyvhofzki ozn mxvui skks kllskuzy lxvt vznkx tfpvx lfhosozoky &o.k., bxgouk Eosioum, _kfhzvx Eosioum, DVN, fui IDE'.

Vll-aozk Jvyk Ifshsfzovu Sfufs akhzovu 0./ _k. 30 Yfmk 0C vl 0C ckxtvuz efurkk Thskfx Yvkx azfzovu -') CDINONUNROT

CRSd dNLeSa_ VSded MNOS_SeSa_d ~CIJVN -','," I_M MadN NbfIeSa_ gIcSIJVN _IYNd ~CIJVN -','-" hRSLR IcN feSVSiNM S_ eRN-!.+~ DE

:OO&ASeN 0adN /IVLfVIeSa_ 3I_fIV ANLeSa_ -') =Ng' .) ;IPN 1 aO1: DNcYa_e EI_TNN 7fLVNIc ;ahNc AeIeSa_ Y=ANE /).). Dfgkpkwkrpv

.) Jbvfrxv Tbezbvwf Yufbwofpw Vvwfo ' Yif =xhofpwfe Rgg'Jbv Vvwfo ~=RJ" kv wif hbvfrxv ubezbvwf wufbwofpw vvwfo zikdi ibv cffp efvkhpfe bpe kpvwbnnfe wr ufexdf ubekrbdwkyf hbvfrxv fggnxfpwv c drnnfdwkph sukobu drrnbpw vvwfo rgg'hbvfv guro wif sukobu vvwfo bpe surykekph gru efnb ru irnexs gru wif sxusrvf rg ufexdkph wif wrwbn ubekrbdwkykw sukru wr ufnfbvf wr wif fpykurpofpw)

/) Lrw Vwbpec ' Lrw vwbpec ofbpv rsfubwkrp zkwi wif ufbdwru dukwkdbn bpe wif obkp vwfbo nkpf kvrnbwkrp ybnyfv dnrvfe)

0) Moofekbwf ' Moofekbwf ofbpv wibw wif uftxkufe bdwkrp zknn cf kpkwkbwfe bv vrrp bv subdwkdbcnf drpvkefukph wif vbgf rsfubwkrp rg wif xpkw bpe wif kosruwbpdf rg wif uftxkufe bdwkrp)

1) Mpvwuxofpw Cbnkcubwkrp ' =p kpvwuxofpw dbnkcubwkrp ofbpv wif belxvwofpw rg bp kpvwuxofpw vkhpbn rxwsxw vr wibw kw druufvsrpev& zkwikp bddfswbcnf ubphf bpe bddxubd& wr b mprzp ybnxf~v" rg wif sbubofwfu zikdi wif kpvwuxofpw orpkwruv) Cbnkcubwkrp vibnn fpdrosbvv wif fpwkuf kpvwuxofpw kpdnxekph bdwxbwkrp& bnbuo& ru wuks) Tfvsrpvf wkof bv vsfdkgkfe kv prw sbuw rg wif urxwkpf kpvwuxofpw dbnkcubwkrp cxw zknn cf difdmfe rpdf sfu rsfubwkph ddnf)

3) Mpvwuxofpw Cifdm ' =p kpvwuxofpw difdm kv txbnkwbwkyf efwfuokpbwkrp rg bddfswbcnf rsfubcknkw c rcvfuybwkrp rg kpvwuxofpw cfibykru exukph rsfubwkrp) Yikv efwfuokpbwkrp vibnn kpdnxef& zifuf srvvkcnf& drosbukvrp rg wif kpvwuxofpw zkwi rwifu kpefsfpefpw kpvwuxofpwv ofbvxukph wif vbof ybukbcnf)

7) Mpvwuxofpw Ixpdwkrpbn Yfvw ' =p kpvwuxofpw gxpdwkrpbn wfvw vibnn cf;

b) =pbnrh dibppfnv ' wif kplfdwkrp rg b vkhpbn wif dibppfn bv dnrvf wr wif vfpvru bv subdwkdbcnf wr yfukg rsfubcknkw kpdnxekph bnbuo bpe,ru wuks gxpdwkrpv)

c) Akvwbcnf dibppfnv ' wif kplfdwkrp rg b vkhpbn kpwr wif vfpvru wr yfukg wif rsfubcknkw kpdnxekph bnbuo bpe,ru wuks gxpdwkrpv)

:) Rgg'Vkwf Drvf Cbndxnbwkrp Obpxbn ~RDCO" ' = obpxbn drpwbkpkph wif dxuufpw ofwirernrh bpe sbubofwfuv xvfe kp wif dbndxnbwkrp rg rgg'vkwf ervfv exf wr ubekrbdwkyf hbvfrxv bpe nktxke fggnxfpwv& kp wif dbndxnbwkrp rg hbvfrxv bpe nktxke fggnxfpw orpkwrukph bnbuo,wuks vfwsrkpwv& bpe kp wif drpexdwkrp rg wif fpykurpofpwbn ubekrnrhkdbn orpkwrukph surhubo) Yif RDCO vibnn bnvr drpwbkp ~." wif Tbekrbdwkyf Eggnxfpw Crpwurnv ~kpdnxekph wif Tbekrnrhkdbn Epykurpofpwbn Orpkwrukph" Surhubo uftxkufe c Yfdipkdbn Vsfdkgkdbwkrp 7): )D& bpe ~/" efvdukswkrpv rg wif kpgruobwkrp wibw virxne cf kpdnxefe kp wif bppxbn Tbekrbdwkyf Eggnxfpw Tfnfbvf Tfsruw bpe =ppxbn Tbekrnrhkdbn Epykurpofpwbn Rsfubwkph Tfsruw uftxkufe c Yfdipkdbn Vsfdkgkdbwkrpv 7)7)D bpe 7)7)E& ufvsfdwkyfn) Rgg'Vkwf Drvf Cbndxnbwkrp Obpxbn Vfdwkrp /)- Tfy) 0- Sbhf / rg .- _fuorpw abpmff Pxdnfbu Srzfu Vwbwkrp aCDPJ 0,/,/ "Eutzntih&

;, Yikirntl Tzeli ) Yikirntl uzeli ny zmi vixnuh uk znsi fiziit zmi ymzhut uk zmi tnz vxnux zu e xikirntl eth zmi yzexzv uk zmi vretz yfyiwitz zu zmez xikirntl, Lux zmi vxvuyi uk hiynltezntl kxiwitg uk ziyzntl eth yxinrretgi' e xikirntl uzeli ymerr siet e xilrexr ygmihrih xikirntl uzeliA muiix' mixi ygm uzeliy uggx nzmnt ; sutzmy uk zmi gusvriznut uk zmi vxinuy xikirntl uzeli' zmi xiwnxih yxinrretgi ziyzntl tiih tuz fi vixkuxsih tznr zmi tiz xilrexr ygmihrih uzeli,

=, _nzi Duthex ) ami ynzi futhex ny ymut nt Vretz Ixentl 7=0.):037,

/., _uxgi Emigp ) ami wernzezni eyyiyysitz uk gmettir xiyvutyi mit zmi gmettir yityux ny ivuyih zu e xehnuegzni yuxgi,

//, _xinrretgi Lxiwitg ) btriyy uzmixnyi yzezih nt zmiyi yvignkngeznuty' vixnuhng yxinrretgi ziyzy' gmigpy' gernfxeznuty' eth iesnteznuty ymerr fi vixkuxsih nzmnt zmi yvignknih yxinrretgi ntzixery, amiyi, ntzixery se fi ehoyzih vry 07~, ami uvixezntl ggri ntzixer ny gutynhixih zu fi /; sutzmy eth zmi zurixetgi yzezih efui ny evvrngefri,

/0, _xinrretgi Otzixer) ami yxinrretgi ntzixer ny zmi gerithex znsi fiziit yxinrretgi ziyzy' gmigpy' gernfxeznuty' eth iesnteznuty zu fi vixkuxsih vut et ntyzxsitz ux gusvutitz mit nz ny xiwnxih zu fi uvixefri, amiyi ziyzy triyy uzmixnyi yzezih nt zmiyi yvignkngeznuty se fi enih mit zmi ntyzxsitz' gusvutitz' ux yyzis ny tuz xiwnxih zu fi uvixefri' fz zmiyi ziyzy ymerr fi vixkuxsih ut zmi ntyzxsitz' gusvutitz' ux yyzis vxnux zu fintl xiwnxih zu fi uvixefri,

/1, citznreznut Jmeyz axiezsitz _yzis ) ami Yeheyzi Dnrhntl eth CTM Dnrhntl itznreznut NJVC knrzixy exi itznreznut imeyz zxiezsitz yyzisy mngm mei fiit hiynltih eth ntyzerrih zu xihgi xehnuegzni sezixner nt vexzngrezi kuxs nt leyiuy ikkritz f veyyntl itznreznut enx zmxulm NJV C knrzixy kux zmi vxvuyi uk xisuntl xehnuegzni vexzngreziy kxus zmi leyiuy imeyz yzxies vxnux zu xirieyi zu zmi itnxutsitz, Jtlntiixih yekiz kiezxi ezsuyvmixng grietv yyzisy' ygm ey zmi _zethf Mey axiezsitz "_DMa& _yzis' exi tuz gutynhixih zu fi itznreznut imeyz zxiezsitz yyzis gusvutitzy,

/3, citz-Vxlntl ) citz-vxlntl ny zmi gutzxurrih vxugiyy uk hnygmexlntl enx ux ley kxus zmi vxnsex gutzentsitz zu gutzxur zisvixezxi' vxiyyxi' msnhnz' gutgitzxeznut ux uzmix uvixezntl guthnznuty,

Tkk)_nzi Iuyi Eergreznut Reter _igznut 0,. Yi, 1. Veli 1 uk /. cixsutz detpii Sgriex Vuix _zeznut R;=ID 0,/,0

PullYry nd TYrgY_kcs

TYrgY_kc Ccdgmgtgnm Smgts

RntYk eYllY Yatgvgty anmtYgmcb gm Y rcsgm kgmcr gm Ag stnrYec bgrcatky gm kgmc wgtf Y eYo _ctwccm YbhYacmt stnrYec lnbukcs,

+! AnmacmtrYtgnm Yt ongmt nd bgsafYrec tn Ym A- : -)kAg-lk umrcstrgatcb YrcY nd bgssnkvcb Ymb cmtrYgmcb mn_kc eYs ~g~ gm kgpugb oYtfwYys drnl Ykk stYtgnm snuracs,

: RntYk Yatgvgty nd Ykk bgssnkvcb Ymb cmtrYgmcb mn_kc eYscs gm kgpugb oYtfwYys drnl Ykk stYtgnm snuracs,

AnmacmtrYtgnm nd rYbgnmuakgbc ~g~ Yt tfc ongmt nd kgpugb bgsafYrec tn Ym umrcstrgatcb YrcY,

~ AnmacmtrYtgnm nd rYbgnmuakgbc ~g,~

~ AnmacmtrYtgnm' cxakusgvc nd mn_kc eYscs' nd rYbgnmuakgbc ~g~ drnl tYmi7 ~o~ Yt ongmt nd bgsafYrec tn Ym umrcstrgatcb YrcY, : AnmacmtrYtgnm nd rYbgnmuakgbc ~g~ gm lgxturc Yt tfc lnmgtnr,

~ =ctY bnsc tn Ygr drnl stYai rckcYsc, lrYb

~ =ctY bnsc tn Ygr drnl ernumb kcvck rckcYsc, lrYb

EYllY bnsc tn Ygr drnl stYai rckcYsc, lrYb

: EYllY bnsc tn Ygr drnl ernumb kcvck rckcYsc, lrYb

Cans Cnsc tn argtgaYk nreYm drnl stYai rckcYsc, lrcl

Cane : Cnsc tn tfc argtgaYk nreYm drnl ernumb kcvck lrcl rckcYsc,

Cgrcat bnsc "Rur_gmc =ugkbgme&, lrcl

Mdd)Pgtc Cnsc AYkaukYtgnm JYmuYk Pcatgnm 0,. Ocv, 1. NYec 3 nd /. Tcrlnmt VYmicc LuakcYr Nnwcr PtYtgnm S7:JA .)-). ~;pouioved"

Vasiabme =efioiuipo Toiut

=ec'.11n 3 ERCRE Eodiwidvam ;atl =pte! Riue :pvodasz '.11 neuest) nsen

=ec'/,,n 3 ERCRE Eodiwidvam ;atl =pte! Riue :pvodasz '/,, neuest) nsen

=ac'Spuam 3 =pte au Yetu Riue :pvodasz fspn amm catlt po uhe ERCRE Oad) nsen

Pd 3 =pte saue au / feeu fspn vopbtusvcued tide pf nsen tupsage npdvme faciog tiue bpvodasz) hs

=dA 3 =isecu dpte au tiue bpvodasz res vopbtusvcued nsen tupsage npdvme ~thpsu eod") zs'npdvme

=dR 3 =isecu dpte au tiue bpvodasz res vopbtusvcued nsen tupsage npdvme ~mpog tide") zs'npdvme

=uniue 3 Danna dpte up ais& cpssecued fps fioiue cmpvd) nsad

=Dar 3 Eouesnpdvmas gar dpte rspkecued up uhe nayinvn nsen tiue bpvodasz mpcauipo fspn setio xatue opu disecumz zs thiemded bz =7 Y npdvmet)

=np 3 =pte up uhe nayinvn psgao) nsen =R 3 =pte up tlio fspn beua aod ganna) nsen

Pt 3 =pte saue au - neues fspn tpvsce io thiemded eod pf nsen Mpsuh Yasehpvte) hs

=t 3 7oovam dpte au tiue bpvodasz fspn fiyed tpvscet io nsen thiemded eod pf Mpsuh Yasehpvte) zs

PRI= 3 Layinvn dpte saue au / feeu pwes upr pf =7Y io a nsen tupsage npdvme) hs

PRIP 3 Layinvn dpte saue au / feeu pwes upr pf each setio nsen mioes io a tupsage npdvme) hs

=RI= Rlzthioe dpte au uhe tiue bpvodasz fspn =7 Y io nsen tupsage npdvmet ~vopbtusvcued upr tvsfacet") zs' npdvme Nff'Riue =pte ;amcvmauipo Laovam Recuipo.), Pew)/, Oage 0 pf +~ Vesnpou _aolee Mvcmeas Opxes Ruauipo T;=LD 1.0.1 'Apovkowfe)

Ybtkbcmf Cfgkokvkpo Vokvu

CSJR Sluikof epuf bv vif ukvf cpwoebt gtpn tfuko mkoftu ntfn ko uvptbhf npewmfu 'wopcuvtwdvfe vpr uwtgbdfu). t -mkoft

Cpuf vp vif vpvbm cpe. ntfn

~4! . Nm7 : Tif ektfdv epuf dpoxftukpo gbdvpt gpt N-07 udbvvft ntfn gtpn vif vwtckof ibmm vp Lpdbvkpo 'L). M_ i f

- Cpuf tbvf bv dpovbdv gtpn vif wouikfmefe vpr tbe uwtgbdf pg tfuko mkoft. it

- Cpuf bv vif ukvf cpwoebt gtpn wouikfmefe ntfn npx~Iofov')gt~ukomkoftcfvyffo vtbougft dbul boe uvptbhf npewmf.

Rw - Cpuf tbvf bv +nfvft gtpn upwtdf ko wouikfmefe foe ntfn pg Nptvi _btfipwuf. it

Cw : Tif boowbm epuf bv vif ukvf cpwoebt gtpn gkzfe ntfn upwtdfu ko vif wouikfmefe foe pg Nptvi _btfipwuf. it

CE : Ckmwvkpo gbdvpt. tbvkp

CEnko - Mkoknwn bmmpybcmf ekmwvkpo gbdvpt. tbvkp CE&d : Apnrpukvf ulko epuf gbdvpt. ntfn - ufd rAk- t

- Tpvbm cpe hbnnb epuf gbdvpt gpt owdmkef "k." ntfn-n3 rAk- t

- Apnrpukvf vpvbm cpe epuf gbdvpt. ntfn-n3 rAk- t

CELvc : Skvf-urfdkgkd, vpvbm cpe epuf gbdvpt gpt b mkswke ntfn tfmfbuf pg owdmkef "k." Ak

CELnp : Skvf-urfdkgkd, nbzknwn pthbo epuf gbdvpt gpt b ntfn mkswke tfmfbuf pg owdmkef "k." Ak

Ogg-Skvf Cpuf Abmdwmbvkpo Mbowbm Sfdvkpo 1./ Rfx. 3/ Pbhf 7 pg 0/ Yftnpov abolff Nwdmfbt Ppyft Svbvkpo S;=JD 1.0.1 'Anmshmted)

Vaphabke Cefhmhshnm Tmhsr

CEIrhcn Rhse-roechfhc, cphshcak npgam dnre facsnp fnp a rsacilpel garentr pekeare nf mtckhde "h." Ah

CEI&rhcn Rhse-roechfhc, cphshcak npgam dnre pase facsnp fnp alpel-rec rsaci garentr pekeare nf mtckhde "h." ~Ah- wp

CEIghcn Rhse-roechfhc, cphshcak npgam dnre facsnp fnp a gpntmdlpel keuek garentr pekeare nf mtckhde "h." Ah

CEI&ghcn Rhse-roechfhc, cphshcak npgam dnre pase facsnp fnp alpel-rec gpntmd keuek garentr pekeare nf mtckhde "h." ~Ah- wp

CERh =esa rihm dnre facsnp fnp mtckhde "h." lpel: l& oAh- wp

CE&hr : Anlbhmed rihm dnre facsnp fnp mtckhde "h" fpnl a lpel-rec rsaci pekeare. ~Ah- wp

CE&hg Anlbhmed rihm dnre facsnp fnp mtckhde "h" fpnl a lpel-rec gpntmd keuek pekeare. ~Ah- wp

~!, Ialla ahp dnre facsnp fnp mtckhde "h." lpad:-pm & oAh- wp

CEh : =esa ahp dnre facsnp fnp mtckhde "h." lpad: l & oAh- wp

Pcnr Aphshcak npgam dnre pase dte sn hndhmer amd lpel oapshctkaser pekeared fpnl rsaci. wp

Pcng Aphshcak npgam dnre pase dte sn hndhmer amd lpel oapshctkaser pekeared fpnl gpntmd. wp

Prihmr : Rihm dnre pase dte sn rsaci pekeare nf mnbke garer. lpel wp

Prihmg : Rihm dnre pase dte sn gpntmd pekeare nf mnbke garer. lpel wp

Nff-Rhse Cnre Aakctkashnm Lamtak Recshnm 1./ Peu. 3/ Oage 7 nf _/ Veplnms Yamiee Mtckeap Onvep Rsashnm T;=LD 0,/,0 "Aonuinved&

Yasiable Cefmiuion Vniut

Rubt : Toual bodz dote saue dve uo noble gatet fsom tuack msem seleate, zs

Rubg : Toual bodz dote saue dve uo noble gatet fsom msem gsovnd lewel seleate, zs

-~. : Cepotiuion facuos fos dsz depotiuion of elemenual sadioiodinet and ouhes pasuicvlauet,

D : Isott elecusic ovupvu owes uhe pesiod of inuesetu,

~ Esacuion of a zeas uhau a tuosage modvle it in vte fsacuion xiuh an vnobtusvcued tide osienued uoxasd xetu tiue bovndasz,

fIap Esacuion of a zeas uhau uhe inuesmodvlas gap it nou fsacuion thielded,

fSJ : Esacuion of a zeas uhau a tuosage modvle it in vte fsacuion xiuh an vnobtusvcued uop tvsface,

: Elox saue ovu of ditchasge canal, gpm

: Elox saue patu lirvid sadxatue moniuos, gpm

! : Elox saue patugateovtsadxatue moniuos, cc tec

DNI Svm of uhe fsacuiont of combined efflvenu fsacuion E+ : concenusauiont in lirvid pauhxazt "eyclvding noble gatet&,

: ;nnval awesage efflvenu concenusauion limiu fos -)lAi sadionvclide ~i~ "lOAER0., /../)0.,03./ ' cc ;ppendiy =' Table 0' Aolvmn 0&

: Releate fos sadionvclide ~i~ fsom uhe poinu of cvsiet inuesetu,

: Releate saue fos sadionvclide ~i~ au uhe poinu of inuesetu, tec

Off)Siue Cote Aalcvlauion Manval Secuion 0,. Rew, 1. Page 7 of /. Yesmonu _ankee Nvcleas Poxes Suauion S:;JC 0-/-0 &=onuhnvdc'

V_sh_ald Adehnhuhon Tnhut

~ Sgd noald f_t s_chonvblhcd "h" sdld_td s_ud _u ugd ~=h pl_nu tu_bk- tdb

7 Sgd noald f_t s_chonvblhcd "h" sdld_td s_ud esom ~=h fsovnc ldwdl- tdb

7 Sgd noald f_t s_chonvblhcd "h" sdld_td s_ud _u ugd ~=h tud_m idu _hs didbuos- tdb

7 Sgd noald f_t s_chonvblhcd "h" sdld_td s_ud _u ugd ~=h dyg_vtu oe ugd :cw_nbdc Nee,D_t Rztudm tdb

7 Sgd hochnd) ushuhvm) _nc p_suhbvl_ud s_chonvblhcd~=h "h" sdld_td s_ud esom ugd pl_nu tu_bk- tdb

7 Sgd hochnd) ushuhvm) _nc p_suhbvl_ud s_chonvblhcd~=h "h" sdld_td s_ud esom fsovnc ldwdl- tdb

7 Sgd sdld_td oe noald f_t s_chonvblhcd "h" esom ugd bvshdt pl_nu tu_bk-

7 Sgd sdld_td oe noald f_t s_chonvblhcd "h" esom bvshdt fsovnc ldwdl-

Sgd sdld_td oe hochnd) ushuhvm) _nc p_suhbvl_ud bvshdt s_chonvblhcd "h" esom ugd pl_nu tu_bk-

Sgd sdld_td oe hochnd) ushuhvm) _nc p_suhbvl_ud bvshdt s_chonvblhcd "h" esom fsovnc ldwdl-

! Jhrvhc monhuos sdtpontd eos ugd lhmhuhnf bpt +tpu bonbdnus_uhon _u ugd pohnu oe chtbg_sfd-

tkhn + tpu Pdtpontd oe ugd noald f_t monhuos _u ugd lhmhuhnf bpm tkhn cotd s_ud-

ua Rtpu Pdtpontd oe ugd noald f_t monhuos uo lhmhuhnf uou_lbpm aocz cotd s_ud-

Rghdlchnf e_buos- P_uho

Adudbuos bovnuhnf deehbhdnbz esom ugd motu sdbdnubpm mPEgs f_t monhuos b_lhas_uhon- ,,os,, ~=hIbb ~=hIbb Nee,Rhud Aotd =_lbvl_uhon L_nv_l Rdbuhon 0-. Pdw- 1. O_fd 3 oe /. Vdsmonu Y_nkdd Mvbld_s Ooxds Ru_uhon T:;JC 1-0-1 &=vuouki'

Yfyofgsk Aklouoovu Vuoz

z) Akkhvy hvuoum kllohokuh lvy uvgsk mfz "o-" hwt tRIny ,,vy,, s-=o.hh Es=o.hh

+! Akkhvy hvuoum kllohokuh lyvt nk tvz ykhku hwz soxoi tvuovy hfsogyfovu- Es=o.ts

+.- Akkhvy hvuoum kllohokuh lvy yfiovuhsoik "-o" hwz Es=o.ts

TTyfu Totk nf fu uznoksiki ykzou souky oz kwvzki ou nvyz nk zvyfmk wfi fykf-

_Dfw Eukytvisk mfw oin gkkku fipfhku A: _ ouhnkz zvyfmk tviskz nohn znoksi ykzou souky zvyfmk tviskz lyvt nk kz zok gvuify-

a.Pz :uufs vy svum,kyt fkyfmk uikwskki zkh ~ ftvzwnkyoh iozwkyzovu lfhvy lvy zfhr ykskfzk- 3 t

a.Pm :uufs vy svum,kyt fkyfmk uikwskki zkh ftvzwnkyoh iozwkyzovu lfhvy lvy myvui skks 3 t ykskfzk-

ca.Pe7 Cllkhok fuufs vy svum,kyt fkyfmk mfttf zkh ftvzwnkyoh iozwkyzovu lfhvy- ~ t 3

ca.Pe~ Cllkhok fuufs vy svum,kyt fkyfmk mfttf zkh ftvzwnkyoh iozwkyzovu lfhvy lvy f myvui skks ~ t3 ykskfzk-

Nll,Sok Avzk =fshsfovu Lfufs Skhovu 1-/ Rk- 3/ Ofmk d/ vl d/ Ykytvu bfurkk Mhskfy Ovky Sfovu 0,1)- EIIM_EOY =OD EOaLTPONEOY=M CPOYTPMV

Ylmw whfxmsr mrfoyghw xlh hiioyhrx drg hrzmvsrphrxdo fsrxvsow xldx hvh svmkmrdoo tdvx si xlh ahvpsrx cdrnhh Yhflrmfdo Vthfmimfdxmsrw) Ylhwh fsrxvsow hvh vhosfdxhg mrxs xlh PDCN mxlsyx dr wyewxdrxmdo fldrkhw& mr dffsvgdrfh mxl OTC Jhrhvmf Mhxxhv 7:'-.) Yhx drg xdeohw hvh vhisvpdxxhg xs xlh wxoh si xlh PDCN) Ylh zdvmsyw fsrxvsow hvh vhrypehvhg ivsp xlh svmkmrdo rypehvmrk wflhph si xlh Yhflrmfdo Vthfmimfdxmsrw) = fvsww'vhihvhrfh si xlh sog Yhflrmfdo Vthfmimfdxmsrw whfxmsr xs xlh rh PDCN whfxmsr mw tvhwhrxhg mr Ydeoh .).)7)

0,1). LOVYT_NEOY =YLPO

0,1).). Tdgmsdfxmzh Mmuymg Eiioyhrx Lrwxvyphrxdxmsr

CPOYTPMV

0).). Ylh vdgmsdfxmzh omuymg hiioyhrx psrmxsvmrk mrwxvyphrxdxmsr fldrrho wldoo eh sthvdeoh mr dffsvgdrfh mxl Csrxvso Ydeoh 0).). mxl xlhmv dodvp whxtsmrxw whx xs hrwyvh xldx xlh ompmxw si Csrxvso 0)/). dvh rsx hfhhghg)

=RRMLC=ALMLYc;

Dyvmrk thvmsgw si vhohdwh xlvsykl psrmxsvhg tdxldw dw omwxhg sr Ydeoh 0).).)

=CYLPO;

d) bmxl d vdgmsdfxmzh omuymg hiioyhrx psrmxsvmrk mrwxvyphrxdxmsr fldrrho dodvp,xvmt whxtsmrx ohww fsrwhvzdxmzh xldr d zdoyh lmfl moo hrwyvh xldx xlh ompmxw si Csrxvso 0)/). dvh phx& mxlsyx ghod wywthrg xlh vhohdwh si vdgmsdfxmzh omuymg hiioyhrxw psrmxsvhg e xlh diihfxhg fldrrho sv fldrkh xlh whxtsmrx ws xldx mx mw dffhtxdeo fsrwhvzdxmzh sv ghfodvh xlh fldrrho mrsthvdeoh)

e) bmxl srh sv psvh vdgmsdfxmzh omuymg hiioyhrx psrmxsvmrk mrwxvyphrxdxmsr fldrrhow mrsthvdeoh& xdnh xlh dfxmsr wlsr mr Ydeoh 0).).)

V_TaELMM=OCE TES_LTENEOYV

1).).)d Edfl vdgmsdfxmzh omuymg hiioyhrx psrmxsvmrk mrwxvyphrxdxmsr fldrrho wldoo eh xhwxhg drg fdomevdxhg dw mrgmfdxhg mr Ydeoh 1).).)

1).).)e Ylh whxtsmrxw isv psrmxsvmrk mrwxvyphrxdxmsr wldoo eh ghxhvpmrhg mr dffsvgdrfh mxl xlh PDCN ~Vhfxmsr 7).")

Pii'Vmxh Dswh Cdofyodxmsr Ndrydo Vhfxmsr 0,1 Thz) 0- Rdkh L si 13 ahvpsrx cdrnhh Oyfohdv Rshv Vxdxmsr YACNI 1,/,/

Nltxlf Ihhnxgpw Orplwrulpi Mpvwuxogpwcwlrp

Olploxo Dkcppgnv Rsgucdng Prwgv

/, Lurvv Tcflrcewlylw Orplwruv prw Surylflpi Axwrocwle Yguolpcwlrp rh Tgngcvg

c, Nltxlf Tcfzcvwg Elvekcuig Orplwru /& /'3 ~TO)/;)17." d, Vguyleg acwgu Elvekcuig Orplwru / 0'3 ~TO )/;)17/" 0, Jnrz Tcwg Ogcvxugogpw Egylegv c, Nltxlf Tcfzcvwg Elvekcuig Jnrz Tcwg /& 1'3 Orplwru ~JMY )0.)3=7-330"

& Exulpi ugngcvgv ylc wklv scwkzc

Rhh)Vlwg Ervg Dcnexncwlrp Ocpxcn Vgewlrp 1-3 Tgy, 1. Scig 0 rh 3: _guorpw bcpmgg Pxengcu Srzgu Vwcwlrp R:;IC 0).). LMR:REML

LMRC . ' Tgsf sfc ltk_cp md afYllcir mncpY_ic icrr sfYl pcotgpcb _x sfc kglgktk afYllcir mncpY_ic pcotgpckcls& cdditcls pcicYrcr kYx amlsgltc npmugbcb sfYs npgmp sm glgsgYsgle Y pcicYrc7

Y) :s icYrs svm glbcnclbcls rYknicr Ypc YlYixycb gl YaampbYlac vgsf =mlspmi 1)/).& Ylb

_) :s icYrs svm scaflgaYiix otYigdgcb kck_cpr md sfc DYagigsx PsYdd glbcnclbclsix ucpgdx sfc pcicYrc pYsc aYiatiYsgmlr Ylb bgrafYpec iglc uYiugle)

Msfcpvgrc& rtrnclb pcicYrc md pYbgmYasguc cdditclsr ugY sfgr nYsfvYx)

LMRC / ' Tgsf sfc ltk_cp md afYllcir mncpY_ic icrr sfYl pcotgpcb _x sfc kglgktk afYllcir mncpY_ic pcotgpckcls& cdditcls pcicYrcr ugY sfgr nYsfvYx kYx amlsgltc npmugbcb sfYs& Ys icYrs mlac ncp /1 fmtpr& epY_ rYknicr Ypc amiicascb Ylb YlYixycb dmp epmrr pYbgmYasgugsx ~_csY mp eYkkY" Ys Y imvcp igkgs md bcscasgml md Ys icYrs .-'~kgapmatpgc,ki)

LMRC 0 ' Tgsf sfc ltk_cp md afYllcir mncpY_ic icrr sfYl pcotgpcb _x sfc kglgktk afYllcir mncpY_ic pcotgpckcls& cdditcls pcicYrcr ugY sfgr nYsfvYx kYx amlsgltc npmugbcb sfc dimv pYsc gr crsgkYscb Ys icYrs mlac ncp 1 fmtpr btpgle YastYi pcicYrcr) Ntkn ncpdmpkYlac atpucr kYx _c trcb sm crsgkYsc dimv)

LMRC 1 ' Tgsf sfc ltk_cp md afYllcir mncpY_ic icrr sfYl pcotgpcb _x sfc kglgktk afYllcir mncpY_ic pcotgpckcls& cwcps pcYrmlY_ic cddmpsr sm pcstpl sfc glrsptkcls~r" sm mncpY_ic rsYstr npgmp sm sfc lcws pcicYrc)

Mdd'Pgsc Amrc =YiatiYsgml JYltYi Pcasgml 0,1 Ocu) 0- NYec 0 md 13 Scpkmls VYlhcc LtaicYp Nmvcp PsYsgml T;=LD 3,/,/

Radioacuiwe Lirvid Dfflvenu Moniuosing Jntusvmenuauion Svsweillance Rervisemenut

Jntusvmenu Jntusvmen Sovsce Jntusvmenu Evncuional Jntusvmenu u Aheck Aheck Aalibsauion Tetu /, Isott Radioacuiwiuy Moniuost nou Psowiding ;vuomauic Tesminauion of Releate

a, Lirvid Radxatue Once each Psios uo each Once each Once each Citchasge Moniuos ~1" day& seleate' bvu /: monuht ~/" rvasues ~0" no mose uhan once each monuh

b, Seswice Yaues Once each Once each Once each Once each Citchasge Moniuos ~1" day monuh /: monuht ~/" rvasues ~0" 0, Elox Raue Meatvsemenu Cewicet

a, Lirvid Radxatue Once each Nou Nou Once each Citchasge Elox Raue day& ;pplicable ;pplicable rvasues& Moniuos

~ Cvsing seleatet wia uhit pauhxay,

Off)Siue Cote Aalcvlauion Manval Secuion 1-3 Rew, 1. Page 3 of 37 Vesmonu _ankee Nvcleas Poxes Suauion S;=JD 0'-'- MNS;SINM

~-" Sfc Imstrulcmt AYkg_rYtgnm dnr rYbgnYatgvgty lcYsurclcmt gmstrulcmtYtgnm sfYkk gmakubc tfc usc nd Y imnwm ~trYacY_kc tn MYtgnmYk Imstgtutc dnr RtYmbYrbs Ymb Scafmnkney" kgpugb rYbgnYatgvc snurac onsgtgnmcb gm Y rcornbuag_kc ecnlctry wgtf rcsocat tn tfc scmsnr' Sfcsc stYmbYrbs sfYkk ocrlgt aYkg_rYtgme tfc systcl nvcr gts mnrlYk nocrYtgme rYmec nd cmcrey Ymb rYtc'

~." Sfc Imstrulcmt EumatgnmYk Scst sfYkk Yksn bclnmstrYtc tfc Anmtrnk Pnnl YkYrl YmmumagYtgnm naaurs gd Ymy nd tfc dnkknwgme anmbgtgnms cxgsts:

~Y" Imstrulcmt gmbgaYtc lcYsurcb kcvcks Y_nvc tfc YkYrl sctongmt'

~_" Agraugt dYgkurc'

~a" Imstrulcmt gmbgaYtcs Y bnwmsaYkc dYgkurc'

~b" Imstrulcmt anmtrnks mnt sct gm nocrYtc lnbc'

~/" Sfc YkYrl sctongmts nd tfcsc afYmmcks sfYkk _c bctcrlgmcb Ymb Ybhustcb gm YaanrbYmac wgtf tfc lctfnbnkney Ymb oYrYlctcrs gm tfc Ndd&Rgtc Cnsc AYkaukYtgnm LYmuYk ~scc Rcatgnm 7'-"'

Ndd&Rgtc Cnsc AYkaukYtgnm LYmuYk Rcatgnm /)0 Pcv' /, OYec 1 nd 03 Tcrlnmt VYmicc MuakcYr Onwcr RtYtgnm 0,1). JOVYT_NEOY=YJPO

0,1).)/ Tdgmsdfwmyh Idvhsxv Eiioxhrw Jrvwuxphrwdwmsr

CPOYTPMV

0).)/ Ylh kdvhsxv tusfhvv drg hiioxhrw psrmwsumrk mrvwuxphrwdwmsr fldrrhov vldoo eh sthudeoh mr dffsugdrfh zmwl Csrwuso Ydeoh 0).)/ zmwl wlhmu dodup,wumt vhwtsmrwv vhw ws hrvxuh wldw wlh ompmwv si Csrwusov 0)0).)d& drg Yhflrmfdo Vthfmimfdwmsrv 0):).). drg 0):)L). ~Csrwuso 0)0)7" duh rsw hfhhghg)

=RRMJC=AJMJYc;

=v vlszr mr Ydeoh 0).)/)

=CYJPO;

d) bmwl d kdvhsxv tusfhvv su hiioxhrw psrmwsumrk mrvwuxphrwdwmsr fldrrho dodup,wumt vhwtsmrw ohvv fsrvhuydwmyh wldr d ydoxh zlmfl zmoo hrvxuh wldw wlh ompmwv si CsrwusJ0)0).)d drg Yhflrmfdo Vthfmimfdwmsr 0):)L). duh phw& mpphgmdwho wdnh dfwmsrv ws vxvthrg wlh uhohdvh si udgmsdfwmyh kdvhsxv hiioxhrwv psrmwsuhg e wlh diihfwhg fldrrho& su ghfoduh wlh fldrrho mrsthudeoh& su fldrkh wlh vhwtsmrw vs mw mv dffhtwdeo fsrvhuydwmyh)

e) bmwl ohvv wldr wlh pmrmpxp rxpehu si udgmsdfwmyh kdvhsxv hiioxhrw psrmwsumrk mrvwuxphrwdwmsr fldrrhov sthudeoh& wdnh dfwmsrv rswhg mr Ydeoh 0).)/)

V_TaEJMM=OCE TES_JTENEOYV

1).)/)d Edfl kdvhsxv tusfhvv su hiioxhrw psrmwsumrk mrvwuxphrwdwmsr fldrrho vldoo eh whvwhg drg fdomeudwhg dv mrgmfdwhg mr Ydeoh 1).)/)

1).)/)e Ylh vhwtsmrwv isu psrmwsumrk mrvwuxphrwdwmsr vldoo eh ghwhupmrhg mr dffsugdrfh zmwl wlh PDCN ~Vhfwmsr :)/")

Pii'Vmwh Dsvh Cdofxodwmsr Ndrxdo Vhfwmsr 0,1 Thy) 0- Rdkh 3 si 13 ahupsrw cdrnhh Oxfohdu Rszhu Vwdwmsr bACRI 0).)/

Leyiuy Ikkritz Sutnzuxntl Ntyzxsitzeznut

Sntnss Dmettiry Ntyzxsitz Vvixefri Tuziy .) azies Oiz Anx Ioigzux ~aOAI" e) Tufri Ley Agznnz Sutnzux ~ . :&a&; ~_S'.:'.3-AOC"

/) Alsitzih Vkk'Ley ayzis

e) TufriLe=yAgznnz Sutnzux Ciziit zmi . /&3&7&: amexguerCihayzis eth zmi Yretz azegp ~Yxunhntl Arexs eth Azusezng bixsnteznut uk _irieyi" ~_AT'VL'0./:& _AT'VL'0./a"

f) Jru _ezi Sutnzux . .&3&7 ~JN'VL'/--/& JN'VL'/--1& JN'VL'/--a"

g) Mhxulit Sutnzux . 0&3&7 ~M/AT'VL'/;/.AOC& M/AT'VL'/;//AOC" 0) Yretz azegp

e) Tufri Ley Agznnz Sutnzux . 3&:&.- ~_S'.:'.37& _S'.:'.3:" f) Nuhnti aesvrix Dexzxnhli . 1&3 g) Yexzngrezi aesvrix Jnrzix . 1&3 h) aesvrix Jru Ntzilxezux . .& 3 ~JN'.:'.37,.3:"

i) azegp Jru _ezi Sutnzux . .&3 ~JN'rVa'//"

~ bmny ntyzxsitzeznut gmettir~y" ny xiwnxih zu yvvuxz gusvrnetgi nzm bigmtnger avignkngeznut 0)a)P)

Vkk'anzi Euyi Dergreznut Seter aigznut 0,1 _i) 0- Yeli : uk 17 cixsutz detpii Tgriex Yuix azeznut YDEOL 0).)/ RSYDYMSR

RSYL . ' alxk xkg rypdgv sh ekcrrgow stgvcdog ogww xkcr vguylvgf d xkg plrlpyp ekcrrgow stgvcdog vguylvgpgrx& ghhoygrx vgogcwgw zlc xklw tcxkc pc esrxlryg tvszlfgf xkg hos vcxg lw gwxlpcxgf cx ogcwx sreg tgv 1 ksyvw)

RSYL / ' alxk xkg rypdgv sh ekcrrgow stgvcdog ogww xkcr vguylvgf d xkg plrlpyp ekcrrgow stgvcdog vguylvgpgrx& ghhoygrx vgogcwgw zlc xklw tcxkc pc esrxlryg hsv c tgvlsf sh yt xs : fcw tvszlfgf xkcx cx ogcwx srg sh xkg wxcen psrlxsvlri wwxgpw lw stgvcdog crf shh'icw wwxgp xgptgvcxyvg crf tvgwwyvg cvg pgcwyvgf esrxlrysywo)

RSYL 0 ' alxk xkg rypdgv sh ekcrrgow stgvcdog ogww xkcr vguylvgf d xkg plrlpyp ekcrrgow stgvcdog vguylvgpgrx& stgvcxlsr sh xkg DSS Vwxgp pc esrxlryg tvszlfgf icw wcptogw cvg esoogexgf cx ogcwx sreg tgv /1 ksyvw crf crcogf lxklr xkg hsooslri 1 ksyvw& sv cr svfgvo xvcrwhgv sh xkg shh'icw ghhoygrxw hvsp xkg stgvcxlri vgespdlrgv xs xkg wxcrfd vgespdlrgv wkcoo dg pcfg)

RSYL 1 ' alxk xkg rypdgv sh ekcrrgow stgvcdog ogww xkcr vguylvgf d xkg plrlpyp ekcrrgow stgvcdog vguylvgpgrx& ghhoygrx vgogcwgw zlc xkg chhgexgf tcxkc pc esrxlryg tvszlfgf wcptogw cvg esrxlrysywo esoogexgf lxk cylolcv wcptolri guyltpgrx)

RSYL 3 ' alxk xkg rypdgv sh ekcrrgow stgvcdog ogww xkcr vguylvgf d xkg plrlpyp ekcrrgow stgvcdog vguylvgpgrx& ggvx vgcwsrcdog ghhsvxw xs vgxyvr xkg lrwxvypgrx~w" xs stgvcdog wxcxyw lxklr 0- fcw)

RSYL 7 ' Jyvlri vgogcwgw zlc xklw tcxkc)

RSYL : ' Ykg cocvp,xvlt wgxtslrxw sh xkgwg ekcrrgow wkcoo dg fgxgvplrgf crf cfmywxgf lr ceesvfcreg lxk xkg pgxksfsosi crf tcvcpgxgvw lr xkg Shh'Vlxg Jswg Icoeyocxlsr Pcryco ~SJIP")

RSYL ; ' Plrlpyp ekcrrgow stgvcdog vguylvgf sro fyvlri stgvcxlsr sh xkg Vxgcp Ngx Dlv Lmgexsv)

RSYL = ' alxk xkg rypdgv sh ekcrrgow stgvcdog ogww xkcr vguylvgf d xkg plrlpyp ekcrrgow stgvcdog vguylvgpgrx& icwgw hvsp xkg VNDL pc dg vgogcwgf xs xkg grzlvsrpgrx hsv yt xs :/ ksyvw tvszlfgfA

.) Ykg DSS Vwxgp lw rsx dtcwwgfC crf /) Ykg DSS Vwxgp rsdog icw cexlzlx psrlxsv lw stgvcdog)

RSYL .- ' alxk xkg rypdgv sh ekcrrgow stgvcdog ogww xkcr vguylvgf d xkg plrlpyp ekcrrgow stgvcdog vguylvgpgrx& ghhoygrx vgogcwgw zlc xklw tcxkc pc esrxlryg tvszlfgf ivcd wcptogw cvg xcngr cx ogcwx sreg tgv ./ ksyvw crf xkgwg wcptogw cvg crcogf hsv ivsww cexlzlx lxklr /1 ksyvw)

Shh'Vlxg Jswg Icoeyocxlsr Pcryco Vgexlsr 0,1 -.4~ +! Tcig ; sh 17 _gvpsrx bcrngg Ryeogcv Tsgv Vxcxlsr a=APE 1).)/

Jdxhtzx Eiipzhsy Rtsmytwmsk Msxywzrhsydymts _zwhmppdsfh Yhvzmwhrhsyx

Msxywzrhsy Msxywzrhsy Msxywzrhsy Izsfymtsdp Msxywzrhsy Clhfo _tzwfh Clhfo Cdpmewdymts ahxy .) _yhdr Nhy =mw Enhfytw ~_N=E"

d) Steph Jdx =fymmy Tsfh hdfl Tsfh hdfl Tsfh hdfl Tsfh hdfl Rtsmytw ! gd&& rtsyl .: rtsylx ~0" vzdwyhw ~/" /) =zkrhsyhg Tii'Jdx _xyhr

d) Steph Jdx =fymmy Tsfh hdfl Tsfh hdfl Tsfh hdfl Tsfh hdfl Rtsmytw gd& rtsyl .: rtsylx ~0" vzdwyhw ~."

e) Ipt Ydyh Rtsmytw Tsfh hdfl Sty Tsfh hdfl Sty gd& =uupmfdeph .: rtsylx =uupmfdeph

f) Lgwtkhs Rtsmytw!! Tsfh hdfl Sty Tsfh hdfl Tsfh hdfl gd& =uupmfdeph vzdwyhw ~1" rtsyl 0) Vpdsy _ydfo

d) Steph Jdx =fymmy Tsfh hdfl gd Tsfh hdfl Tsfh hdfl Tsfh hdfl Rtsmytw rtsyl .: rtsylx ~0" vzdwyhw ~/"

e) _druphw Ipt Tsfh hdfl Sty Tsfh hdfl Sty Msyhkwdytw hho =uupmfdeph .: rtsylx =uupmfdeph f) _xyhr Ipt Ydyh Tsfh hdfl gd Sty Y~d" Tsfh hdfl Rtsmytw =uupmfdeph vzdwyhw

~ Dzwmsk whphdxhx md ylmx udyld) && Dzwmsk tuhwdymts ti rdms ftsghsxhw _N=E) ! almx msxywzrhsydymts fldsshp~x" mx whvzmwhg yt xzuutwy ftrupmdsfh myl ahflsmfdp _uhfmimfdymts 0):)O ~xdrh dx Ctsywtp 0)0)7") ++ almx msxywzrhsydymts fldsshp~x" mx whvzmwhg yt xzuutwy ftrupmdsfh myl ahflsmfdp _uhfmimfdymts 0):)N) ~d" Y + tsfh hdfl whizhpmsk ffph)

Tii'_myh Dtxh Cdpfzpdymts Rdszdp _hfymts 0,1 Yh) 0- Vdkh ; ti 13 bhwrtsy cdsohh Szfphdw Vthw _ydymts S;=JD 1).)/ MNS;SINM

~." Sfc Ilproskclr EslargmlYi Scpr pfYii bckmlproYrc rfYr rfc glproskclr ugii nomtgbc Yl gpmiYrgml pgelYi rm rfc pwprck imega slbco rfc dmiimugle amlbgrgmlp:

~Y" Ilproskclr glbgaYrcp kcYpsocb ictcip Y_mtc rfc YiYok pcrnmglr)

~_" Agoasgr dYgisoc)

~a" Ilproskclr glbgaYrcp Y bmulpaYic dYgisoc)

~b" Ilproskclr amlromip lmr pcr gl mncoYrc kmbc)

~/" Sfc Ilproskclr EslargmlYi Scpr pfYii Yipm bckmlproYrc rfYr Amlromi Pmmk YiYok YllslagYrgml maasop ufcl Ylw md rfc dmiimugle amlbgrgmlp cvgpr:

~Y" Ilproskclr glbgaYrcp kcYpsocb ictcip Y_mtc rfc YiYok pcrnmglr)

~_" Agoasgr dYgisoc)

~a" Ilproskclr glbgaYrcp Y bmulpaYic dYgisoc)

~b" Ilproskclr amlromip Yoc lmr pcr gl mncoYrc kmbc)

~0" Sfc Ilproskclr AYig_oYrgml dmo oYbgmYargtgrw kcYpsockclr glproskclrYrgml pfYii glaisbc rfc spc md Y hlmul ~roYacY_ic rm MYrgmlYi Ilprgrsrc dmo RrYlbYobp Ylb Scaflmimew" oYbgmYargtc pmsoac nmpgrgmlcb gl Y ocnombsag_ic ecmkcrow ugrf ocpncar rm rfc pclpmo) Sfcpc prYlbYobp pfmsib ncokgr aYig_oYrgle rfc pwprck mtco grp lmokYi mncoYrgle oYlec md oYrc aYnY_gigrgcp)

~1" Sfc Ilproskclr AYig_oYrgml pfYii glaisbc rfc spc md prYlbYob eYp pYknicp ~fgef oYlec Ylb imu oYlec" amlrYglgle psgrY_ic amlaclroYrgmlp& fwbomecl _YiYlac Ygo& dmo rfc bcrcargml oYlec md glrcocpr nco ScaflgaYi RncagdgaYrgml 0)7).).)

Ndd'Rgrc Cmpc AYiasiYrgml LYlsYi Rcargml 0,1 Pct) 0- OYec .- md 13 Tcokmlr VYlhcc MsaicYo Omuco RrYrgml /)0'. O7=DL7;RDTA EDNSD= ACCESAJRP

/)0'.'- Ehpuhc Aeekudmt ;nmbdmtr_thnm

;LJROLEP

/'.'- Rgd bnmbdmtr_thnm ne r_chn_bthvd l_tdrh_k hm khpuhc deekudmts rdkd_sdc tn Smrdstrhbtdc 7rd_s sg_kk ad khlhtdc tn -, thlds tgd bnmbdmtr_thnms sodbhehdc hm 7oodmchx : tn kL;CO M_rt .,'-,,-& .,'.0,." R_akd ." ;nkulm . enr r_chnmub-hcds ntgdr tg_m mnakd f_sds _mc .xkL&u;h)lk0 tnt_k _bthvhty bnmbdmtr_thnm enr _kk chssnkvdc nr dmtr_hmdc mnakd f_sds'

7MMED;7:DEDRY3

7t _kk thlds'

7;RDLJ3

Vhtg t~d bnmbdmtr_thnm ne r_chn_bthvd l_tdrh_k hm khpuhc deekudmts rdkd_sdc tn Smrdstrhbtdc 7rd_s dxbddchmf tgd khlhts ne ;nmtrnk /'.'-" hlldch_tdky t_id _bthnm tn cdbrd_sd tgd rdkd_sd r_td ne r_chn_bthvd l_tdrh_ks _mc)nr hmbrd_sd tgd chkuthnm eknw r_td tn rdstnrd tgd bnmbdmtr_thnm tn whtghm tgd _anvd khlhts'

PSOTADEE7J;A OANSDOAIAJRP

0'.'-'_ O_chn_bthvd l_tdrh_k hm khpuhc w_std sg_kk ad s_lokdc _mc _m_kyzdc hm _bbnrc_mbd whtg rdpuhrdldmts ne R_akd 0'.'-'

0'.'k'a Rgd rdsukts ne tgd _m_kysds sg_kk ad usdc hm _bbnrc_mbd whtg tgd ldtgncs hm tgd L=;I tn _ssurd tg_t tgd bnmbdmtr_thnms _t tgd onhmt ne rdkd_sd tn Smrdstrhbtdc 7rd_s _rd khlhtdc tn tgd v_kuds hm ;nmtrnk /'.'-'

Lee&Phtd =nsd ;_kbuk_thnm I_mu_k Pdbthnm/)0 Odv' /, M_fd Dt ne 01 Tdrlnmt Y_midd Jubkd_r Mnwdr Pt_thnm YACNI 1)/).

Tcflrcewlyg Nltxlf acvwg Vcosnlpi cpf Apcnvlv Suriuco

Nrzgu Nlolw Olploxo rh Egwgewlrp Nltxlf Tgngcvg Vcosnlpi Apcnvlv Ysg rh Aewlylw ~NNE" Ysg Jugtxgpe Jugtxgpe Apcnvlv ~xDlnon" ~+!

Ccwek acvwg Sulru wr gcek Sulru wr gcek Sulpelscn Lcooc 3 .-': Tgngcvg Ycpmv~d" ugngcvg Icek ugngcvg Icek Iolwwguv~f" Ccwek Ccwek

.'.0. . .-'7

Rpg Ccwek sgu Rpeg sgu Elvvrnygf cpf . .-'3 orpwk vcosngf orpwk Ipwuclpgf Lcvgv sulru wr c ~Lcooc ugngcvg Iolwwguv"

Sulru wr gcek Rpeg sgu M'0 . .-'3 ugngcvg Icek orpwk Ccwek Drosrvlwg ~g"

Lurvv Anskc . .-':

Sulru wr gcek Rpeg sgu Vu';=& Vu'=- 3 .-'; ugngcvg Icek txcuwgu Ccwek Drosrvlwg ~g"

Jg'33 . .-'7

Rhh'Vlwg Ervg Dcnexncwlrp Ocpxcn Vgewlrp 0,1 Tgy) 0- Scig ./ rh 17 _guorpw bcpmgg Pxengcu Srzgu Vwcwlrp dJLTO =0:07 Y_dJdR_Y

g0 dol TTN pz ol ztgsslz ivuiluygpvu vm ygkpvgipl tglypgs pu g zgtwsl og pss plsk g ul ivu. ghvl zzlt hgirnyvuk. og pss hl kllilk po DA& wyvhghpsp po vus A& wyvhghpsp vm mgszls ivuiskpun og g hsgur vhzlygpvu ylwylzluz g "ylgs" zpnugs0

Pvy g wgypisgy tlgzyltlu zzlt )opio tg puiskl ygkpvioltpigs zlwgygpvu,E

TTN I =0CC- ch O-e-S-f-l/J'~

olylE

TTN I ol svly sptp vm kllipvu gz klmpulk ghvl )tpiyviyplz vy wpiviyplz1up tgzz vy vstl,

ch I ol zgukgyk klpgpvu vm ol hgirnyvuk ivupun ygl vy vm ol ivupun ygl vm g hsgur zgtwsl gz gwwyvwypgl )ivuz1tpul,

O I ol ivupun lmmpiplui )ivuz1kpzpulnygpvu,

I ol zgtwsl zpl )upz vm tgzz vy vstl,

S I :0:: 73C kpzpulnygpvuz1tpul1tpiyviypl vy :0:: kpzpulnygpvu1tpul1wpiviypl gz gwwspighsl

f I ol mygipvugs ygkpvioltpigs plsk )olu gwwspighsl,

~ I ol ygkpvgipl klig ivuzgu mvy ol wgypisgy ygkpvuispkl )1tpul,

~ I ol lsgwzlk ptl hlllu zgtwsl ivsslipvu guk gugszpz )tpulz,

dwpigs gslz vm O. e. f guk ~ igu hl zlk pu ol igsisgpvu0 Ru igsisgpun ol TTN mvy g ygkpvuispkl kllytpulk h ngttg/yg zwliyvtly. ol hgirnyvuk zogss puiskl ol wpigs ivuyphpvuz vm voly ygkpvuispklz uvytgss wylzlu pu ol zgtwslz0

Jugszpz zogss hl wlymvytlk pu zio g tguuly og ol zglk TTNz pss hl giopllk ukly yvpul ivukppvuz0 _iigzpvugss. hgirnyvuk msigpvuz. ugvpkghs ztgss zgtwsl zplz. ol wylzluil vm pulymlypun uispklz. vy voly uivuyvssghsl ipyitzguilz tg ylukly olzl TTNz uggpsghsl0

R zovsk hl ylivnuplk og ol TTN pz klmpulk gz g "hlmvyl ol mgi" sptp ylwylzlupun ol igwghpsp vm g tlgzyltlu zzlt guk uv gz gu "gmly ol mgi" sptp mvy g wgypisgy tlgzyltlu0 dopz kvlz uv wyliskl ol igsisgpvu vm gu "gmly ol mgi" TTN mvy g wgypisgy tlgzyltlu hgzlk wvu ol gigs wgygtllyz mvy ol zgtwsl pu xlzpvu guk gwwyvwypgl klig ivyylipvu wgygtllyz zio gz klig opsl zgtwspun guk kypun gugszpz0 _mm/cpl Nvzl Mgsisgpvu Vgugs clipvu ;1= bl0 ;3 agnl 7; vm =C elytvu fgurll Yislgy avly cgpvu aEIPM 7-1-0 STaEaOTS &Jutz"i'

g- E gfzhn xkrkfyk oy znk ioyhnfxmk ul rowoi fyzky ul f ioyhxkzk ursk- Vxoux zu yfsvrotm lux ftfryoy) kfhn gfzhn ynfrr gk oyurfzki fti znkt znuxumnr soki zu fyyxk xkvxkyktzfzok yfsvrotm-

h- E husvuyozk yfsvrk oy utk ot nohn znk wftzoz ul rowoi yfsvrki oy vxuvuxzoutfr zu znk wftzoz ul rowoi fyzk ioyhnfxmki fti ot nohn znk skznui ul yfsvrotm ksvruki xkyrzy ot f yvkhoskt nohn oy xkvxkyktzfzok ul znk rowoiy xkrkfyki- Vxoux zu ftfryky) frr yfsvrky zfpkt lux znk husvuyozk ynfrr gk znuxumnr soki ot uxikx lux znk husvuyozk yfsvrk zu gk xkvxkyktzfzok ul znk kllrktz xkrkfyk-

i- ank vxothovfr mfssf ksozzkxy lux nohn znk PPL yvkholohfzout orr fvvr fxk khryokr znk lurruotm xfiouthroikyD Rt,:7) Nk,:C) Ju,:A) Ju,;/) et,;:) Ru,CC) Jy,037) Jy,03=) Jk,070) fti Jk,r77- anoy royz iuky tuz skft znfz utr znkyk throiky fxk zu gk ikzkhzki fti xkvuxzki- Tznkx vkfpy nohn fxk skfyxfgrk fti oiktzolofgrk) zumkznkx ozn znk fguk throiky) ynfrr fryu gk oiktzoloki fti xkvuxzki- Shroiky nohn fxk gkru znk PPL lux znk ftfryky ynuri tuz gk xkvuxzki fy gkotm vxkyktz fz znk PPL rkkr) gz fy ~tuz ikzkhzki-~ cnkt tyfr hoxhsyzfthky xkyrz ot PPLy nomnkx znft xkwoxki) znk xkfyuty ynfrr gk iuhsktzki ot znk Yfioufhzok Mllrktz Ykrkfyk Ykvuxz-

Tll,_ozk Luyk Jfrhrfzout Rftfr _khzout 3.7 Yk- 3/ Vfmk 07 ul 7; bkxsutz dftpkk Shrkfx Vukx _zfzout 0,1)/ R;CIN;ATIYD JIPVIC DEEJVDMTS

0,1)/)/ Cpuf ' Jkswkeu

ANMTRNJS

0)/)/ Tif epuf pt epuf dpnnkvnfov vp b nfncft pg vif rwcmkd gtpn tbekpbdvkxf nbvftkbmu ko mkswke fggmwfovu tfmfbufe vp Votfuvtkdvfe ;tfbu uibmm cf mknkvfe vp vif gpmmpykoh:

b) Cwtkoh bo dbmfoebt swbtvft:

mfuu vibo pt fswbm vp .)3 ntfn vp vif vpvbm cpe& boe mfuu vibo pt fswbm vp 3 ntfn vp bo pthbo& boe

c) Cwtkoh bo dbmfoebt fbt:

mfuu vibo pt fswbm vp 0 ntfn vp vif vpvbm cpe& boe mfuu vibo pt fswbm vp .- ntfn vp bo pthbo)

;OOJIA;=IJITa:

;v bmm vknfu)

;ATINM:

_kvi vif dbmdwmbvfe epuf gtpn vif tfmfbuf pg tbekpbdvkxf nbvftkbmu ko mkswke fggmwfovu fzdffekoh bo pg vif bcpxf mknkvu& rtfrbtf boe uwcnkv vp vif Apnnkuukpo ykviko 0- ebu& rwtuwbov vp NCAL Sfdvkpo .-& b Srfdkbm Rfrptv vibv kefovkgkfu vif dbwuf~u" gpt fzdffekoh vif mknkv~u" boe efgkofu vif dpttfdvkxf bdvkpou vibv ibxf cffo vblfo vp tfewdf vif tfmfbufu boe vif rtprpufe dpttfdvkxf bdvkpou vp cf vblfo vp buuwtf vibv uwcufswfov tfmfbufu ykmm cf ko dpnrmkbodf ykvi vif bcpxf mknkvu)

SVRYDIJJ;MAD RDPVIRDLDMTS

1)/)/ Awnwmbvkxf epuf dpovtkcwvkpou uibmm cf efvftnkofe ko bddptebodf ykvi vif nfvipeu ko vif NCAL bv mfbuv podf rft npovi kg tfmfbufu ewtkoh vif rftkpe ibxf pddwttfe)

Ngg'Skvf Cpuf Abmdwmbvkpo Lbowbm Sfdvkpo 0,1 Rfx) 0- Obhf .3 pg 17 Yftnpov abolff Mwdmfbt Opyft Svbvkpo .'/&- O7=DL7;RDTA EDNSD= ACCESAJRP

.'/&-&. Ehrvhc O_cx_tud Rsd_umdnu

;LJROLEP

.&-&. Rgd lhrvhc s_cx_tud usd_umdnu tztudm tg_ll ad vtdc hn hut cdthfndc mocdt oe opds_uhon uo sdcvbd ugd s_cho_buhwd m_udsh_lt hn ugd lhrvhc x_tud pshos uo hut chtbg_sfd xgdn ugd psoidbudc cotdt cvd uo ugd lhrvhc deelvdnut sdld_tdc uo Snsdtushbudc 7sd_t~ xgdn _wds_fdc xhug _ll ougds lhrvhc sdld_tdt owds ugd l_tu monug~ xovlc dybddc )&)0 msdm uo ugd uou_l aocz~ os )&- msdm uo _nz osf_n&

7MMED;7:DEDRY3

7u _ll uhmdt&

7;RDLJ3

Vhug s_cho_buhwd lhrvhc x_tud adhnf chtbg_sfdc xhugovu usd_umdnu _nc hn dybdtt oe ugd _aowd lhmhut _nc _nz posuhon oe ugd Ehrvhc O_cx_tud Rsd_umdnu Pztudm nou hn opds_uhon~ psdp_sd _nc tvamhu uo ugd ;ommhtthon xhughn .) c_zt~ _ Ppdbh_l Odposu ug_u hnblvcdt ugd hneosm_uhon cdu_hldc hn L=;I Pdbuhon ,)&.&,&

PSOTADEE7J;A OANSDOAIAJRP

/&-&.&_ Pdd ;onusol /&-&-&

/&-&.&a Rgd lhrvhc s_cx_tud usd_umdnu tztudm tbgdm_uhb ht tgoxn hn L=;I Chfvsd 1&,&

Lee"Phud =otd ;_lbvl_uhon I_nv_l Pdbuhon .'/ Odw& .) M_fd ,0 oe /0 Tdsmonu Y_nkdd Jvbld_s Moxds Pu_uhon /,0)/ VAEMRAD_MbI LAYIRaY IJJNaIP_Y

/,0)/). Lexitzx Ikkpzisyx Etxi Veyi

DRP_VRNY

/)/). _mi htxi weyi hzi yt wehntegyni reyiwnepx wipiexih ns lexitzx ikkpzisyx kwtr ymi xnyi yt ewiex ey esh fitsh ymi xnyi ftzshew xmepp fi pnrnyih yt ymi ktpptnsl;

e) Jtw stfpi lexix= pixx ymes tw ivzep yt 1-- rwiws,w yt ymi ytyep fth esh pixx ymes tw ivzep yt /&--- rwiws,w yt ymi xons& esh

f) Jtw Mthnsi'./.& Mthnsi'.//& ywnynzr esh wehntszgpnhix ns uewyngzpeyi ktwr nym mepk'pnix lwieyiw ymes : hex= pixx ymes tw ivzep yt .&1-- rwiws,w yt es twles)

ASSNMDACMNM_d;

Ay epp ynrix)

AD_MRP;

cnym ymi htxi weyi~x" igiihnsl ymi efti pnrnyx& nrrihneyip yeoi egynts yt higwiexi ymi wipiexi weyi yt nymns ymi pnrnyx tk Dtsywtp /)/).)

YaVbIMNNAPDI VITaMVIOIP_Y

0)/).)e _mi htxi weyi hzi yt stfpi lexix ns lexitzx ikkpzisyx xmepp fi hiyiwrnsih yt fi nymns ymi pnrnyx tk Dtsywtp /)/). ns eggtwhesgi nym ymi riymthx ns ymi REDO)

0)/).)f _mi htxi weyi hzi yt Mthnsi'./.& Mthnsi'.//& ywnynzr esh wehntszgpnhix ns uewyngzpeyi ktwr nym mepk'pnix lwieyiw ymes : hex ns lexitzx ikkpzisyx xmepp fi hiyiwrnsih yt fi nymns ymi pnrnyx tk Dtsywtp /)/). ns eggtwhesgi nym ymi riymthx ns ymi REDO f tfyensnsl wiuwixisyeyni xerupix esh uiwktwrnsl esepxix ns eggtwhesgi nym ymi xerupnsl esh esepxnx uwtlwer xuignknih ns _efpi 0)/).)

Rkk'Ynyi Etxi Depgzpeynts Oeszep Yigynts /,0 Vi) /- Seli .7 tk 03 biwrtsy desoii Pzgpiew Stiw Yyeynts _=AOE 0)/).

Vehnuegzni Jeyiuy beyzi Yesvrntl =th =teryny Txulxes

Ouix Onsnz Pntnss _vi uk uk Dizigznut Jeyiuy Virieyi Yesvrntl =teryny =gznnz ~OOD" _vi Ixiwitg Ixiwitg =teryny ~Cnrsr" ~:! =) Yzies Miz Stgi vix iip Stgi vix iip ci'./:& . rS= =nx Eoigzux Jxef Yesvri ci'./1& ci'.//& Nx'::& Nx':7& Nx':1P A) Cutzentsitz Txnux zu iegm Txnux zu iegm Txntgnver . .-'8 ~_! Txli xirieyi, xirieyi, Eegm Jesse Esnzzixy ~=-_! Eegm Txli Jxef Txli Yesvri kux eth .'./. Texzngreziy C) Pent Tretz Stgi vix sutzm Stgi vix sutzm Txntgnver . rS= ~I! Yzegp ~I! Jxef Yesvri Jesse Esnzzixy Ch" L'/ . .-'3 .4 Cutzntuy ~I! Stgi vix iip .'./. ~\! . .-' ~f" Cmexguer Yesvri .. Cutzntuy ~I! Stgi vix iip Txntgnver . .-' ~f" Texzngrezi Jesse Yesvri Esnzzixy ~=+_! eth .'./. .. Cutzntuy ~I! Stgi vix sutzm Jxuyy =rvme . .-' Cusvuynzi Texzngrezi Yesvri

.. Cutzntuy ~I! Stgi vix wexzix Yx':;& Yx';- . .-' Cusvuynzi Texzngrezi Yesvri Cutzntuy Rufri Jey Rufri Jeyiy . .-'1 Putnzux Jxuyy Aize ux Jesse

Skk'Ynzi Duyi Cergreznut Peter Yigznut /,0 Vi) /- Teli .: uk 03 aixsutz detpii Rgriex Tuix Yzeznut cIJSN 7-3-0 VYcIcPYV

i- bnn oxxwxn i- xo cikun 7-1-0-

k- bivyun riuu kn lriwpnm i uni xwln yn = mi iwm iwiun riuu kn lxvyunnm srsw 7A rx ion nvxiu oxv ivyun- bivyuswp riuu iux kn ynoxvnm i uni xwln yn 17 rx ox i uni = mi oxuuxswp nilr rmxw) iy x rnviu yxn lriwpn nlnnmswp 1:" xo inm rnviu yxn sw xwn rx) iwm iwiun riuu kn lxvyunnm srsw 7A rx xo lriwpswp rn ivyun- ernw ivyun lxuunlnm ox 17 rx in iwiunm) rn lxnyxwmswp SSM vi kn swlninm k i oilx xo 0/- crs nzsnvnw x ivyun i uni xwln yn 17 rx ox = mi iyyusn xwu soD &0' iwius rx ri rn mxn nzsiunw 0,030 lxwlnwisxw sw rn ysvi lxxuiw ri swlninm vxn riw i oilx xo 3 iwm rn nuiw lxwlnwisxw s i uni 0 0/,0 .uLs.vuE iwm &1' rn wxkun pi vxwsx rx ri noounw ilss ri swlninm vxn riw i oilx xo 3-

l- bivyuswp iwm iwiun riuu iux kn ynoxvnm oxuuxswp rmxw) iy) x i rnviu yxn lriwpn nlnnmswp 1:" xo inm rnviu yxn yn rx wunD &0' iwius rx ri rn mxn nzsiunw 0,030 lxwlnwisxw sw rn ysvi lxxuiw ri wx swlninm vxn riw i oilx xo 3 iwm rn nuiw lxwlnwisxw s i uni 0 0/,0 .uLs.vuE iwm &1' rn wxkun pi vxwsx rx ri noounw ilss ri wx swlninm vxn riw i oilx xo 3-

m- crn yswlsyiu pivvi nvsn ox rslr rn SSM ynlsoslisxw suu iyyu in nlusnu rn oxuuxswp imsxwlusmnD R,A=) R,AA) fn,033) fn,033v) fn,03: iwm fn,03A ox pinx nvssxw) iwm Tw,:7) On,:C) Lx,:A) Lx,;/) hw,;:) Tx,CC) L,037) L,03=) Ln,070 iwm Ln,u77 ox yisluin nvssxw- crs us mxn wx vniw ri xwu rnn wlusmn in x kn mnnlnm iwm nyxnm- Yrn ynit rslr in vniikun iwm smnwsosikun) xpnrn sr rn ikxn wlusmn) riuu iux kn smnwsosnm iwm nyxnm- Vlusmn rslr in knux SSM ox rn iwiun rxum wx kn nyxnm i knswp ynnw i rn SSM unnu ox ri wlusmn) k i ~wx mnnlnm-~ ernw wiu lslviwln nu sw SSM rsprn riw nzsnm) rn nixw riuu kn mxlvnwnm sw rn aimsxilsn Noounw anunin anyx-

n- crn isx xo rn ivyun oux in x rn ivyunm niv oux in riuu kn twxw ox rn svn ynsxm lxnnm k nilr mxn x mxn in liuluisxw vimn sw illxmiwln sr Lxwxu 3-3-0) 3-3-1) iwm 3-3-3-

o- crn pinx in ivyuswp iwm iwius yxpiv mxn wx nyuslsu nzsn ivyuswp iwm iwius i i ynlsosnm SSM x mnnvswn rn 0,033 nunin- Nsvin xoP,033 nunin riuu kn mnnvswnm k lxwswp rn nntu lrilxiu ivyun ox 0,033 &i nuu i 0,030' iwm ivn i lxwiw nunin in ox rn nunin ynsxm- p- Sxn Ssvs xo Mnnlsxw &SSM' iyyusn xwu x yisluin oxv imsxwlusmn smnwsosnm sw cikun Vxisxw m- ikxn-

Yoo,bsn Mxn Liuluisxw Tiwiu bnlsxw3.7 an- 3/ _ipn 0C xo 7; dnvxw giwtnn Vluni _xn bisxw 0,1)0 S;CJO;AVJ_D I;TDOYT DEELYDNVT

0,1)0)/ Crvg ' Nrdng Icvgv

AONVSOLT

0)0)/ Vkg clu frvg fxg wr prdng icvgv ugngcvgf lp icvgrxv ghhnxgpwv huro wkg vlwg wr cugcv cw cpf dgrpf wkg vlwg drxpfcu vkcnn dg nlolwgf wr wkg hrnnrzlpi:

c) Cxulpi cp ecngpfcu txcuwgu:

ngvv wkcp ru gtxcn wr 3 oucf hru icooc ucflcwlrp& cpf ngvv wkcp ru gtxcn wr .- oucf hru dgwc ucflcwlrp& cpf

d) Cxulpi cp ecngpfcu gcu:

ngvv wkcp ru gtxcn wr .- oucf hru icooc ucflcwlrp& cpf ngvv wkcp ru gtxcn wr /- oucf hru dgwc ucflcwlrp)

;PPLJA;=JLJVb:

;w cnn wlogv)

;AVJON:

alwk wkg ecnexncwgf clu frvg huro ucflrcewlyg prdng icvgv lp icvgrxv ghhnxgpwv geggflpi cp rh wkg cdryg nlolwv& sugscug cpf vxdolw wr wkg Aroolvvlrp zlwklp 0- fcv& sxuvxcpw wr OCAM Tgewlrp .-)0)/& c Tsgelcn Sgsruw wkcw lfgpwlhlgv wkg ecxvg~v" hru geggflpi wkg nlolw~v" cpf fghlpgv wkg eruugewlyg cewlrpv wkcw kcyg dggp wcmgp wr ugfxeg wkg ugngcvgv cpf wkg sursrvgf eruugewlyg cewlrpv wr dg wcmgp wr cvvxug wkcw vxdvgtxgpw ugngcvgv zlnn dg lp erosnlcpeg zlwk wkg cdryg nlolwv)

TYS_DJLL;NAD SDRYJSDMDNVT

1)0)/ Axoxncwlyg frvg erpwuldxwlrpv hru wkg wrwcn wlog sgulrf vkcnn dg fgwguolpgf lp ceerufcpeg zlwk wkg ogwkrfv lp wkg OCAM cw ngcvw rpeg gygu orpwk)

Ohh'Tlwg Crvg Acnexncwlrp Mcpxcn Tgewlrp 0,1 Sgy) 0- Pcig /- rh 17 _guorpw bcpmgg Nxengcu Przgu Twcwlrp 0,1)0 VAEMRAD_MbI LAYIRaY IJJNaIP_Y

0,1)0)0 Euyk ' Muiotk'.0r& Muiotk'.00& Vfioufhzok Ofzkxofr ot Sfxzohrfzk Juxs& fti _xozos

DRP_VRNY

0)0)0 _nk iuyk zu f sksgkx ul znk vgroh lxus Muiotk'.0.& Muiotk'.00& zxozos& fti xfiouthroiky ot vfxzohrfzk luxs ozn nfrl'roky mxkfzkx znft ; ify ot mfykuy kllrktzy xkrkfyki lxus znk yozk zu fxkfy fz fti gkuti znk yozk gutifx ynfrr gk rosozki zu znk lurruotm=

f) Exotm ft hfrktifx wfxzkx=

rkyy znft ux kwfr zu :)3 sxks zu ft uxmft& fti

g) Exotm ft hfrktifx kfx=

rkyy znft ux kwfr zu .3sxks zu ft uxmft)

ASSNMDACMNM_d=

Az frr zosky)

AD_MRP=

cozn znk hfrhrfzki iuyk lxus znk xkrkfyk ulMuiotk'.0.& Muiotk'.00& zxozos& fti xfiouthroiky ot vfxzohrfzk lR~~eerozn nfrl'roky mxkfzkx znft ; ify& ot mfykuy kllrktzy khkkiotm ft ul znk fguk rosozy& vxkvfxk fti ygsoz zu znk Dussoyyout oznot 0- ify& vxyftz zu REDO Ykhzout .-)0)/& f Yvkhofr Vkvuxz znfz oiktzoloky znk hfyk~y" lux khkkiotm znk rosoz~y" fti iklotky znk huxxkhzok fhzouty znfz nfk gkkt zfpkt zu xkihk znk xkrkfyky fti znk vxuvuyki huxxkhzok fhzouty zu gk zfpkt zu fyyxk znfz ygykwktz xkrkfyky orr gk ot husvrofthk ozn znk fguk rosozy)

YaVbIMNNAPDI VITaMVIOIP_Y

1)0)0 Dsrfzok iuyk hutzxogzouty lux znk zuzfr zosk vkxoui ynfrr gk ikzkxsotki ot fhhuxifthk ozn znk skznuiy ot znk REDO fz rkfyz uthk kkx sutzn)

Rll'Yozk Euyk Dfrhrfzout Oftfr Ykhzout 0,1 Vk) 0- Sfmk /. ul 17 bkxsutz dftpkk Phrkfx Sukx Yzfzout 0,1)0 V=DLR=C_LbE J=YERaY EIINaEP_Y

0,1)0)1 Jexiuzx Vehexyi _wieysity

CRP_VRNY

0)0)1 _mi =zlsityih Rkk'Jex Yxyis ~=RJ" xmerr fi zxih nt nyx hixnltih suhi uk uviweynut yu wihzgi tufri lexix nt lexiuzx exyi vwnuw yu yminw hnxgmewli mitiiw ymi sent guthitxiw xyies oiy enw ioigyuw ~YM=E" nx nt uviweynut)

=SSNLC=ALNL_d;

=y err ynsix)

=C_LRP;

cnym lexiuzx wehexyi kwus ymi sent guthitxiw enw ioigyuw xxyis fintl hnxgmewlih nymuzy ywieysity kuw suwi ymet 7 hex& vwivewi eth xzfsny yu ymi Cussnxxnut nymnt 0- hex& e Yvigner Vivuwy ymey ntgrzhix ymi ntkuwseynut hiyenrih nt RDCO Yigynut .-)0)/)

YaVbELNN=PCE VETaLVEOEP_Y

1)0)1)e _mi wiehntlx uk ymi wiriety ntxywzsity xmerr fi gmigpih iiw ./ muzwx mit ymi sent guthitxiw YM=E nx nt zxi yu itxzwi ymey ymi =RJ nx kztgynutntl)

1)0)1)f _mi lexiuzx ikkrzity ywieysity xxyis xgmiseyng nx xmut nt RDCO Inlzwi :)/)

Rkk'Ynyi Duxi Cergzreynut Oetzer Yigynut 0,1 Vi) 0- Seli // uk 13 biwsuty detpii Pzgriew Suiw Yyeynut 0,1)0 T;CLP;AYLaD I;VDP_V DEEM_DOYV

0,1)0)3 ahsxmpdxmts Dldywx Yvhdxrhsx

APOYTPMV

0)0)3 Ylh ;PI dsg Tdgdwxh =ympgmsk ahsxmpdxmts Empxhv ~JDR;" Vwxhrw wldpp eh ywhg xt vhgyfh udvxmfypdxh rdxhvmdpw ms kdwhtyw dwxh uvmtv xt xlhmv gmwfldvkh ivtr xltwh eympgmskw lhs xlh uvtnhfxhg gtwhw gyh xt kdwhtyw hiipyhsx vhphdwhw ivtr xlh wmxh xt dvhdw dx dsg ehtsg xlh wmxh etysgdv typg hfhhg -)0 rvhr xt ds tvkds tzhv tsh rtsxl)

;RRMLA;=LMLYc:

;x dpp xmrhw)

;AYLPO:

bmxl kdwhtyw vdgdwxh ehmsk gmwfldvkhg mxltyx uvtfhwwmsk xlvtykl duuvtuvmdxh xvhdxrhsx wwxhrw dw stxhg detzh& dsg ms hfhww ti xlh pmrmxw ti Atsxvtp 0)0)3& uvhudvh dsg wyermx xt xlh Atrrmwwmts mxlms 0- gdw& d Vuhfmdp Thutvx xldx msfpyghw xlh msitvrdxmts ghxdmphg ms PCAN Vhfxmts .-)0)/)

V_TaDLMM;OAD TDS_LTDNDOYV

1)0)3 Vhh Atsxvtp 1)0)/ itv wyvzhmppdsfh vhpdxhg xt ;PI dsg Tdgdwxh =ympgmsk zhsxmpdxmts impxhv wwxhr tuhvdxmts)

Pii'Vmxh Ctwh Adpfypdxmts Ndsydp Vhfxmts 0,1 Thz) 0- Rdkh /0 ti 17 ahvrtsx cdsohh Oyfphdv Rthv Vxdxmts 0,1)0 S;CJO;AVJ_D I;TDOYT DEELYDNVT

0,1)0)3 Pulocu Arpwclpogpw

AONVSOLT

0)0)3 akgp wkg sulocu erpwclpogpw lv wr dg _gpwgfnPxuigf& lw vkcnn dg _gpwgfnPxuigf wkurxik wkg Twcpfd Icv Vugcwogpw Tvwgo zkgpgygu wkg cludrupg ucflrcewlylw ngygnv lp erpwclpogpw rh Jrflpg'.0.& Jrflpg'.00 ru ucflrpxenlfgv lp scuwlexncwg hruo zlwk kcnh'nlygv iugcwgu wkcp 7 fcv geggf wkg ngygnv vsgelhlgf lp ;ssgpfl = wr nOAES/-).--. ' /-)/1-/& Vcdng .& Arnxop 0)

;PPLJA;=JLJVb:

;w cnn wlogv)

;AVJON:

c) alwk wkg ugtxlugogpwv rh Arpwurn 0)0)3 prw vcwlvhlgf& loogflcwgn vxvsgpf cnn _gpwlpi,Pxuilpi rh wkg erpwclpogpw)

d) Cxulpi pruocn ughxgnlpi cpf oclpwgpcpeg rxwcigv zkgp sulocu erpwclpogpw lv pr nrpigu ugtxlugf& wkgp Arpwurn 0)0)0 vkcnn vxsguvgfg Arpwurn 0)0)3)

TYS_DJLL;NAD SDRYJSDMDNVT

1)0)3 Vkg sulocu erpwclpogpw vkcnn dg vcosngf sulru wr ygpwlpi,sxuilpi sgu Vcdng 1)0).& cpf lh wkg ugvxnwv lpflecwg ucflrcewlylw ngygnv lp gegvv rh wkg nlolwv rh Arpwurn 0)0)3& wkg erpwclpogpw vkcnn dg cnlipgf hru ygpwlpi,sxuilpi wkurxik wkg Twcpfd Icv Vugcwogpw Tvwgo) Nr vcosnlpi vkcnn dg ugtxlugf lh wkg ygpwlpi,sxuilpi lv wkurxik wkg Twcpfd Icv Vugcwogpw ~T=IV" Tvwgo)

Ohh'Tlwg Crvg Acnexncwlrp Mcpxcn Tgewlrp 0,1 Sgy) 0- Pcig /1 rh 13 _guorpw bcpmgg Nxengcu Przgu Twcwlrp 1-3,1 aCINVCEcNeJ MCbJVdb JLLRdJTcb

1-3,1,; bply Op Cu Jvpn "bOCJ& ibpp cpntzunlx bpnurunluz 1-3,=,P,k

EVTcaVRb

1,1,; M loulnuu pxplp lp ry tp bOCJ tlxx mp xuyupo xp tlz plx .,/: Eu-pn "lrp 1. yuzp opnl&,

CYYRNECDNRNchA

C lxx uyp, CEcNVTA

l, bpp cpntzunlx bpnurunluz 1-3,=,P

bdaeJNRRCTEJ aJ_dNaJSJTcb

3,1,; l, ctp s loulnuu pxplp lp tlxx mp nzuzx yzupo uz lnnolznp ut Ezx 1,/,0,

m, ctp s loulnuu pxplp lp r zmxp slp ry tp bOCJ tlxx mp oppyuzpo mp utuz tp xuyu r Ezx 1,1,; l tp rxxuzs rppznup m pryuzs lz uun lzlxu "r gp)/1=' gp)/17' gp)/11' P)==' P)=7y' P)=;& z l pppzlup lyxp r slp lwpz l tp ountlsp,

/, Vznp p ppw,

0, futuz tp 3 t rxxuzs lz uznplp r 07~ 7... yunnup-pn' tuntpp u splp' uz plo)lp lnuu xppx ouzs plo)lp pln pluz' l uzounlpo m tp bOCJ yzu,

Vrr)bup Ip Elxnxluz Slzlx bpnuz 1-3 ap, 1. Ylsp 07 r 3: epyz hlzwpp Tnxpl Yp bluz 1-3,3 aSaDO JS_L

1-3,3,/ auzfr Juyk "3. IMY /=.&

ISRaYSO_

1,3,/ ank iuyk ux iuyk hussozsktz zu f sksgkx ul znk vgrohC~ ot fxkfy fz fti gkuti znk _ozk Eutifx lxus frr yzfzout yuxhky oy rosozki zu rkyy znft ux kwfr zu 07 sxks zu znk zuzfr gui ux ft uxmft "khkvz znk znxuoi' nohn oy rosozki zu rkyy znft ux kwfr zu ;7 sxks& ukx f hfrktifx kfx,

DTTONIDENONaeA

Dz frr zosky,

DIaNSRA

dozn znk hfrhrfzki iuyk lxus znk xkrkfyk ul xfioufhzok sfzkxofry ot rowoi ux mfykuy kllrktzy khkkiotm zohkznk Nosozy,ulIutzxury 1,0,0,f' 1,0,0,g' 1,1,0,f' 1,1,0,g' 1,1,1,f' ux 1,1,1,g' hfrhrfzouty ynuri gk sfik' othriotm ioxkhz xfiofzout hutzxogzouty lxus znk yzfzout zu ikzkxsotk nkznkx znk fguk rosozy ul Iutzxur 1,3,/ nfk gkkt khkkiki, Nl yhn oy znk hfyk' vxkvfxk fti ygsoz zu znk Iussoyyout oznot 1. ify f _vkhofr Ykvuxz znfz othriky znk otluxsfzout ikzforki ot SJIP _khzout /.,1,1,

_bY cLNOODRIL YLVbNYLPLRa_

3,3,/,f Isrfzok iuyk hutzxogzouty lxus rowoi fti mfykuy kllrktzy ynfrr gk ikzkxsotki ot fhhuxifthk ozn Iutzxury 3,0,0' 3,1,0' fti 3,1,1,

3,3,r,g Isrfzok iuyk hutzxogzouty lxus ioxkhz xfiofzout lxus vrftz yuxhky ynfrr gk ikzkxsotki ot fhhuxifthk ozn znk skznuiy ot znk SJIP, anoy xkwoxksktz oy fvvrohfgrk utr tikx hutiozouty ykz luxzn ot Iutzxur 1,3,/ Dhzout _zfzksktz,

~ RuzkA Mux znoy Iutzxur' f sksgkx ul znk vgroh sf gk zfpkt fy f xkfr otiooifr fhhutzotm lux noy fhzfr fhzoozoky, Sll)_ozk Juyk Ifrhrfzout Pftfr _khzout 1-3 Yk, 1. Tfmk 0: ul 3: ckxsutz eftpkk Rhrkfx Tukx _zfzout 0,1)3 S=DJOLOIJC=L EN_JSONMENV=L MONJVOSJNI

0,1)3). Epylurpogpwcn Mrplwrulpi Puriuco

CONVSOLT

0)3). Vkg ucflrnrilecn gpylurpogpwcn orplwrulpi suriuco vkcnn dg erpfxewgf cv vsgelhlgf lp Vcdng 0)3).)

=PPLJC=AJLJVb;

=w cnn wlogv)

=CVJON;

c) alwk wkg ucflrnrilecn gpylurpogpwcn orplwrulpi suriuco prw dglpi erpfxewgf cv vsgelhlgf lp Vcdngv 0)3). ru 1)3).& sugscug cpf vxdolw wr wkg Croolvvlrp& lp wkg =ppxcn Scflrnrilecn Epylurpogpwcn Mrplwrulpi Sgsruw ~sgu ODCM Tgewlrp .-)/"& c fgveulswlrp rh wkg ugcvrpv hru prw erpfxewlpi wkg suriuco cv ugtxlugf cpf wkg sncpv hru sugygpwlpi c ugexuugpeg)

d) alwk wkg ngygn rh ucflrcewlylw cv wkg ugvxnw rh sncpw ghhnxgpwv lp cp gpylurpogpwcn vcosnlpi ogflc cw rpg ru orug nrecwlrpv vsgelhlgf lp Crpwurn Vcdng 0)3). geggflpi wkg ugsruwlpi ngygnv rh Crpwurn Vcdng 0)3)/& sugscug cpf vxdolw wr wkg Croolvvlrp c Tsgelcn Sgsruw zlwklp 0- fcv huro ugeglsw rh wkg ncdrucwru cpcnvlv ~sgu ODCM Tgewlrp .-)0)1")

TYS_EJLL=NCE SERYJSEMENVT

1)3). Vkg ucflrnrilecn gpylurpogpwcn orplwrulpi vcosngv vkcnn dg ernngewgf sxuvxcpw wr Vcdng 0)3). huro wkg nrecwlrpv ilygp lp wkg ODCM cpf vkcnn dg cpcngf sxuvxcpw wr wkg ugtxlugogpwv rh Vcdng 0)3). cpf wkg fgwgewlrp ecscdlnlwlgv ugtxlugf d Vcdng 1)3).)

Ohh'Tlwg Drvg Ccnexncwlrp Mcpxcn Tgewlrp 0,1 Sgy) 0- Pcig /: rh 17 _guorpw bcpmgg Nxengcu Przgu Twcwlrp V=AME 0)3).

Sadipmpgicam Eoxitponeovam Npoivptiog Rtpgtan

Ezrpuwte Ravhya Ownbet pf Tanrme Tanrmiog aod Vre aod Itesweoc aod,pt Tanrme Mpcavipou~-! Cpmmecvipo pf =oamuiu Itesweoc

m) =LSAPSOE

a) Sadipipdioe aod Tanrmeu ftpn Cpoviowpwu Sadipipdioe caoiuvet; Ratvicwmaveu 3 mpcavipou; pretavipo pf =oame each uanrme fpt uanrmet yivh L'.0m) . uanrme ftpn wr uanrme cpmmecvipoRatvicwmave uanrmet; xamme& yivhio 1 nimeuyeelm pt npte Jtpuu beva tadipacvixiv pf Tive mmpwodat) ftesweovm au aoamuiu po each uanrme ~nakpt yiod ditecvipo" teswited b dwuv fpmmpyiog fimvet chaoge) ~c" ) ) mpadiog) Cpnrpuive ~b . uanrme ftpn dpyo mpcavipo" fpt ganna xamme& yivhio 1 nimeu ) ~d" + LTPvPRLC av eauv poce pf Tive Apwodat) ret swatvet) ~nakpt yiod ditecvipo"

. uanrme each ftpn vhe xicioiv pf vyp oeatb cpnnwoivieu& yivhio .- nimeu pf Tive Apwodat)

. uanrme ftpn a cpovtpm mpcavipo)

Pff'Tive Dpue Camcwmavipo Naowam Tecvipo 0,1 Sex) 0- Rage /: pf 17 Yetnpov _aolee Owcmeat Rpyet Tvavipo aCDOJ 1,7,/ "Esrx~g&

Ydgmsoskmfdo Jrzmvsrphrxdo Psrmxsvmrk Tvskvdp

Jtswyvh Tdxld Rypehv si _dptoh _dptomrk drg ath drg Lvhuyhrf + ~-! drg-sv _dptoh Osfdxmsrw Esoohfxmsr Lvhuyhrf si Crdowmw

R INYJEa 3. vsyxmrh psrmxsvmrk Vydvxhvo, Mdppd gswh' dx YCINCaNSRe wxdxmsrw dw isoosw= ohdwx srfh thv uydvxhv, /: mrfmghrx vhwtsrwh wxdxmsrw "srh mr hdfl Nrfmghrx vhwtsrwh phxhsvsoskmfdo whfxsv& aOIw mr xlh syxhv mxlmr d vdrkh si . xs psrmxsvmrk 3 odrkA osfdxmsrw' gh)gswh sro uydvxhvo yrohww /: mrfmghrx vhwtsrwh kdwhsyw vhohdwh wxdxmsrw "srh mr hdfl Esrxvsow hvh phxhsvsoskmfdo whfxsv& hfhhghg mr thvmsg, mxlmr d vdrkh si 0 xs _odrkA

xlh edodrfh si xlh wxdxmsrw xs eh todfhg mr wthfmdo mrxhvhwx dvhdw drg fsrxvso wxdxmsr dvhdw,

Sii)_mxh Iswh Edofyodxmsr Pdrydo _hfxmsr 1-3 Yhz, 1. Tdkh 0; si 3: bhvpsrx cdrnhh Ryfohdv Tshv _xdxmsr T:;JC /)1). "=onu~d&

Radiological Cnwisonmenual Loniuosing Osogsam

Cypotvse Oauhxaz Mvmbes of Sample Sampling and Tzpe and Dservencz ~-! and,os Sample Jocauiont =ollecuion Dservencz of :nalztit /) Y:TCR;NRMC

~4! a) Svsface . tample vptuseam) Lonuhlz gsab tample) Eamma itouopic ~.! analztit of each tample) Tsiuivm analztit of compotiue tample au leatu once pes rvasues) . tample =ompotiue tample doxntuseam) collecued owes a soesiod of one monuh

E)) ~.! b) Esovnd . tample fsom xiuhin Pvasueslz) amma ISNuNOi= 7 +-8 dituance) and usiuivm analztet of each tample) . tample fsom a Pvasueslz) conusol locauion)

c) Sedimenu fsom . tample fsom Semiannvallz) Eamma itouopic ~.! Shoseline doxntuseam asea xiuh analztit of each eyituing os pouenuial tample) secseauional walve) . tample fsom nosuh Semiannvallz) tuosm dsain ovufall)

Nff'Siue Aote =alcvlauion Lanval Secuion /,0 Rew) /- Oage /- of 03 Vesmonu _ankee Mvcleas Ooxes Suauion V;=LD /)1). "Aonu~d&

Sadiological Dnwisonmenual Moniuosing Psogsam

Dypotvse Pauhxaz Nvmbes of Tample Tampling and Vzpe and Eservencz ~.! and,os Tample Locauiont Aollecuion Eservencz of ;nalztit 0) JNIDTVJON R a) Milk Tamplet fsom milking Temimonuhlz if milking Iamma itouopic animalt in / locauiont animalt ase idenuified and .'./. analztit of xiuhin 1 km dituance on patuvse: au leatu once each tample) hawing uhe highetu dote pes monuh au ouhes pouenuial) Jf uhese ase uimet) lett uhan / psimasz locauiont awailable uhen +os mose tecondasz tample fsom milking animalt in each of / aseat beuxeen 1 uo 7 km dituance xhese dotet ase calcvlaued uo be gseaues uhan . msem pes zeas) . tample fsom milking animalt in a conusol locauion) b) Eith . tample of uxo Temiannvallz) Iamma itouopic R secseauionallz imposuanu analztit on edible tpeciet in wiciniuz of posuiont) planu ditchasge asea) . tample "psefesablz of tame tpeciet& in aseat nou inflvenced bz planu ditchasge) c) Yegeuauion . gsatt tample au each Rvasueslz xhen Iamma itouopic R ais tampling tuauion) awailable) analztit of each tample) . tilage tample au each ;u uime of haswetu) Iamma itouopic R milk tampling tuauion analztit of each "at awailable&) tample) V;=LD /)1). NOV;VJON Off'Tiue Cote Aalcvlauion Manval Tecuion /,0 Sew) /- Page -+ of 03 Yesmonu _ankee Nvcleas Poxes Tuauion a Tpecific pasameuest of dituance and disecuion tecuos fsom uhe cenuesline of uhe seacuos and addiuional detcsipuiont xhese pesuinenu' thall be psowided fos each and ewesz tample locauion in Vable 1,7,/ in a uable and figvse"t& in uhe PDCN "Tecuion ;&, Dewiauiont ase pesmiuued fsom uhe servised tampling tchedvle if tpeciment ase vnobuainable dve uo haasdovt condiuiont' teatonal vnawailabiliuz' malfvncuion of avuomauic tampling ervipmenu and ouhes legiuimaue seatont, Lf tpeciment ase vnobuainable dve uo tampling ervipmenu malfvncuion' ewesz seatonable effosu thall be made uo compleue cossecuiwe acuion psios uo uhe end of uhe neyu tampling pesiod, All dewiauiont fsom uhe tampling tchedvle thall be docvmenued in uhe Annval Sadiological Enwisonmenual Ppesauing Seposu pvstvanu uo PDCN Tecuion /.,0, Lu it secognied uhau' au uimet' iu maz nou be pottible os psacuicable uo conuinve uo obuain tamplet of uhe media of choice au uhe motu detised locauion os uime, Ln uhete intuancet' tviuable aluesnauiwe media and locauiont maz be choten fos uhe pasuicvlas pauhxaz in rvetuion and appsopsiaue tvbtuiuvuiont made xiuhin 1. dazt in uhe sadiological enwisonmenual moniuosing psogsam, Ln liev of a Micentee Ewenu Seposu and pvstvanu uo PDCN Tecuion /.,/' idenuifz uhe cavte of uhe vnawailabiliuz of tamplet fos uhau pauhxaz and idenuifz uhe nex locauion"t& fos obuaining seplacemenu tamplet in uhe neyu Sadioacuiwe Efflvenu Seleate Seposu and alto inclvde in uhe seposu a sewited figvse"t& and uable fos uhe PDCN seflecuing uhe nex locauion"t&,

b Pne os mose intusvmenut' tvch at a psettvsied ion chambes' fos meatvsing and secosding dote saue conuinvovtlz maz be vted in place of' os in addiuion uo' inuegsauing dotimeuest, Ios uhe pvspotet of uhit uable' a Vhesmolvminetcenu Dotimeues "VMD& it contidesed uo be one photphos= uxo os mose photphost in a packeu ase contidesed at uxo os mose dotimeuest, Iilm badget thall nou be vted at dotimeuest fos meatvsing disecu sadiauion, Vhe 3. tuauiont it nou an abtolvue nvmbes, Vhe fservencz of analztit os seadovu fos VMD tztuemt xill depend vpon uhe chasacuesituict of uhe tpecific tztuem vted and thovld be telecued uo obuain opuimvm dote infosmauion xiuh minimal fading,

c Aisbosne pasuicvlaue tample filuest thall be analzed fos gsott beua sadioacuiwiuz 03 hovst os mose afues tampling uo allox fos sadon and uhosivm davghues decaz, Lf gsott beua acuiwiuz in ais pasuicvlaue tamplet it gseaues uhan uen uimet uhe zeaslz mean of conusol tamplet' gamma itouopic analztit thall be pesfosmed on uhe indiwidval tamplet,

d Jamma itouopic analztit meant uhe idenuificauion and rvanuificauion of gamma)emiuuing sadionvclidet uhau maz be auusibvuable uo uhe efflvenut fsom uhe faciliuz,

e Vhe ~vptuseam tample~ thall be uaken au a dituance bezond tignificanu inflvence of uhe ditchasge, Vhe ~doxntuseam~ tample thall be uaken in an asea bezond bvu neas uhe miying one,

f Compotiue tample alirvout thall be collecued au uime inueswalt uhau ase wesz thosu selauiwe uo uhe compotiuing pesiod in osdes uo attvse obuaining a sepsetenuauiwe tample,

g Each meueosological tecuos thall hawe an etuablithed ~innes~ and an ~ovues~ moniuosing locauion bated on eate ofsecowesz "i,e,' setponte uime& and zeas)sovnd accettibiliuz,

h Deleued,

Pff)Tiue Dote Calcvlauion Nanval Tecuion 1-3 Sew, 1. Rage 10 of 3: Yesmonu _ankee Ovcleas Roxes Tuauion bCDRJ 0)3)/

_mxwzrvo Rmmt Lwz _hlrwhkrr Ewvkmvzhrwv Ov Jvrzwvumvht ahuxtm~h" _mxwzrvo Rmmt

Crziwzvm Yhzrkthm dhmz wz Mhm Lrp Srts cmomhrwv amlrumv Cvhtr ~xEr,t" ~xEr,u0" ~xErtPo& m" ~xEr,t" ~xEr,Po& m" ~xEr,Po& lz" N'0 / tV1~i"

0 1 Sv'31 . .- 0 e .-

/ 1 Lm'3= 1 .- . e .-

0 1 Ew'3; . .- 0 e .-

/ 1 0 Ew'7- 0 .- . e .- 0 .- ~:!

/ 1 gv'73 0 .- / e .- gz'Ti'=3 1 .-/ .'.0. / ~l" -)= 0 . .-/

0 0 E'.01 0- .- . e .- 7- . e .-

0 0 E'.0: 3- /- / e .- :- / e .-

/ / Dh'Rh'.1 / .- 0 e .- -

~h" _mxwzrvo tmmt uh im hmzhoml wmz h khtmvlhz yhzmz) dpmv uwzm phv wvm wn pm zhlrwvktrlm rv bhitm 0)3)/ hzm lmmkml rv pm huxtrvo umlru& pm vrym zmxwzrvo zmyrzmumv hzm vw mmzkrml rn pm nwttwrvo kwvlrrwv pwtlA

------4.....4..-kwvkmvzhrwv ~." + kwvkmvzhrwv+... ~/" 8 .)- zmxwzrvo tmmt ~." zmxwzrvo tmmt ~/"

dpmv zhlrwvktrlm wpmz phv pwm rv bhitm 0)3)/ hzm lmmkml hvl hzm pm zmt wn xthv mnntmv& pm xwmvrht hvvht lwm w h umuimz wn pm xitrk u im tm phv wz myht w pm khtmvlhz mhz trur wn Ewvzwt 0)/)/& 0)0).& hvl 0)0)/)

~i" _mxwzrvo tmmt nwz lzrvsrvo hmz xhph) Lwz vwvlzrvsrvo hmz xhph& h htm wn 0 .-1 xEr,. uh im ml)

~k" _mxwzrvo tmmt nwz rvlrrlht ozhi huxtm hsmv h Twzp awzu Izhrv Vnhtt wvt)

~l" -1 vw lzrvsrvo hmz xhph mr& h htm wn /- xmr,trmz uh im ml) Vnn'arm Iwm Ehtkthrwv Shvht amkrwv 0,1 _m) 0- Yhom 00 wn 17 cmzuwv fhvsmm Tktmhz Ywmz ahrwv cCDSJ 3,7,/

Immkrwv Ehxhirtrrmz Lwy Jvrywvumvht bhuxtm Cvhtzrz" h&"k&

Cryiwyvm ehmy _hyrkthm wy Lrzp Trts dmomhrwv bmlrumv Cvhtzrz~ "xErPt& Mhz "xEr-u1& "xErtRo' m&"xErOt& "xErtRo' m& "xEr-Ro' ly& Mywzz imh 3 .,./ N)1 1... Tv)73 /7 /1. Lm)7A 1. 0:. Ew)7=':. /7 /1. gv):7 1. 0:.

gy)Vi)A7 /7 ~+!

O)/1/ / ~.! .,.; / :. Ez)/13 /7 .,.7 /1. /7 :. /7. Ez)/1; /= .,.: /7. /= =. /=.

/7 ~+!~-! ~+!~-! Dh)Sh)/3. /7

Ynn)brm Iwzm Ehtkthrwv Thvht bmkrwv1-3 am, 1. _hom 13 wn 3: dmyuwv fhvsmm Vktmhy _wmy bhrwv S;=JD 1)3). MNS;SINM

~Y" Rcc Emmslmsc ~Y" md SY_ic 1)/).)

~_" OYpcls mlix)

~a" Id sfc kcYrtpcb amlaclspYsgml kgltr sfc 3 rgekY amtlsgle rsYsgrsgar gr dmtlb sm cwaccb sfc rncagdgcb JJC& sfc rYknic bmcr lms fYuc sm _c YlYixycb sm kccs sfc rncagdgcb JJC)

~b" Sfgr igrs bmcr lms kcYl sfYs mlix sfcrc ltaigbcr Ypc sm _c amlrgbcpcb) Nsfcp ncYhr sfYs Ypc gbclsgdgY_ic& smecsfcp vgsf sfmrc md sfc igrscb ltaigbcr& rfYii Yirm _c YlYixycb Ylb pcnmpscb gl sfc ;lltYi PYbgmimegaYi DlugpmlkclsYi NncpYsgle Pcnmps ntprtYls sm ScaflgaYi RncagdgaYsgml 7)7)D Ylb NCcL Rcasgml .-)/)

~c" Sfc =Y'.1- JJC Ylb amlaclspYsgml aYl _c bcscpkglcb _x sfc YlYixrgr md gsr rfmps'igucb bYtefscp npmbtas JY'.1- rt_rcotcls sm Yl : bYx ncpgmb dmiimvgle amiicasgml) Sfc aYiatiYsgml rfYii _c npcbgascb ml sfc lmpkYi glepmvsf cotYsgmlr dmp Y nYpcls'bYtefscp rgstYsgml Ylb sfc Yrrtknsgml sfYs Ylx tlrtnnmpscb JY'.1- gl sfc rYknic vmtib fYuc bcaYxcb sm Yl glrgelgdgaYls Ykmtls ~Ys icYrs 0)7 ncpacls md gsr mpgeglYi uYitc") Sfc glepmvsf cotYsgmlr vgii Yrrtkc sfYs sfc rtnnmpscb JY'.1- Yasgugsx Ys sfc sgkc md sfc amiicasgml gr ycpm)

~+! 'Ccicscb)

~e" Id lm bpglhgle vYscp nYsfvYx cwgrsr& Y uYitc md .3 nag,igscp kYx _c trcb)

Ndd'Rgsc Cmrc AYiatiYsgml LYltYi Rcasgml0,1 Pcu) 0- OYec03 md17 Tcpkmls VYlhcc MtaicYp Omvcp RsYsgml 0,1)3 S;CIOLOEIA;L DN_ISONMDNV;L MONIVOSINE

0,1)3)/ Lcrf Ywg Agrwyw

AONVSOLT

0)3)/ ; ocrf ywg egrwyw wkcoo dg esrfyexgf xs lfgrxlh xkg osecxlsr sh xkg rgcvgwx plon crlpco crf xkg rgcvgwx vgwlfgreg lr gcek sh xkg .7 pgxgsvsosileco wgexsvw lxklr c flwxcreg sh hlzg plogw) Vkg wyvzg wkcoo cows lfgrxlh xkg rgcvgwx plon crlpco ~lxklr 0 plogw sh xkg tocrx" xs xkg tslrx sh tvgflexgf klikgwx crryco czgvcig C,R zcoyg lr gcek sh xkg xkvgg pcmsv pgxgsvsosileco wgexsvw fyg xs gogzcxgf vgogcwgw hvsp xkg tocrx wxcen)

;PPLIA;=ILIVb:

;x coo xlpgw)

;AVION:

c) alxk c ocrf ywg egrwyw lfgrxlhlri srg sv psvg osecxlsrw klek lgof c ecoeyocxgf fswg sv fswg espplxpgrx ~zlc xkg wcpg gtswyvg tcxkc" cx ogcwx /- tgvegrx ivgcxgv xkcr cx c osecxlsr hvsp klek wcptogw cvg eyvvgrxo dglri sdxclrgf lr ceesvfcreg lxk Asrxvso 0)3).& cff xkg rg osecxlsr~w" xs xkg vcflsosileco grzlvsrpgrxco psrlxsvlri tvsivcp lxklr 0- fcw lh tgvplwwlsr hvsp xkg srgv xs esoogex wcptogw ecr dg sdxclrgf& crf wyhhlelgrx wcptog zsoypg lw czclocdog) Vkg wcptolri osecxlsr~w"& geoyflri xkg esrxvso wxcxlsr osecxlsr& kczlri xkg osgwx ecoeyocxgf fswg sv fswg espplxpgrx ~zlc xkg wcpg gtswyvg tcxkc" pc dg fgogxgf hvsp xklw psrlxsvlri tvsivcp chxgv Oexsdgv 0. sh xkg gcv lr klek xklw ocrf ywg egrwyw cw esrfyexgf)

d) alxk xkg ocrf egrwyw rsx dglri esrfyexgf cw vguylvgf cdszg& tvgtcvg crf wydplx xs xkg Aspplwwlsr lxklr 0- fcw c Ttgelco Sgtsvx xkcx lreoyfgw lrhsvpcxlsr fgxclogf lr OCAM Tgexlsr .-)0)3)

TYS_DILL;NAD SDRYISDMDNVT

1)3)/ Vkg ocrf ywg egrwyw wkcoo dg esrfyexgf cx ogcwx sreg tgv gcv dgxggr xkg fcxgw sh Jyrg . crf Oexsdgv . d glxkgv c fssv'xs'fssv wyvzg& cgvlco wyvzg& sv d esrwyoxlri oseco civleyoxyvco cyxksvlxlgw) Vkg vgwyoxw sh xkg ocrf ywg egrwyw wkcoo dg lreoyfgf lr xkg ;rryco Scflsosileco Drzlvsrpgrxco Otgvcxlri Sgtsvx tyvwycrx xs Vgekrleco Ttgelhlecxlsr 7)7)D crf OCAM Tgexlsr .-)/)

Ohh'Tlxg Cswg Acoeyocxlsr Mcryco Tgexlsr 0,1 Sgz) 0- Pcig 07 sh 17 _gvpsrx bcrngg Nyeogcv Psgv Txcxlsr .'/&0 P:AEMIMDE=:I CLVEPMLJCLS:I JMLESMPELD

.'/&0&. Enueslabosauosy =ompasiton Nsogsam

=MLSPMIR

.&0&. :nalytet thall be pesfosmed on sefesenced sadioacuiwe mauesialt tvpplied at pasu of an Enueslabosauosy Nsogsam xhich hat been appsowed by LP=&

:NNIE=:;EIES_7

:u all uimet&

:=SEML7

Yiuh analytit nou being pesfosmed at servised abowe~ seposu uhe cossecuiwe acuiont uaken uo psewenu a secvssence uo uhe =ommittion in uhe :nnval Padiological Cnwisonmenual Mpesauing Peposu pvstvanu uo MA=J Recuion ,)&-

RTPVCEII:L=C PCOTEPCJCLSR

/&0&. : tvmmasy of uhe setvlut of analytet pesfosmed at pasu of uhe abowe servised Enueslabosauosy Nsogsam thall be inclvded in uhe :nnval Padiological Cnwisonmenual Mpesauing Peposu& LP="appsowed inueslabosauosy psogsamt vuilized by enwisonmenual labosauosiet in psocetting Vesmonu _ankee tamplet thall be idenuified in uhe MA=J&

Mff"Riue Aote =alcvlauion Janval Recuion .'/ Pew& .) Nage .3 of /1 Vesmonu _ankee Lvcleas Noxes Ruauion 0,1)7 EIIMYEOV =OD EO_LSPONEOV=M CPOVSPM A=TET

LOTVSYNEOV= VLPO

Mktxke Eggnxfpw Lpvwuxofpwbwkrp ~0).)."

Vif ubekrbdwkyf nktxke fggnxfpw kpvwuxofpwbwkrp kv surykefe wr orpkwru bpe drpwurn& bv bssnkdbcnf& wif ufnfbvfv rg ubekrbdwkyf obwfukbnv kp nktxke fggnxfpwv exukph bdwxbn ru srwfpwkbn ufnfbvfv rg nktxke fggnxfpwv) Vif bnbuo vfwsrkpwv gru wifvf kpvwuxofpwv buf wr fpvxuf wibw wif bnbuo zknn rddxu sukru wr fdffekph .- wkofv wif drpdfpwubwkrp nkokwv rg =ssfpek A wr nPCIS/-).--n'/-)/1-/& Vbcnf /& Crnxop /& ybnxfv)

=xwrobwkd kvrnbwkrp gxpdwkrp kv prw surykefe rp wif nktxke ubezbvwf ekvdibuhf nkpf exf wr wif kpguftxfpw pbwxuf rg cbwdi& ekvdufwf yrnxof& nktxke ekvdibuhfv ~rp wif ruefu rg rpdf sfu fbu ru nfvv"& bpe wif beokpkvwubwkyf drpwurnv surykefe wr fpvxuf wibw drpvfuybwkyf ekvdibuhf gnrz ubwfv,eknxwkrp gnrzv buf vfw vxdi wibw wif surcbcknkw rg fdffekph wif bcryf drpdfpwubwkrp nkokwv buf nrz& bpe wif srwfpwkbn rgg'vkwf ervf drpvftxfpdfv buf bnvr nrz)

Jbvfrxv Eggnxfpw Lpvwuxofpwbwkrp ~0).)/"

Vif ubekrbdwkyf hbvfrxv fggnxfpw kpvwuxofpwbwkrp kv surykefe wr orpkwru bpe drpwurn& bv bssnkdbcnf& wif ufnfbvfv rg ubekrbdwkyf obwfukbnv kp hbvfrxv fggnxfpwv exukph bdwxbn ru srwfpwkbn ufnfbvfv rg hbvfrxv fggnxfpwv) Vif bnbuo,wuks vfwsrkpwv gru wifvf kpvwuxofpwv buf surykefe wr fpvxuf wibw wif bnbuo,wuks zknn rddxu sukru wr fdffekph efvkhp cbvfv ervf ubwfv kefpwkgkfe kp CrpwurL0)0)n)

S=DLP=CVL_E EIIMYEOVT

Mktxke Eggnxfpwv; Crpdfpwubwkrp ~0)/)."

Vikv Crpwurn kv surykefe wr fpvxuf wibw bw bp wkof wif drpdfpwubwkrp rg ubekrbdwkyf obwfukbnv ufnfbvfe kp nktxke zbvwf fggnxfpwv guro wif vkwf bcryf cbdmhurxpe ~Ypufvwukdwfe =ufb gru nktxkev kv bw wif srkpw rg ekvdibuhf guro wif snbpw ekvdibuhf kpwr Crppfdwkdxw Skyfu" zknn prw fdffe .- wkofv wif drpdfpwubwkrp nfyfnv vsfdkgkfe kp nPCIS Rbuw /-).--.'/-)/1-/& =ssfpek A& Vbcnf /& Crnxop /) Vifvf uftxkufofpwv surykef rsfubwkrpbn gnfkcknkw& drosbwkcnf zkwi drpvkefubwkrpv rg ifbnwi bpe vbgfw& zikdi ob wfosrubukn ufvxnw kp ufnfbvfv ikhifu wibp wif bcvrnxwf ybnxf rg wif drpdfpwubwkrp pxocfuv kp =ssfpek A& cxw vwknn zkwikp wif bppxbn byfubhf nkokwbwkrp rg wif Sfhxnbwkrp) Crosnkbpdf zkwi wif efvkhp rclfdwkyf ervfv rg Tfdwkrp LL)= rg =ssfpek L wr .-CIS Rbuw 3- bvvxuf wibw ervfv buf obkpwbkpfe =M=S=& bpe wibw bppxbn drpdfpwubwkrp nkokwv rg =ssfpek A wr nPCIS/-).--.'/-)/1-/ zknn prw cf fdffefe)

Pgg'Tkwf Drvf Cbndxnbwkrp Nbpxbn Tfdwkrp 0,1 Sfy) 0- Rbhf 0: rg 17 _fuorpw abpmff Oxdnfbu Rrzfu Twbwkrp 1-3,: JLLOaJR_ CRI JRbNVSRPJR_CO ESR_VSO DCYJY "gtsy,&

_mi gtsgisyweynts pnrny ktw stfpi lexix nx fexih zuts ymi exxzruynts ymey ci)/17 nx ymi gtsywtppnsl wehntszgpnhi esh ymey es ikkpzisy gtsgisyweynts ns enw "xzfriwxnts htxi ivzep yt 7.. rwir-w& ex gtsiwyih yt es ivznepisy gtsgisyweynts ns eyiw,

Onvznh JkkpzisyxA Itxi "1,0,0&

_mnx Etsywtp nx uwtnhih yt nrupirisy ymi wivznwirisyx tk Yigyntsx NOC' NNOC' esh Nb,C tk Cuuishn N' /.ELV Tewy 7., _mi Onrnynsl Etshnynts ktw Suiweynts nrupirisyx ymi lznhix xiy ktwym ns Yigynts NOC tk Cuuishn /, _mi wivznwirisyx uwtnhi tuiweynsl kpinfnpny esh ey ymi xeri ynri nrupirisy ymi lznhix xiy ktwym ns Yigynts Nb,C tk Cuuishn N yt exxzwi ymey ymi wipiexix tk wehntegyni reyiwnep ns pnvznh ikkpzisyx npp fi oiuy ~ex pt ex nx wiextsefp egmniefpi,~ _mi Yzwinppesgi Vivznwirisyx nrupirisy ymi wivznwirisyx ns Yigynts NNOC tk Cuuishn N' n,i,' ymey gtsktwresgi nym ymi lznhix tk Cuuishn N fi xmts f gepgzpeyntsep uwtgihzwix fexih ts rthipx esh heye xzgm ymey ymi egyzep iutxzwi tk es nshnnhzep ymwtzlm euuwtuwneyi ueymex nx zspnoip yt fi xzfxyesynepp zshiwixynreyih, Ns ehhnynts' ymiwi nx wiextsefpi exxzwesgi ymey ymi tuiweynts tk ymi kegnpny npp sty wixzpy ns wehntszgpnhi gtsgisyweyntsx ns utyefpi hwnsonsl eyiw ymey ewi ns igixx tk ymi wivznwirisyx tk 3.ELV/3/, Rt hwnsonsl eyiw xzuupnix hwes kwtr ymi Etssigyngzy Vniw fipt ymi upesy mei fiis nhisynknih, _mi euuwtuwneyi htxi ivzeyntsx ktw nrupirisyeynts ymwtzlm wivznwirisyx tk ymi Yuignkngeynts ewi hixgwnfih ns ymi biwrtsy desoii Skk)Ynyi Itxi Eepgzpeynts Peszep, _mi ivzeyntsx xuignknih ns ymi SIEP ktw gepgzpeynsl ymi htxix hzi yt ymi egyzep wipiexi weyix tk wehntegyni reyiwnepx ns pnvznh ikkpzisyx iwi hiiptuih kwtr ymi riymthtptl uwtnhih ns Vilzpeytw Mznhi /,/.=' ~Eepgzpeynts tk Csszep Itxix yt Pes kwtr Vtzynsi Vipiexix tk Viegytw Jkkpzisyx ktw ymi Tzwutxi tk Jepzeynsl Etrupnesgi nym pSELV Tewy 7.' Cuuishn N~' Vinxnts /' Sgytfiw /=;; esh Vilzpeytw Mznhi /,//1' ~Jxynreynsl Cvzeyng Inxuiwxnts tk Jkkpzisyx kwtr Cggnhisyep esh Vtzynsi Viegytw Vipiexix ktw ymi Tzwutxi tk Nrupirisynsl Cuuishn N~' Vinxnts /' Cuwnp /=;;,

Skk)Ynyi Itxi Eepgzpeynts Peszep Yigynts 1-3 Vi, 1. Teli 1= tk 3: biwrtsy desoii Rzgpiew Ttiw Yyeynts 1-3,: IJJN_IPY APE IPaMTRPOIPYAN DRPYTRN CAVIV "esrx,&

Nluylf Tcfcwxg Yvgcxpgrx "1,0,1&

Ykg vguylvgpgrx xkcx xkg cttvstvlcxg tsvxlsrw sh xklw wwxgp cw lrflecxgf lr xkg REDO dg ywgf' kgr wtgelhlgf' tvszlfgw cwwyvcreg xkcx xkg vgogcwgw sh vcflscexlzg pcxgvlcow lr oluylf ghhoygrxw loo dg ngtx ~cw os cw lw vgcwsrcdo ceklgzcdog,~ Yklw wtgelhlecxlsr lptogpgrxw xkg vguylvgpgrxw sh oRDJT Scvx 7.,1:c crf xkg fgwlir sdmgexlzg ilzgr lr Vgexlsr MNE sh Attgrfl M xs /.DJT Scvx 7., Ykg wtgelhlgf olplxw iszgvrlri xkg ywg sh cttvstvlcxg tsvxlsrw sh xkg oluylf vcfcwxg xvgcxpgrx wwxgp gvg wtgelhlgf cw c wylxcdog hvcexlsr sh xkg fswg fgwlir sdmgexlzgw wgx hsvxk lr Vgexlsr MNA sh Attgrfl M' /.DJT Scvx 7.' hsv oluylf ghhoygrxw,

Lcwgsyw Ihhoygrxw= Eswg Tcxg "1,1,/&

Ykg wtgelhlgf olplxw cw fgxgvplrgf d xkg pgxksfsosi lr xkg REDO' vgwxvlex' cx coo xlpgw' xkg esvvgwtsrflri icppc crf dgxc fswg vcxgw cdszg dcenivsyrf xs c pgpdgv sh xkg tydole cx sv dgsrf xkg wlxg dsyrfcv xs "7..& pvgpogcv xs xkg xsxco dsf sv xs "1'...& pvgp-gcv xs xkg wnlr, Yklw lrwxcrxcrgsyw fswg vcxg olplx coosw hsv stgvcxlsrco hogldlolx kgr shh rsvpco seeyvvgregw pc xgptsvcvlo lrevgcwg icwgsyw ghhoygrx vgogcwg vcxgw hvsp xkg tocrx' klog wxloo tvszlflri esrxvsow xs grwyvg xkcx olegrwgg pggxw xkg fswg sdmgexlzgw sh Attgrfl M xs oRDJT7.,

Dsrxvso 1,1,/, d cows vgwxvlexw' cx coo xlpgw' esptcvcdog lxk xkg ogrixk sh xkg wcptolri tgvlsfw sh Ycdog 3,;,0 xkg esvvgwtsrflri xkvslf fswg vcxg cdszg dcenivsyrf xs cr lrhcrx zlc xkg es)plon)lrhcrx tcxkc xs /7.. pvgp-gcv hsv xkg klikgwx lptcexgf es,

Lcwgsyw Ihhoygrxw= Eswg hvsp Psdog Lcwgw "1,1,0&

Yklw Dsrxvso lw tvszlfgf xs lptogpgrx xkg vguylvgpgrxw sh Vgexlsrw MM,C' MMM,A' crf Ma,A sh Attgrfl M' oRDJT Scvx 7., Ykg Nlplxlri Dsrflxlsr hsv Rtgvcxlsr lptogpgrxw xkg iylfgw wgx hsvxk lr Vgexlsr MNC sh Attgrfl N Ykg vguylvgpgrxw tvszlfg stgvcxlri hogldlolx crf cx xkg wcpg xlpg lptogpgrx xkg iylfgw wgx hsvxk lr Vgexlsr Ma,A sh Attgrfl M xs cwwyvg xkcx xkg vgogcwgw sh vcflscexlzg pcxgvlco lr icwgsyw ghhoygrxw loo dg ngtx ~cw os cw lw vgcwsrcdo ceklgzcdog,~ Ykg Vyvzgloocreg Tguylvgpgrxw lptogpgrx xkg vguylvgpgrxw lr Vgexlsr oMNA sh Attgrfl M' l,g,' xkcx esrhsvpcreg lxk xkg iylfgw sh Attgrfl M dg wksr d ecoeyocxlsrco tvsegfyvgw dcwgf sr psfgow crf fcxc wyek xkcx xkg cexyco gtswyvg sh cr pgpdgv sh xkg tydole xkvsyik cttvstvlcxg tcxkcw lw yrolngo xs dg wydwxcrxlcoo yrfgvgwxlpcxgf, Ykg cttvstvlcxg fswg guycxlsrw cvg wtgelhlgf lr xkg REDO hsv ecoeyocxlri xkg fswgw fyg xs xkg cexyco vgogcwgw sh vcflscexlzg rsdog icwgw lr icwgsyw ghhoygrxw, Ykg REDO cows tvszlfgw hsv fgxgvplrlri xkg clv fswgw cx xkg wlxg dsyrfcv dcwgf ytsr xkg klwxsvleco czgvcig cxpswtkgvle esrflxlsrw,

Rhh)Vlxg Eswg Dcoeyocxlsr Ocryco Vgexlsr 1-3 Tgz, 1. Scig 3. sh 3: agvpsrx bcrngg Pyeogcv Ssgv Vxcxlsr 1-3,: LMMRcLTb DTJ LTdO_VTSLTbDR IVTb_VR EDaLa "iwv,&

bol lygpwv xlipmplk pv ol VJIS mwz igtitgpvn ol kwl kl w ol gigt zltlgl zgl wm zgkpwgipl vwhtl ngl pv nglw lmmtlv lzl klltwxlk mzwu ol ulowkwtwn xzwpklk pv _lntgwz Npkl /,/.A' ~Igtitgpwv wm Dvvgt Jwl w Sgv mzwu _wpvl _ltlgl wm _lgiwz Lmmtlv mwz ol Yzxwl wm Lgtgpvn Iwuxtpgvil po tVIM_ Ygz 7.' Dxxlvkp O~' _lppwv /' Viwhlz /A;; gvk _lntgwz Npkl /,///' ~Slowk mwz Lpugpvn Duwxolzpi bzgvxwz gvk Jpxlzpwv wm Nglw Lmmtlv pv _wpvl _ltlgl mzwu Rpno)eglz Iwwtlk _lgiwz'~ _lppwv /' Pt /A;;,

Nglw LmmtlvC Jwl mzwu Owkpvl)/1t' Owkpvl)/11' bzppu' gvk _gkpwvitpkl pv Ygzpitgl Mwzu "1,1,1&

bop iwvzwt p xzwpklk w puxtlulv ol zlypzlulv wm alipwv Ob,I'OOb,D' gvk Od,DwmDxxlvkp O' tVIM_ Ygz7., bol Rpuppvn Iwvkppwv mwz Vxlzgpwv gzl ol npkl l mwzoalipwvOt,I pv wm Dxxlvkp O, bol zlypzlulv xzwpkl wxlzgpvn mtlphptp gvk g ol gul)pul puxtlulv ol npkl l mwzo pv alipwv Od,D wm Dxxlvkp O w gzl og ol zltlgl wm zgkpwgipl uglzpgt pv nglw lmmtlv ptt hl slx ~g tw g p zlgwvght gioplghtl,~ bol azlpttgvil _lypzlulv puxtlulv ol zlypzlulv pv alipwv Ott,D wm Dxxlvkp O og iwvmwzugvil po ol npkl wm Dxxlvkp O hl owv h igtitgpwvgt xzwilkzl hglk wv uwklt gvk kgg io og ol gigt lxwzl wm g uluhlz wm ol xhtpi ozwno gxxzwxzpgl xgog p vtpslt w hl hgvpgtt vklzlpuglk, bol lygpwv xlipmplk pv ol VJIS mwz igtitgpvn ol kwl kl w ol gigt zltlgl zgl wm ol hrli uglzpgt lzl gtw klltwxlk pvn ol ulowkwtwn xzwpklk pv _lntgwz Npkl /,/.A' ~Igtitgpwv wm Dvvgt Jwl w Sgv mzwu _wpvl _ltlgl wm _lgiwz Lmmtlv mwz ol Yzxwl wm Lgtgpvn Iwuxtpgvil po tVIM_ Ygz 7.' Dxxlvkp O'~ _lppwv /' Viwhlz /A;; gvk _lntgwz Npkl /,///' ~Slowk mwz Lpugpvn Duwxolzpi bzgvxwz gvk Jpxlzpwv wm Nglw Lmmtlv pv _wpvl _ltlgl mzwu Rpno)eglz Iwwtlk _lgiwz'~ _lppwv /' Pt /A;;, boll lygpwv gtw xzwpkl mwz kllzupvpvn ol gigt kwl hglk xwv ol opwzpigt glzgnl guwxolzpi iwvkppwv, bol zltlgl zgl xlipmpigpwv mwz Owkpvl /1/' Owkpvl)/11' zppu' gvk zgkpwvitpkl pv xgzpitgl mwzu po ogtm)tpl nzlglz ogv = kg gzl klxlvklv wv ol lppvn zgkpwvitpkl xgog w ugv' pv gzlg g gvk hlwvk p pl hwvkgz, bol xgog opio lzl lgupvlk pv ol klltwxulv wm oll xlipmpigpwv lzlC /& pvkppkgt pvogtgpwv wm gpzhwzvl zgkpwvitpkl' 0& klxwppwv wm zgkpwvitpkl wvw nzllv tlgm lnlgpwv po hlylv iwvuxpwv h ugv' 1& klxwppwv wvw nzg gzlg olzl upts gvpugt gvk ulg xzwkipvn gvpugt nzgl po iwvuxpwv wm ol upts gvk ulg h ugv' gvk 3& klxwppwv wv ol nzwvk po hlylv lxwzl wm ugv,

Vmm)apl Jwl Igtitgpwv Sgvgt alipwv 1-3 _l, 1. Ygnl 3/ wm 3: dlzuwv fgvsll Titlgz Ywlz agpwv 1-3,: JLLSdJVc CVI JVeOaYVTJVcCS EYVcaYS DCbJb "iwv,&

Mglw agkgl czlgulv "1,1,3&

col zlypzlulv og ol gxxzwxzpgl xwzpwv wm ol Cnulvlk Ymm)Mg "CYM& blu hl lk olvllz ol bPCJ p pv wxlzgpwv xzwpkl zlgwvghtl gzgvil og ol zltlgl wm zgkpwgipl uglzpgt pv nglw lmmtlv ptt hl slx ~g tw g p zlgwvght gioplghtl,~ cop xlipmpigpwv puxtlulv ol zlypzlulv wm tYELa _gz 7.,1:g gvk ol klpnv whrlipl wm Cxxlvkp O w tYELa _gz 7.,

elvptgpwv Jog czlgulv "1,1,7&

col zlypzlulv og ol CYM Dptkpvn gvk agkgl Dptkpvn NJ_C mptlz hl lk olv xlipmplk xzwpkl zlgwvghtl gzgvil og ol zltlgl wm zgkpwgipl uglzpgt pv nglw lmmtlv ptt hl slx ~g tw g p zlgwvght gioplghtl,~ cop xlipmpigpwv puxtlulv ol zlypzlulv wm tYELa _gz 7.,1:g gvk ol klpnv whrlipl wm Cxxlvkp O w /.ELa _gz 7., col zlypzlulv nwlzvpvn ol l wm ol gxxzwxzpgl xwzpwv wm ol nglw zgkgl mptlz lu lzl xlipmplk h ol VaE pv VdaJM).3;1 ' alppwv 0 "Pt /A;A& g g pghtl mzgipwv wm ol npkl l mwzo pv blipwv OO,D gvk OO,E wm Cxxlvkp O' tYELa _gz 7.' mwz nglw lmmtlv,

_zpugz Ewvgpvulv "TCaR ~ "1,1,:&

cop Ewvzwt xzwpkl zlgwvghtl gzgvil og zltlgl mzwu iwvgpvulv xznpvn-lvpvn wxlzgpwv ptt hl mptlzlk ozwno ol bgvkh Mg czlgulv blu "bDMc& w og ol gvvgt kwl tpup wm /.ELa _gz 0. mwz Tluhlz wm ol _htpi pv gzlg g gvk hlwvk ol bpl Dwvkgz ptt vw hl lillklk, col kwl whrlipl wm Ewvzwt 1,1,1 zlzpi xznl-lvpvn wxlzgpwv olv ol bgvkh Mg czlgulv blu p vw pv l gvk npl zlgwvghtl gzgvil og gtt zltlgl mzwu ol xtgv ptt hl slx ~g tw g p zlgwvght gioplghtl,~ col xlipmpigpwv zlypzl ol l wm bDMc wvt olv Owkpvl)/1/' Owkpvl)/11 wz zgkpwvi/pkl pv xgzpitgl mwzu po ogtm)tpl nzlglz ogv = kg pv iwvgpvulv lillk ol tllt pv cghtl /' Ewtuv 1' w Cxxlvkp D wm tYELa 0.,/../)0.,03./ pvil ol mptlz lu p vw iwvpklzlk lmmlipl pv zlkipvn vwhtl ng zgkpwgipp mzwu ng zlgu,

Ymm)bpl Iwl Egtitgpwv Tgvgt blipwv 1-3 al, 1. _gnl 30 wm 3: elzuwv fgvsll Vitlgz _wlz bgpwv 1.3-: IJJPbISa ASE IScMYTSRISaAP DTSaYTP CA_I_ &gutz-'

ami yi uk zmi M_" vxli eth itz kru vezm nyureznut eriy AD,;A &0:,0=,;A') AD,;C &0:,0=,;C') AT,_ &0:,0=,_') AD,rT &0:,0=,0/' mey fiit xiyzxngzih zu =/ muxy vix iex- Suxser vretz uvixeznuty &uzmix zmet ntixzntl eth hi,ntixzntl' nrr mei AD,_ eth AD,rT gruyih eth tnzxulit nrr fi yvvrnih zu zmi hxirr ne zmi 0" tnzxulit sepiv yvvr- ami hnkkixitzner vxiyyxi sentzentih fiziit zmi hxirr eth zuxy nrr erru zmi tnzxulit zu "fffri uix" ntzu zmi yvvxiyynut gmesfix- A tuxserr uvit AD,:C &1"' erruy kux itzntl- A tuxserr gruyih AD,:A &1"' ny vixnuhngerr uvitih kux vixkuxsetgi uk yxinrretgiy ygm ey sutzmr zuxy zu hxirr egs fxiepix ziyzy- Vxugihxerr) mit AD,:A ny uvit) AD,: eth AD,; exi gruyih zu vxiitz uixvxiyyxneznut uk zmi _CLa yyzis ux zmi xiegzux fnrhntl hgzuxp) ymurh e PTDA uggx- Jux zmny eth ynsnrex eteryiy vixkuxsih) e yvxnuy uvitntl uk AD,: ux AD,; &uti uk zmi gruyih gutzentsitz nyureznut eriy' ny tuz eyysih,ey e kenrxi- ynsrzetiuy nzm e vuyzrezih PTDA- Ateryiy h~rrrutyzxezi zmez kux tuttePvretzuv~xeznut yyzis ernltsitzy) ntgrhntl yxinrretgiy ygm ey zmuyi hiygxnfih efui) zmez _CLa ntzilxnz urh fi sentzentih nk e PTDAeyvuyzrezih- amixikuxi) hxntl tuxser vretz uvixeznuty) zmi =/ mux grugp huiy tuzevvr- Agguxhntlr) uvitntl uk zmi M_ ntgm ezsuyvmixng gutzxur nyureznut eriy AD,; A) AD,;C) AD,_ eth AD,r / nrr fi rnsnzih zu =/ muxy vix gerithex iex &igivz kux vixkuxsetgi uk zmi yfoigz eri yzxupi znsi yxinrretgiy , nt mngm geyi zmi evvxuvxnezi guxxiyvuthntl eriy exi gruyih zu vxuzigz iwnvsitz ymurh e PTDA uggx'- amny xiyzxngznut nrr evvr mitiix vxnsex gutzentsitz ntzilxnz ny xiwnxih- ami =/ mux grugp nrr evvr etznsi vxli eth itz iurznuty get tuz eyyxi zmi ntzilxnz uk zmi _CLa zxenty ux xirezih iwnvsitz-

_zies Niz Anx Ioigzux &_NAC' &1-1-;'

Yiyzxngzntl zmi lxuyy xehnuegznnz xirieyi xezi uk leyiy kxus zmi sent guthityix _NAI vxunhiy xieyutefri eyyxetgi zmez zmi zuzer fuh ivuyxi zu et nthnnher ez zmi igrynut exie futhex nrr tuz igiih e yserr kxegznut uk zmi rnsnzy uk rTDJY Vexz 0// nt zmi iit zmny ikkritz nt ntehixzitzr hnygmexlih hnxigzr zu zmi itnxutsitz nzmuz zxiezsitz- amny yvignkngeznut nsvrisitzy zmi xiwnxisitzy uk Litixer Eiynlt Dxnzixne :/ eth :3 uk Avvithn A zu rTDJY Vexz 7/- &amny feyny ny e hvrngezi uk zmez kux vretz aigmtnger _vignkngeznut 1-_-O-'

Tkk,_nzi Euyi Dergreznut Reter _igznut 1.3 Yi- 1/ Veli 31 uk 3: cixsutz detpii Sgriex Vuix _zeznut 0,1)7 DEEJTDMS ;MC DMVIPNMLDMS;J ANMSPNJ =;RDR ~bonu)"

Sou_l Cotd ~1-AEP.:-" ~0)1)."

Sght Aonusol ht psowhcdc uo mddu ugd cotd lhmhu_uhont oe 1-AEP O_su .:- uo Ldmadst oe ugd Ovalhb hn _sd_t _u _nc adzonc ugd Rhud =ovnc_sz) Sgd tpdbhehb_uhon sdrvhsdt ugd psdp_s_uhon _nc tvamhuu_l oe _ Rpdbhehb Pdposu xgdndwds ugd b_lbvl_udc cotdt esom pl_nu s_cho_buhwd deelvdnut dybddc uxhbd ugd cdthfn oaidbuhwd cotdt oe ;ppdnchy I) Eos thudt bonu_hnhnf vp uo 1 sd_buost& hu ht ghfglz vnlhkdlz ug_u ugd sdtvlu_nu cotd uo _ Ldmads oe ugd Ovalhb xhll dybddc ugd cotd lhmhut oe 1-AEP O_su .:- he ugd hnchwhcv_l sd_buost sdm_hn xhughn ugd sdposuhnf sdrvhsdmdnu ldwdl) Sgd Rpdbh_l Pdposu xhll cdtbshad _ bovstd oe _buhon ug_u tgovlc sdtvlu hn ugd lhmhu_uhon oe ugd _nnv_l cotd uo _ Ldmads oe ugd Ovalhb uo xhughn ugd 1-AEP O_su .:- lhmhut) Eos ugd pvspotdt oe ugd Rpdbh_l Pdposu& hu m_z ad _ttvmdc ug_u ugd cotd bommhumdnu uo ugd Ldmads oe ugd Ovalhb ht dtuhm_udc uo dybddc ugd sdrvhsdmdnut oe 1-AEP O_su .:-& ugd Rpdbh_l Pdposu xhug _ sdrvdtu eos _ w_sh_nbd ~psowhcdc ugd sdld_td bonchuhont sdtvluhnf hn whol_uhon oe 1-AEP O_su .:- g_wd nou _lsd_cz addn bossdbudc"& hn _bbosc_nbd xhug ugd psowhthont oe 1-AEP O_su .:-).. _nc lNAEP O_su /-)//-0~_"~1"& ht bonthcdsdc uo ad _ uhmdlz sdrvdtu _nc evlehllt ugd sdrvhsdmdnut oe 1-AEP O_su .:- vnuhl MPA tu_ee _buhon ht bompldudc) Sgd w_sh_nbd onlz sdl_udt uo ugd lhmhut oe 1-AEP O_su .:-& _nc codt nou _pplz hn _nz x_z uo ugd ougds sdrvhsdmdnut eos cotd lhmhu_uhon oe .-AEP O_su /-) ;n hnchwhcv_l ht nou bonthcdsdc _ Ldmads oe ugd Ovalhb cvshnf _nz pdshoc hn xghbg gd,tgd ht dnf_fdc hn b_sszhnf ovu _nz opds_uhon ug_u tvaidbut ugdm uo obbvp_uhon_l dypotvsdt) Eos hnchwhcv_lt hn bonusolldc _sd_t xgo _sd bonthcdsdc Ldmadst oe ugd Ovalhb pds lNAEP/-& ugd cotd lhmhut oe lNAEP/-).0- . _pplz thnbd ugd lhbdntdd g_t ugd _vugoshuz uo bonusol _nc lhmhu _bbdtt uo ugdtd _sd_t)

P_cholofhb_l Dnwhsonmdnu_l Lonhuoshnf Osofs_m ~0)3)."

Sgd s_cholofhb_l monhuoshnf psofs_m sdrvhsdc az ught Aonusol psowhcdt md_tvsdmdnut oe s_ch_uhon _nc oe s_cho_buhwd m_udsh_lt hn ugotd dypotvsd p_ugx_zt _nc eos ugotd s_chonvblhcdt xghbg ld_c uo ugd ghfgdtu poudnuh_l s_ch_uhon dypotvsdt oe mdmads~t" oe ugd pvalhb sdtvluhnf esom ugd tu_uhon opds_uhon) Sght monhuoshnf psofs_m hmpldmdnut Rdbuhon IV)=)/ oe ;ppdnchy I uo .- AEP O_su 3- _nc ugdsdaz tvppldmdnut ugd s_cholofhb_l deelvdnu monhuoshnf psofs_m az wdshezhnf ug_u ugd md_tvs_ald bonbdnus_uhont oe s_cho_buhwd m_udsh_lt _nc ldwdlt oe s_ch_uhon _sd nou ghfgds ug_n dypdbudc on ugd a_tht oe ugd deelvdnu md_tvsdmdnut _nc mocdlhnf oe ugd dnwhsonmdnu_l dypotvsd p_ugx_zt)

Nee'Rhud Cotd A_lbvl_uhon L_nv_l Rdbuhon 0,1 Pdw) 0- O_fd 11 oe 17 Vdsmonu Y_nkdd Mvbld_s Ooxds Ru_uhon 0,1)7 EIIMYEOV =OD EO_LSPONEOV=M CPOVSPM A=TET ~dpov)"

Vfo fbtu pg rmbov prftbvkpo& kodmwekoh vif fbtu rtkpt vp vif knrmfnfovbvkpo pg vif =whnfovfe Pgg'Jbu Tuvfn& ibxf bnrm efnpouvtbvfe xkb tpwvkof fggmwfov boe foxktponfovbm tfrptvu vibv rmbov fggmwfov nfbuwtfnfovu boe npefmkoh pg foxktponfovbm rbviybu btf befswbvfm dpouftxbvkxf) Lo bmm dbufu& foxktponfovbm ubnrmf tfuwmvu ibxf cffo vyp vp vitff pteftu pg nbhokvwef mfuu vibo fzrfdvfe c vif npefm fnrmpfe& viftfc tfrtfufovkoh unbmm rftdfovbhfu pg vif =M=S= boe foxktponfovbm tfrptvkoh mfxfmu) Viku tbekpmphkdbm foxktponfovbm npokvptkoh rtphtbn ibu viftfgptf cffo npekgkfe bu rtpxkefe gpt c Sfhwmbvpt Jwkef 1). ~C)/)c"& Sfxkukpo .& =rtkm .;:3) Dwf vp vif mbthf mpdbm rprwmbvkpo pg dpyu boe vif tfbe bxbkmbckmkv pg nkml ubnrmfu& gppe rtpewdv ubnrmkoh ibu cffo fmknkobvfe gtpn vif rtphtbn ko mkfw pg nkml ubnrmkoh) Tkodf nkmlkoh dpyu ko vif btfb urfoe xft mkvvmf vknf po rbuvwtf& ukmbhf boe htbuu ubnrmkoh ibxf cffo kouvkvwvfe bu bo koekdbvpt pg tbekpowdmkef efrpukvkpo)

Vif efvfdvkpo dbrbckmkvkfu tfswktfe c Vbcmf 1)3). btf dpoukeftfe prvknwn gpt tpwvkof foxktponfovbm nfbuwtfnfovu ko koewuvtkbm mbcptbvptkfu) Lv uipwme cf tfdphokfe vibv vif MMD ku efgkofe bu b cfgptf'vif'gbdv mknkv tfrtfufovkoh vif dbrbckmkv pg b nfbuwtfnfov uuvfn boe opv bu bo bgvft'vif'gbdv mknkv gpt b rbtvkdwmbt nfbuwtfnfov) Viku epfu opv rtfdmwef vif dbmdwmbvkpo pg bo bgvft'vif'gbdv MMD gpt b rbtvkdwmbt nfbuwtfnfov cbufe wrpo vif bdvwbm rbtbnfvftu gpt vif ubnrmf ko swfuvkpo)

Mboe Yuf Cfouwu ~0)3)/"

Viku Cpovtpm ku rtpxkefe vp fouwtf vibv dibohfu ko vif wuf pg btfbu bv boe cfpoe vif ukvf cpwoebtkfu btf kefovkgkfe boe vibv npekgkdbvkpou vp vif npokvptkoh rtphtbn btf nbef kg tfswktfe c vif tfuwmvu pg viku dfouwu) Viku dfouwu ubvkugkfu vif tfswktfnfovu pg Tfdvkpo L_)A)0 pg =rrfoekz L vp .- CIS Rbtv 3-) Vif tfswktfnfov pg b hbtefo dfouwu ibu cffo fmknkobvfe bmpoh ykvi vif gppe rtpewdv npokvptkoh tfswktfnfov ewf vp vif uwcuvbovkbm boe ykefurtfbe pddwttfodf pg ebkt gbtnkoh ko vif uwttpwoekoh btfb yikdi epnkobvfu vif gppe wrvblf rbviyb)

Vif beekvkpo pg ofy ubnrmkoh mpdbvkpou vp Cpovtpm 0)3).& cbufe po vif mboe wuf dfouwu& ku mknkvfe vp vipuf mpdbvkpou yikdi kfme b dbmdwmbvfe epuf pt epuf dpnnkvnfov htfbvft vibo /- rftdfov pg vif dbmdwmbvfe epuf pt epuf dpnnkvnfov bv bo mpdbvkpo dwttfovm cfkoh ubnrmfe) Viku fmknkobvfu vif woofdfuubt dibohkoh pg vif foxktponfovbm tbekbvkpo npokvptkoh rtphtbn gpt ofy mpdbvkpou yikdi& ykviko vif bddwtbd pg vif dbmdwmbvkpo& dpovtkcwvfu fuufovkbmm vif ubnf vp vif epuf pt epuf dpnnkvnfov bu vif mpdbvkpo bmtfbe ubnrmfe) Vif uwcuvkvwvkpo pg b ofy ubnrmkoh rpkov gpt pof bmtfbe ubnrmfe yifo vif dbmdwmbvfe ekggftfodf ko epuf ku mfuu vibo /- rftdfov& ypwme opv cf fzrfdvfe vp tfuwmv ko b ukhokgkdbov kodtfbuf ko vif bckmkv vp efvfdv rmbov fggmwfov tfmbvfe owdmkefu)

Pgg'Tkvf Dpuf Cbmdwmbvkpo Nbowbm Tfdvkpo 0,1 Sfx) 0- Rbhf 13 pg 17 _ftnpov abolff Owdmfbt Rpyft Tvbvkpo /)0'3 ACCERAJP 7J= AJSDNLJIAJP7E ;LJPNLE :7OAO ~_lkr'"

DkrbohVYloVrlow ;limVofplk MoldoVi~/'1'/"

Peb obnsfobibkr clo mVorf_fmVrflk fk Vk fkrbo_limVofplk moldoVi fp moltfaba rl bkpsob reVr fkabmbkabkr _eb_gp lk reb mob_fpflk Vka V__soV_w lc reb ibVpsobibkrp lc oVaflV_rftb iVrbofVh fk bktfolkibkrVh pVimhb iVrof_bp Vob mbocloiba Vp mVor lc V nsVhfrw VppsoVk_b moldoVi clo bktfolkibkrVh ilkfrlofkd fk loabo rl abilkproVrb reVr reb obpshrp Vob obVplkVYhw tVhfa clo reb msomlpbp lc Ob_rflk DS':'. lc 7mmbkafv D rl -, ;CN MVor 1,'

Lcc&Ofrb =lpb ;Vh_shVrflk IVksVh Ob_rflk /)0 Nbt' /, MVdb 03 lc 03 Sboilkr TVkgbb Js_hbVo Mlubo OrVrflk 5.0 METHOD TO CALCULATE OFF-SITE LIQUID CONCENTRATIONS

Chapter 5 contains the basis for plant procedures that the plant operator requires to meet ODCM Control 3.2.1 which limits the total fraction of combined effluent concentration in liquid pathways, excIuding noble gases, denoted here as, FF~at the point of discharge at any time (see Figure 9-1). Ff"" is limited to less than or equal to ten, Le.,

The total concentration of all dissolved and entrained noble gases at the point of discharge from all station sources, denoted CING,is limited to 2E-04 pCi/ml, Le.,

cy 12E - 04 pCi /ml.

Evaluation of ~yand crGis required concurrent with the sampling and analysis program in Control Table 4.2.1.

5.1 Method to Determine FfNGand CyG

Determine the total fraction of combined effluent concentrations at the point of discharge in liquid pathways (excluding noble gases), denoted FYIand determine the total concentration at the point of discharge of all dissolved and entrained noble gases in liquid pathways from all station sources, denoted CING,as follows:

and:

I Revision29 Date 1/11/02 5-1 cf”“= cFG 12E-04 i

where:

pENG= Total sum of the fractions of each radionuclide concentration in liquid I effluents (excluding noble gases) at the point of discharge to an unrestricted area, divided by each rahonuclide’s ECL value.

cpi = Concentration at point of discharge to an unrestricted area of radionuclide “i”, except for dssolved and entrained noble gases, from any tank or other significant source, p, from which a discharge may be made (including the floor drain sample tank, the waste sample tanks, the detergent waste tank and any other significant source from which a discharge can be made) (pCi/ml). This concentration can be calculated from: Cpi = CTKIx FTK/~DIL+ FTK) where: CTKIequals the concentration of radionuclide i in the tank to be discharged (pCi/ml); FDLis equal to the dilution flow provided by the liquid radioactive waste ddution pumps (20,000 gpm); FTK equals the liquid waste discharge pump flow rate which regulates the rate at which liquid horn a waste collection tank is discharged (gpm).

ECL, = Annual average effluent concentration limits of radlonuclide Y’, except I for &solved and entrained noble gases, from 1OCFR20.1001-20.2402, Appendix B, Table 2, Column 2 (pCi/ml).

CY = Total concentration at point of discharge to an unrestricted area of all dissolved and entrained noble gases in liquid pathways from all station sources (pCi/mlj.

cFG = Concentration at point of discharge to an unrestricted area of dissolved and entrained noble gas “i” in liquid pathways from all station sources (pCi/ml).

I Revision 2 Date 1/11/02 5-2 5.2 Method to Determine Radionuclide Concentration for Each Liquid Effluent Pathway

5.2.1 Sample Tanks Pathways

Cpi is determined for each radionuclide above LLD from the activity in a representative grab sample of any of the sample tanks and the predicted flow at the point of discharge to an unrestricted area.

Most periodic batch releases are made from the two 10,000-gallon capacity waste sample tanks. These tanks serve to hold all the high purity liquid wastes after they have been filtered through the waste collector and processed by ion exchange in the fuel pool and waste demineralizers. Other periodic batch releases may also come from the detergent waste tank or the floor drain sample tank.

The tanks are sampled from the radwaste sample sink and the contents analyzed for water quality and radioactivity. If the sample meets all the high purity requirements, the contents of the tank may be re-used in the nuclear system. If the sample does not meet all the high purity requirements, the contents are recycled through the radwaste system or discharged.

Prior to discharge each sample tank is analyzed for tntium, dissolved noble gases and dissolved and suspended gamma emitters.

5.2.2 Service Water Pathway

The service water pathway shown on Figure 9-1, flows from the intake structure through the heat exchangers and the discharge structure. Under normal operating conditions, the water in this line is not radioactive. For this reason, the service water line is not sampled routinely but it is continuously monitored with the service water discharge monitor (No. 17/351).

The alarm setpoint on the service water discharge monitor is set at a level which is three times the background of the instrument. The service water is sampled if the monitor is out of service or if the alann sounds.

I Revision 29 Date 1/11/02 5-3 ..

Under expected or anticipated operating conditions, the concentration at any time of radionuclides at the point of discharge from the service water effluent pathway to an unrestricted I area will not exceed ten times the effluent concentration values of lOCFR20.1001-20.2402, Appenchx B, Table 2, Column 2,

5.2.3 Circulating Water Pathway

The circulating water pathway shown on Figure 9-1, flows from the intake structure through the condenser and the discharge structure. Under normal operating conditions, the water in this line is not radioactive. For this reason, the circulating water line is not sampled routinely but it is monitored continuously by the discharge process monitor {No. 17/359) located in the discharge structure.

The alarm setpoint on the discharge process monitor is set at a level which is three times the background of the instrument. The circulating water is sampled if the monitor is out of service or if the aIarm sounds.

Under normal operating conditions, the average concentration of radionuclides at the point of discharge from the circulating water pathway to an unrestricted area will not exceed the I annual effluent concentration limits in 1OCFR20.1001-20.2402, Appendlx B, Table 2, Column 2.

I Revision29 Date 1/11/02 5-4 6.0 OFF-SITE DOSE CALCULATION METHODS

Chapter 6 provides the basis for plant procedures required to meet the IOCFR50, Appendix I, ALARA dose objectives, and the 40CFRI90 total dose limits to members of the public in unrestricted areas, as stated in the Radiological Effluent Controls (implementing the requirements of Technical Specification 6.7.D). A simple, conservative method (called Method I) is listed in Tables 1.1.2 to 1.1.7 for each of the Control requirements. Each of the Method I equations is presented, along with their bases in Sections 6.2 through 6.9 and Section 6.11. In addition, reSference is provided to more sophisticated but still conservative methods (called Method II) for use when more accurate results are needed. This chapter provides the methods, data, and reference material with which the operator can calculate the needed doses and dose rates. Setpoint methods for effluent monitor alarms are described in Chapter 8.

Demonstration of compliance with the dose limits of 40CFRI90 is considered to be a demonstration of compliance with the 0.1 rem limit of lOCFR20.1301(a)(I) for members of the public in unrestricted areas (Reference 56 FR23374, 3rd column).

6.1 Introductory Concepts

The Radiological Effluent Controls Program (Technical Specifications 6.7.D) either limit dose or dose rate. The term "Dose" for ingested or inhaled radioactivity means the dose commitment, measured in mrem, which results from the exposure to radioactive materials that, because of uptake and deposition in the body, will continue to expose the body to radiation for some period of time after the source of radioactivity is stopped. The time frame over which the dose commitment is evaluated is 50 years. The phrases "annual Dose" or "Dose in one year" then refers to the fifty-year dose commitment from one year's worth of releases. "Dose in a quarter" similarly means a fifty-year dose commitment from one quarter's releases. The term "Dose," with respect to external exposures, such as to noble gas clouds, refer only to the doses received during the actual time period of exposure to the radioactivity released from the plant. Once the source of the radioactivity is removed, there is no longer any additional accumulation to the dose commitment.

Gaseous effluents from the plant are also controlled such that the maximum "dose rates" at the site boundary at any time are limited to 500 mremlyear. This instantaneous dose rate limit allows for operational flexibility when off normal occurrences may temporarily increase gaseous effluent release rates from the plant, while still providing controls to ensure that licensees meet the dose objectives of Appendix I to IOCFR50.

Off-Site Dose Calculation Manual Section 6 Rev. 32 Page I of 55 Vermont Yankee Nuclear Power Station It should also be noted that a dose rate due to noble gases that exceeds for a short time period (less than one hour in duration) the equivalent 500 mrem/year dose rate limit stated in Control 3.3. La, does not necessarily, by itself, constitute a Licensee Event Report (LER) under lOCFR Part 50.73 unless it is determined that the air concentration of radioactive effluents in unrestricted areas has also exceeded 20 times applicable concentration limits specified in Appendix B to 20.1001 - 20.2402, Table 2, Column 1 (four-hour notification per lOCFR50.72, and 30-day LER per lOCFR50.73).

The quantities D and R are introduced to provide calculable quantities, related to off-site dose, or dose rate which demonstrates compliance with the effluent controls.

The dose D is the quantity calculated by the Chapter 6 dose equations. The D calculated by "Method I" equations is not necessarily the actual dose received by a real individual but usually provides an upper bound for a given release because of the conservative margin built into the dose factors and the selection and definition of critical receptors. The radioisotope specific dose factors in each "Method I" dose equation represent the greatest dose to any organ of any age group accounting for existing or potential pathways of exposure. The critical receptor assumed by "Method I" equations is typically a hypothetical individual whose behavior - in terms of location and intake - results in a dose which is expected to be higher than any real individual. The Method I equations employ five-year historical average atmospheric dispersion factors to define receptors of maximum impact. Method II allows for a more exact dose calculation for real individuals, if necessary, by considering only existing pathways of exposure, or actual concurrent meteorology with the recorded release. Maximum receptor doses determined using quarterly meteorology may be greater than doses calculated with Method I due to short time period variability of meteorological conditions from the long-term average. Quarterly average dispersion values for maximum receptors have been observed to differ from five-year average values by as much as 54%.

Ris the quantity calculated in the Chapter 6 dose rate equations. It is calculated using the plant's effluent monitoring system reading and an annual average or long-term atmospheric dispersion factor. Dispersion factors based on actual concurrent meteorology during effluent releases can also be used via Method II, if necessary, to demonstrate compliance with off-site dose rate limits.

Each of the methods to calculate dose or dose rate are presented in separate sections of Chapter 6, and are summarized in Tables 1.1.1 to 1.1.7. Each method has two levels of complexity and are called Method I and Method II. Method I is the simplest; generally a linear equation. Method II is a more detailed analysis which allows for use of site-specific factors and variable parameters to be selected to best fit the actual release conditions, within the bounds of the guidance provided.

Off-Site Dose Calculation Manual Section 6 Rev. 32 Page 2 of 55 Vermont Yankee Nuclear Power Station The plant has both elevated and ground level gaseous release points: the main vent stack (elevated release), and the North Warehouse waste oil burner (ground level release). Therefore, total dose calculations for skin, whole body, and the critical organ from gaseous releases will be the sum of the elevated and ground level doses. Appendix D provides an assessment of the surveillance needs for waste oil to ensure that off-site doses from its incineration is maintained within the ALAR A limits of the effluent Controls.

6.2 Method to Calculate the Total Body Dose from Liquid Releases

Effluent Control 3.2.2 limits the total body dose commitment to a Member of the Public from radioactive material in liquid effluents to 1.5 mrem per quarter and 3 mrem per year. Control 3.2.3 requires liquid radwaste treatment when the total body dose estimate exceeds 0.06 mrem in any month. Control 3.4.1 limits the total body dose commitment to any real member of the public from all station sources (including liquids) to 25 mrem in a year. Dose evaluation is required at least once per month. If the liquid radwaste treatment system is not being used, dose evaluation is required before each release.

Use Method I first to calculate the maximum total body dose from a liquid release to the Connecticut River as it is simpler to execute and more conservative than Method II.

Use Method II if a more accurate calculation of total body dose is needed (i.e., Method I indicates the dose is greater than the limit), or if Method I cannot be applied.

If the radwaste system is not operating, the total body dose must be estimated prior to a release (Control 3.2.3). To evaluate the total body dose, use Equation 6.1 to estimate the dose from the planned release and add this to the total body dose accumulated from prior releases during the month.

Off-Site Dose Calculation Manual Section 6 Rev. 32 Page 3 of 55 Vermont Yankee Nuclear Power Station 6.2.1 Method I

The increment in total body dose from a liquid release is:

(6-1) Dtb = L: Qi DFL itb i

(mrem) (Ci) (mr~im )

where:

DFLitb = Site-specific total body dose factor (mremlCi) for a liquid release. See Table 1.1.11.

Qi = Total activity (Ci) released for radionuclide "i." (For strontiums and Fe 55, use the most recent measurement available.)

Equation 6-1 can be applied under the following conditions (otherwise, justify Method I or consider Method II):

1. Normal operations (not emergency event),

2. Liquid releases were to the Connecticut River, and

3. Any continuous or batch release over any time period.

6.2.2 Basis for Method I

This section serves three purposes: (1) to document that Method I complies with appropriate NRC regulations, (2) to provide background and training information to Method I users, and (3) to provide an introductory user's guide to Method II.

Method I may be used to show that the effluent Controls which limit off-site total body dose from liquids (3.2.2 and 3.2.3) have been met for releases over the appropriate periods. Control 3.2.2 is based on the ALARA design objectives in lOCFR50, Appendix I Subsection II A. Control 3.2.3 is an "appropriate fraction," determined by the NRC, of that design objective (hereafter called the Objective). Control 3.4.1 is based on Environmental Standards for Uranium Fuel Cycle in 40CFR190 (hereafter called the Standard) which applies to direct radiation as well as liquid and gaseous effluents.

Exceeding the Objective or the Standard does not immediately limit plant operation but requires a report to the NRC within 30 days. In addition, a waiver may be required.

Off-Site Dose Calculation Manual Section 6 Rev. 32 Page 4 of 55 Vermont Yankee Nuclear Power Station Method I was developed such that "the actual exposure of an individual ... is unlikely to be substantially underestimated" (lOCFR50, Appendix I). The definition, below, of a single "critical receptor" (a hypothetical individual whose behavior results in an unrealistically high dose) provides part of the conservative margin to the calculation of total body dose in Method I. Method II allows that actual individuals, with real behaviors, be taken into account for any given release. In fact, Method I was based on a Method II analysis for the critical receptor with maximum exposure conditions instead of any real individual. That analysis was called the "base case;" it was then reduced to form Method I.

The steps performed in the Method I derivation follow. First, in the base case, the dose impact to the critical receptor (in the form of dose factors DFLitb, mremlCi) for a 1 curie release of each radioisotope in liquid effluents was derived. The base case analysis uses the methods, data and assumptions in Regulatory Guide 1.109 (Equations A-2, A-3, A-7, A-13 and A-16, Reference A). The liquid pathways identified as contributing to an individual's dose are the consumption of fish from the Connecticut River, the ingestion of vegetables and leafy vegetation which were irrigated by river water, the consumption of milk and meat from cows and beef cattle who had river water available for drinking as well as having feed grown on irrigated land, and the direct exposure from the ground plane associated with activity deposited by the water pathway. A plant discharge flow rate of 44.6 fe/sec was used with a mixing ratio of 0.0356 which corresponds to a minimum regulated river flow of 1250 cfs at the Vernon Dam just below the plant discharge outfall. * Tables 6.2.1 and 6.2.2 outline human consumption and environmental parameters used in the analysis. The resulting, site-specific, total body dose factors appear in Table 1.1.11.

For any liquid release, during any period, the increment in annual average total body dose from radionuclide "i" is:

(6-2)

L1Dtb = Qi DFLtb

(mrem) (Ci) ( ~~m ) where:

DFLitb = Site-specific total body dose factor (mremlCi) for a liquid release. See Table 1.1.11.

Qi = Total activity (Ci) released from radionuclide "i."

* An Mp equal to 1.0 for the fish pathway is assumed between the discharge structure and the dam. Off-Site Dose Calculation Manual Section 6 Rev. 32 Page 5 of 55 Vermont Yankee Nuclear Power Station Method I is conservative because it is based on dose factors DFLitb which were chosen from the base case to be the highest of the four age groups for each radionuclide, as well as assuming minimum river dilution flow.

6.2.3 Method II

If Method I cannot be applied, or if the Method I dose exceeds the limit or if a more exact calculation is required, then Method II should be applied. Method II consists of the models, input data and assumptions in Regulatory Guide 1.109, Rev. 1 (Reference A), except where site-specific models, data or assumptions are more applicable, such as the use of actual river flow at the time of actual discharge as opposed to the minimum river flow of 1,260 cfs that is assumed in the Method I dose factors (except for the fish pathway). The base case analysis, documented above, is a good example of the use of Method II. It is an acceptable starting point for a Method II analysis.

Off-Site Dose Calculation Manual Section 6 Rev. 32 Page 6 of 55 Vermont Yankee Nuclear Power Station TABLE 6.2.1

Environmental Parameters for Liquid Effluents at Vermont Yankee (Derived from Reference A)

FOOD GROWN WITH CONT AMINATED WATER POTABLE AQUATIC SHORELINE LEAFY COW VARIABLE WATER FOOD ACTIVITY VEGETABLES VEG. MEAT MILK MP Mixing Ratio 1.0 - 0.0356 0.0356 0.0356 0.0356 0.0356 TP Transit Time (HRS) - 24.0 0.000 0.0000 0.0000 480.0 48.0 YV Agricultural 2 (KGIM ) 2.0 2.0 2.0 2.0 Productivity P Soil Surface 2 (KGIM ) 240.0 240.0 240.0 240.0 Density IRR Irrigation Rate 2 (UM /HR) 0.152 0.152 0.152 0.152 TE Crop Exposure (HRS) 1440.0 1440.0 1440.0 1440.0 Time TH Holdup Time (HRS) 1440.0 24.0 2160.0 2160.0 QAW Water Uptake (UD) 50.0 60.0 Rate for Animal QF Feed Uptake Rate (KGID) 50.0 50.0 for Animal PI Fraction of Year Crops Irrigated 0.5 0.5 0.5 0.5 Location of Critical Connecticut River Below Vernon Dam Receptor

Off-Site Dose Calculation Manual Section 6 Rev. 32 Page 7 of 55 Vermont Yankee Nuclear Power Station TABLE 6.2.2

Usage Factors for Various Liquid Pathways at Vermont Yankee (From Reference A, Table E-5. Zero Where No Pathway Exists)

LEAFY POTABLE AGE VEG. VEG. MILK MEAT FISH INVERT. WATER SHORELINE (KGIYR) (KGIYR) (LlTERIYR) (KGIYR) (KGIYR) (KGIYR) (LITERlYR) (HRIYR) Adult 520.00 64.00 310.00 110.00 21.00 0.00 0.00 12.00 Teen 630.00 42.00 400.00 65.00 16.00 0.00 0.00 67.00 Child 520.00 26.00 330.00 41.00 6.90 0.00 0.00 14.00 Infant 0.00 0.00 330.00 0.00 0.00 0.00 0.00 0.00

Off-Site Dose Calculation Manual Section 6 Rev. 32 Page 8 of 55 Vermont Yankee Nuclear Power Station 6.3 Method to Calculate Maximum Organ Dose from Liquid Releases

Effluent Control 3.2.2 limits the maximum organ dose commitment to a Member of the Public from radioactive material in liquid effluents to 5 mrem per quarter and 10 mrem per year. Control 3.2.3 requires liquid radwaste treatment when the maximum organ dose estimate exceeds 0.2 mrem in any month. Control 3.4.1 limits the maximum organ dose commitment to any real member of the public from all station sources (including liquids) to 25 mrem in a year except for the thyroid, which is limited to 75 mrem in a year. Dose evaluation is required at least once per month if releases have occurred. If the liquid radwaste treatment system is not being used, dose evaluation is required before each release.

Use Method I first to calculate the maximum organ dose from a liquid release to the Connecticut River as it is simpler to execute and more conservative than Method II.

Use Method II if a more accurate calculation of organ dose is needed (i.e., Method I indicates the dose is greater than the limit), or if Method I cannot be applied.

If the radwaste system is not operating, the maximum organ dose must be estimated prior to a release (Control 3.2.3). To evaluate the maximum organ dose, use Equation 6-3 to estimate the dose from the planned release and add this to the maximum organ dose accumulated from prior releases during the month.

6.3.1 Method I

The increment in maximum organ dose from a liquid release is:

(6-3) Dmo = L Qi DFL imo i

(mrem) (Ci) (~~ ) where:

DFLimo Site-specific maximum organ dose factor (mremlCi) for a liquid release. See Table 1.1.11.

Qi = Total activity (Ci) released for radionuclide "i." (For strontiums and Fe-55, use the most recent measurement available.)

Equation 6-3 can be applied under the following conditions (otherwise, justify Method I or consider Method II):

1. Normal operations (not emergency event), 2. Liquid releases were to the Connecticut River, and 3. Any continuous or batch release over any time period. Off-Site Dose Calculation Manual Section 6 Rev. 32 Page 9 of 55 Vermont Yankee Nuclear Power Station 6.3.2 Basis for Method I

This section serves three purposes: (1) to document that Method I complies with appropriate NRC regulations, (2) to provide background and training information to Method I users, and (3) to provide an introductory user's guide to Method II. The methods to calculate maximum organ dose parallel the total body dose methods (see Section 6.2.2). Only the differences are presented here.

For each radionuc1ide, a dose factor (rnrernJCi) was determined for each of seven organs and four age groups. The largest of these was chosen to be the maximum organ dose factor (DFLimo) for that radionuc1ide.

For any liquid release, during any period, the increment in annual average dose from radionuc1ide "i" to the maximum organ is:

(6-4)

~ Dmo = Qi DFL imo

(rnrem) (Ci) (rnr~~ ) where:

DFLimo = Site-specific maximum organ dose factor (mrernJCi) for a liquid release. See Table 1.1.11.

Qi = Total activity (Ci) released for radionuc1ide "i".

Because of the assumptions about receptors, environment, and radionuc1ides; and because of the low Objective and Standard, the lack of immediate restriction on plant operation, and the adherence to lOCFR20 concentrations (which limit public health consequences) a failure of Method I (i.e., the exposure of a real individual being underestimated) is improbable and the consequences of a failure are minimal.

6.3.3 Method II

If Method I cannot be applied, or if the Method I dose exceeds the limit or if a more exact calculation is required, then Method II should be applied. Method II consists of the models, input data and assumptions in Regulatory Guide 1.109, Rev. 1 (Reference A), except where site-specific models, data or assumptions are more applicable. The base case analysis, documented above, is a good example of the use of Method II. It is an acceptable starting point for a Method II analysis.

Off-Site Dose Calculation Manual Section 6 Rev. 32 Page 10 of 55 Vermont Yankee Nuclear Power Station 6.4 Method to Calculate the Total Body Dose Rate From Noble Gases

Effluent Control 3.3.1 limits the instantaneous dose rate at any time to the total body from all release sources of noble gases at any location at or beyond the site boundary equal to or less than 500 rnrernlyear.

Use Method I first to calculate the Total Body Dose Rate from the peak release rate via both elevated and ground level release points. The dose rate limit of Control 3.3.1.a is the total contribution from both ground and elevated releases occurring during the period of interest.

Use Method II if Method I predicts a dose rate greater than the Control limit (i.e., use of actual meteorology over the period of interest) to determine if, in fact, Control 3.3.1 had actually been exceeded during a short time interval.

Compliance with the dose rate limits for noble gases are continuously demonstrated when effluent release rates are below the plant stack noble gas activity monitor alarm setpoint by virtue of the fact that the alarm setpoint is based on a value which corresponds to the off-site dose rate limit of Control 3.3.1, or a value below it, taking into account the potential contribution of releases from all ground level sources.

Determinations of dose rates for compliance with Control (3.3.1) are performed when the effluent monitor alarm setpoint is exceeded and the corrective action required by Control 3.3.1 is unsuccessful, or as required by the notations to Control Table 3.1.2 when the stack noble gas monitor is inoperable.

6.4.1 Method I

The Total Body Dose Rate due to noble gases can be determined by multiplying the individual radionuclide release rates by their respective dose factors, summing all the products together, and then multiplying this total by a conversion constant (0.75), as seen in the following Equation 6-5:

Off-Site Dose Calculation Manual Section 6 Rev. 32 Page II of 55 Vermont Yankee Nuclear Power Station DFB. Rtbs 0.75 1 (6-5)

3 mremJ (PC~ - se~J (~Ci) (mrem - m J ( yr ~Cl - m sec pCi - yr where:

Q ~T = In the case of noble gases, the release rate from the plant stack (J..lCi/sec)for each radionuclide, "i", identified. The release rate at the plant stack is based on measured radionuclide concentrations and distributions in periodic grab samples taken at the stack. As an alternative method, the radionuclide distribution in the off-gas at the Steam Jet Air Ejector (SJAE) can be used during plant operations, along with the Stack Gas Monitor effluent count rate, to estimate stack radionuclide releases. The release rate at the stack when using SJAE samples can be stated as follows:

.SJAE . STQ " I Q - ---:::.!...I -::-:-:-::- M F i-I Q~JAE Sg I (6-28) uCi = (cpm) (11 Cilcc ) (cc) sec cpm sec

M Plant Stack Gas Monitor I or II count rate (cpm).

Sg = Appropriate or conservative plant stack monitor detector counting efficiency for the given nuclide mix (cpm/(J...lCilcc»).

F = Stack flow rate (cc/sec) .

•SJAE Q i = The last measured release rate at the steam jet air ejector of noble gas i (J...lCilsec).

DFBi = Total body gamma dose factor (see Table 1.1.10).

Off-Site Dose Calculation Manual Section 6 Rev. 32 Page 12 of 55 Vermont Yankee Nuclear Power Station For ground level noble gas releases, the total body dose rate is calculated as follows:

7.4 DFB. R tbg 1 (6-39)

where:

Q~L = Ground level release rate (J,-ICi/sec)of noble gas.

The total body dose rate for the site is equal to Rtbs + Rtbg'

During periods (beyond the first five days) when the plant is shutdown and no radioactivity release rates can be measured at the SJAE, Xe-133 may be used in place of the last SJAE measured mix as the referenced radionuclide to determine off-site dose rate and monitor setpoints. In this case, the ratio of each Q~JAE to the sum of all

Q~JAE in Equation 6-28 above is assumed to reduce to a value of 1, and the total body gamma dose factor DFBj for Xe-133 (2.94 E-04 mrem-m'VpCi-yr) is used in Equation 6- 5. Alternately, a relative radionuclide "i" mix fraction (fj) may be taken from Table 8.2.1 as a function of time after shutdown, and substituted in place of the ratio of QSJAE to the sum of all QSJAE in Equation (6-28) above to determine the relative fraction I I of each noble gas potentially available for release to the total. Just prior to plant startup before a SJAE sample can be taken and analyzed, the monitor alarm setpoints should be based on Xe-138 as representing the most prevalent high dose factor noble gas expected to be present shortly after the plant returns to power. Monitor alarm setpoints which have been determined to be conservative under any plant conditions may be utilized at any time in lieu of the above assumptions.

Equations 6-5 and 6-39 can be applied under the following conditions (otherwise, justify Method I or consider Method II):

1. Normal operations (not emergency event), and

2. Noble gas releases via either elevated or ground level vents to the atmosphere.

Off-Site Dose Calculation Manual Section 6 Rev. 32 Page 13 of 55 Vermont Yankee Nuclear Power Station 6.4.2 Basis for Method I

Method Imay be used to show that the Control limit for total body dose rate from noble gases released to the atmosphere has been met for the peak noble gas release rate.

Method Ifor stack releases was derived from Regulatory Guide 1.109 as follows:

Rtbs = 1E + 06 SF [X/Q] : L

3 (6-6) mrem J = ( pC~ J (# ) sec J( !-lCi ] (mre~ - m J ( yr !-lCI ( m3 sec pCI - yr where:

= Shielding factor = 1.0 for dose rate determination.

= Maximum annual average gamma atmospheric dispersion factor for stack (elevated) releases; = 7.51E-07 (sec/rrr').

QST = Release rate from the plant stack of noble gas "i" (!-lCi/sec). i 3 Gamma total body dose factor, (mre~- m ]. See Table 1.1.10. pC 1- yr

Equation 6-6 reduces to:

Rtbs = 0.75 (6-5)

For ground level releases, the ground level maximum long-term average gamma atmospheric dispersion factor = 7.37E-06 sec/rrr', thus leading to:

Rtbg = I E+ 06 * 7.37 E- 06 I Q~L DFBi i or (6-39) . GL Rtbg = 7.4 I Qi DFBi

Off-Site Dose Calculation Manual Section 6 Rev. 32 Page 14 of 55 Vermont Yankee Nuclear Power Station The selection of critical receptor, outlined in Section 6.10, is inherent in Method I, as are the maximum expected off-site annual or long-term average atmospheric dispersion factors. Due to the holdup and decay of gases allowed in the AOG, off-gas concentrations at the plant stack during routine plant operations are usually too low for determination of the radionuc1ide mix at the plant stack. It is then conservatively assumed that most of the noble gas activity at the plant stack is the result of in-plant steam leaks which are removed to the plant stack by building ventilation air flow, and that this air flow has an isotopic distribution consistent with that routinely measured at the SJAE.

The calculation of ground level release dispersion parameters are based on the location of the North Warehouse with respect to the site boundary that would experience the highest exposure. The North Warehouse contains a waste oil burner that can be used for the incineration of low level contaminated waste oil, and is designated as a ground level release point to the atmosphere. Due to differences in building cross sectional areas and resulting building wake effects, the North Warehouse atmospheric dispersion factors are conservative in comparison to those associated with the main plant facilities, such as the Turbine Building. As a consequence, any potential or unexpected ground level release from the Turbine Building or adjoining structures can utilize the above ground release dose assessment equations.

In the case of noble gas dose rates, Method II cannot provide much extra realism

because Rtbs and Rtbg are already based on several factors which make use of current plant parameters. However, should it be needed, the dose rate analysis for critical receptor can be performed making use of current meteorology during the time interval of recorded peak release rate in place of the default atmospheric dispersion factor used in Method I.

6.4.3 Method II

If Method I cannot be applied, or if the Method I dose exceeds the limit, then Method II may be applied. Method II consists of the models, input data and assumptions in Regulatory Guide 1.109, Rev. 1 (Reference A), except where site-specific models, data or assumptions are more applicable. The base case analysis, documented above, is a good example of the use of Method II. It is an acceptable starting point for a Method II analysis.

Off-Site Dose Calculation Manual Section 6 Rev. 32 Page 15 of 55 Vermont Yankee Nuclear Power Station 6.5 Method to Calculate the Skin Dose Rate from Noble Gases

Effluent Control 3.3.1 limits the instantaneous dose rate at any time to the skin from all release sources of noble gases at any location at or beyond the site boundary to 3,000 rnremlyear.

Use Method I first to calculate the Skin Dose Rate from both elevated and ground level release points to the atmosphere. The dose rate limit of Control 3.3.1.a is the total contribution from both ground and elevated releases occurring during the period of interest. Method I applies at all release rates.

Use Method II if Method I predicts a dose rate greater than the Control limits (i.e., use of actual meteorology over the period of interest) to determine if, in fact, Control 3.3.1 had actually been exceeded during a short time interval.

Compliance with the dose rate limits for noble gases are continuously demonstrated when effluent release rates are below the plant stack noble gas activity monitor alarm setpoint by virtue of the fact that the alarm setpoint is based on a value which corresponds to the off-site Control dose rate limit, or a value below it, taking into account the potential contribution releases from all ground level sources.

Determinations of dose rate for compliance with Control (3.3.1) are performed when the effluent monitor alarm setpoint is exceeded and the corrective action required by Control 3.3.1 is unsuccessful, or as required by the notations to Control Table 3.1.2 when the stack noble gas monitor is inoperable.

6.5.1 Method I

The skin dose rate due to noble gases is determined by multiplying the individual radionuclide release rates by their respective dose factors, and summing all the products together as seen in the following Equation 6-7:

Off-Site Dose Calculation Manual Section 6 Rev. 32 Page 16 of 55 Vermont Yankee Nuclear Power Station R skins (6-7) ~) (.mrem~ sec) ( sec J1 CI- yr where:

QST = In the case of noble gases, the noble gas release rate from the plant stack I (f..tCiisec)for each radionuclide, "i," identified. The release rate at the plant stack is based on measured radionuclide concentrations and distributions in periodic grab samples taken at the stack. As an alternative method, the radionuclide distribution in the off-gas at the Steam Jet Air Ejector (SJAE) can be used during plant operations, along with the Stack Gas Monitor effluent count rate, to estimate stack radionuclide releases. The release rate at the stack when using SJAE samples can be stated as follows:

= Q~JAE M 1 F - I:Q~JAE Sg I (6-28)

f..tCi = (cpm) (f..tCi/cc) (cc) sec cpm sec M = Plant stack gas monitor I or IIcount rate (cpm).

Appropriate or conservative plant stack monitor detector counting efficiency for the given nuclide mix (cpml(f..tCilcc)).

F = Stack flow rate (cc/sec).

The last measured release rate at the steam jet air ejector of noble gas i (f..tCi/sec).

DFis = combined skin dose factor (see Table 1.1.10) for stack release.

Off-Site Dose Calculation Manual Section 6 Rev. 32 Page 17 of 55 Vermont Yankee Nuclear Power Station For ground level releases, the skin dose rate from noble gases is calculated by Equation 6-38:

R sking = L Q ~L DF' ig (6-38) i where:

Q~L = The noble gas release rate from ground level (J.lCi/sec) for each radionuclide "i" identified.

DFi~ = Combined skin dose factor for a ground level release [see Table 1.1.lOA].

The skin dose rate for the site is equal to Rskins + Rsking,

During periods (beyond the first five days) when the plant is shutdown and no radioactivity release rates can be measured at the SJAE, Xe-133 may be used in place of the last SJAE measured mix as the referenced radionuclide to determine off-site dose rate and monitor setpoints. In this case, the ratio each of Q~JAE to the sum of all Q~JAE in Equation 6-28 above is assumed to reduce to a value of 1, and the combined skin dose factor DF'is for Xe-I33 (7.8IE-04 rurem-sec/uf.i-year) is used in Equation 6-7.

Alternately, a relative radionuclide "i" mix fraction (fi) may be taken from Table 8.2.1 as a function of time after shutdown, and substituted in place of the ratio of each Q~JAE

to the sum of all Q~JAE in Equation 6-28 above to determine the relative fraction of each noble gas potentially available for release to the total. Just prior to plant startup before a SJAE sample can be taken and analyzed, the monitor alarm setpoints should be based on Xe-I38 as representing the most prevalent high dose factor noble gas expected to be present shortly after the plant returns to power. Monitor alarm setpoints which have been determined to be conservative under any plant conditions may be utilized at any time in lieu of the above assumptions.

Equations 6-7 and 6-38 can be applied under the following conditions (otherwise, justify Method I or consider Method II):

1. Normal operations (not emergency event), and

2. Noble gas releases via both elevated and ground level vents to the atmosphere.

Off-Site Dose Calculation Manual Section 6 Rev. 32 Page 18 of 55 Vermont Yankee Nuclear Power Station 6.5.2 Basis For Method I

The methods to calculate skin dose rate parallel the total body dose rate methods in Section 6.4.3. Only the differences are presented here.

Method Imay be used to show that the Control limit for skin dose rate from noble gases released to the atmosphere (Control 3.3.1) has been met for the peak noble gas release rate.

Method I was derived from Regulatory Guide 1.109 as follows:

= 1.11 (6-8)

3 mrem) (#) (mrad) P~i- yr) Ci) (se~) [mre~- m ) ( mrad yr ( Ci= sec ( yr m pCI- yr

where:

1.11 = Average ratio of tissue to air absorption coefficients will convert mrad in air to mrem in tissue.

D~ir = 3.17E +04 L Qi [X/Q]s DF! (6-9) i

mrad J (P~i - yr) (Ci J (sec) (mra~ - m 3 ) ( yr CI - sec yr m 3 pCI - yr

- Dr now D hnite - air [X / Q H/ [X / oi, (6-10) ( m;;dJ (m;;dJ (:n (::J

and 31.54 . ST Qi = Qi (6-11)

( Ci :- sec J (!lei J (~:J /lCI - yr sec

Off-Site Dose Calculation Manual Section 6 Rev. 32 Page 19 of 55 Vermont Yankee Nuclear Power Station so Rskins = 1.11 SF IE + 06 [XlQ]Z I Q~T (6-12)

mrem J( mrem J (#) (PC~ J( se~ J ( !-lCiJ (mra~ - m 3 J ( yr mrad jiCl m - sec pCl - yr

DFS.I

3 !-lCi (mre~ - m ( P~i) J sec PCl- yr

substituting

[XlQ] I = 7.S1E-07 sec/m3 XlQs = 1.S9E-06 sec/m3 SF = Shielding factor = 1.0 for dose rate determinations

gives

Rskins = 0.83 DIf + DF~ (6-13)

3 3 mremJ(pCi. - sec - mremJ (!-lCi) [mra~ - m J(pC~ - secJ(!-lCi)(mre~ - m J ( yr !-lCl- m' - mrad sec pCl- yr !-lCl- m' sec pCl- yr

Off-Site Dose Calculation Manual Section 6 Rev. 32 Page 20 of 55 Vermont Yankee Nuclear Power Station = L Q~T [0.83 DF7 + 1.59 DFS d (6-14) I define DF'is = 0.83 DF r + 1.59 DFS i (6-15) then

DI1s Rskins = L (6-7)

~Ci) (mre~ - sec) ( sec ~Cl- yr

For determining combined skin doses for ground level releases, a [XlQ)gy = 7.37E-06 sec/m3 and an undepleted XlQg = 3.65E-05 sec/m3 have been substituted into Equation 6-12 to give:

R sking = I Q~L (8.18 DF iY + 36.5 DF i) \

then DF(g = 8.18 DFjY + 36.5 DFS i (6-37)

and'Rsking = L.. " QG\, L DF\,'g (6-38) i where:

. GL Qi = The noble gas release rate from ground level release points (f..lCi/sec)for each radionuclide "i" identified.

DFig = Combined skin dose factor for a ground level release [see Table 1.1.lOA).

The selection of critical receptor, outlined in Section 6.10 is inherent in Method I, as it determined the maximum expected off-site atmospheric dispersion factors based on past long-term site-specific meteorology.

Off-Site Dose Calculation Manual Section 6 Rev. 32 Page 21 of 55 Vermont Yankee Nuclear Power Station The calculation of ground level release dispersion parameters are based on the location of the North Warehouse with respect to the site boundary that would experience the highest exposure. The North Warehouse contains a waste oil burner that can be used for the incineration of low level contaminated waste oil, and is designated as a ground level release point to the atmosphere. Due to differences in building cross sectional areas and resulting building wake effects, the North Warehouse atmospheric dispersion factors are conservative in comparison to those associated with the main plant facilities, such as the Turbine Building. As a consequence, any potential or unexpected ground level release from the Turbine Building or adjoining structures can utilize the above ground release dose assessment equations.

6.5.3 Method II

If Method I cannot be applied, or if the Method I dose exceeds the limit, then Method II may be applied. Method II consists of the models, input data and assumptions in Regulatory Guide 1.109, Rev. 1 (Reference A), except where site-specific models, data or assumptions are more applicable. The base case analysis, documented above, is a good example of the use of Method II. It is an acceptable starting point for a Method II analysis.

6.6 Method to Calculate the Critical Organ Dose Rate from lodines, Tritium and Particulates with T 112 Greater Than 8 Days

Effluent ControI3.3.1.b limits the dose rate to any organ, denoted Reo, from all release sources of 1-131, 1-133, H-3, and radionuclides in particulate form with half lives greater than 8 days to 1500 mremlyear to any organ. The peak release rate averaging time in the case of iodines and particulates is commensurate with the time the iodine and particulate samplers are in service between changeouts (typically a week).

Use Method I first to calculate the critical organ dose rate from both elevated and ground level release points to the atmosphere. The dose rate limit of Control 3.3.1.b is the total contribution from both ground and elevated releases occurring during the period of interest. Method I applies at all release rates.

Use Method II if Method I predicts a dose rate greater than the Control limits (i.e., use of actual meteorology over the period of interest) to determine if, in fact, Control 3.3.l.b had actually been exceeded during the sampling period.

Off-Site Dose Calculation Manual Section 6 Rev. 32 Page 22 of 55 Vermont Yankee Nuclear Power Station 6.6.1 Method I

The critical organ dose rate from stack releases can be determined by multiplying the individual radionuclide release rates by their respective dose factors and summing all their products together, as seen in the following Equation 6-16:

Rcos = L DFG'sico

(6-16) /.lCi) ( mre~ - sec) ( sec /.lCI- yr where: = Stack activity release rate determination of radio nuclide "i" (lodine-131, Iodine-133, particulates with half-lives greater than 8 days, and tritium), in f.lCi/sec. For i = Sr89, Sr90 or tritium, use the best estimates (such as most recent measurements).

DFG'sico = SIte. speer ific ICcntica cri I organd ose rate f actor (mrem-sec) . uci- yr for a ground level gaseous release. See Table 1.1.12.

For ground releases (North Warehouse waste oil burner) the critical organ dose rate from Iodine, Tritium, and Particulates with T 112greater than 8 days is calculated as follows:

" . GLP (6-40) Rcog = L... Qi DFG'gico where:

= Ground activity release rate determination of radionuclide "i" (Iodine- 131, lodine-133, particulates with half-lives greater than 8 days, and tritium), in f.lCiisec. For i= Sr89, Sr90, Fe-55, or tritium, use the best estimates (such as most recent measurements). For waste oil, the release rate is the total activity by radionuclide divided by the estimated bum time. (See Appendix D for surveillance criteria on waste oil burning.

DFG'gico = S·ite speer ific ICcntica cri I organ d ose rate f actor (mrem-sec) . f.lC1-yr for a ground level gaseous release. See Table 1.1.12.

The critical organ dose rate for the site is equal to Reos + Reog . Off-Site Dose Calculation Manual Section 6 Rev. 32 Page 23 of 55 Vermont Yankee Nuclear Power Station Equations 6-16 and 6-40 can be applied under the following conditions (otherwise, justify Method I or consider Method II):

1. Normal operations (not emergency event), and

2. Tritium, iodine, and particulate releases via either elevated or ground level vents to the atmosphere.

6.6.2 Basis for Method I

The methods to calculate critical organ dose rate parallel the total body dose rate methods in Section 6.4.3. Only the differences are presented here.

Method I may be used to show that the Control limit for organ dose rate from iodines, tritium and radionuc1ides in particulate form with half lives greater than 8 days (hereafter called Iodines and Particulates or "I+P") released to the atmosphere (ControI3.3.1.b) has been met for the peak 1+ P release rate.

The equation for ~os and ~og is derived by modifying Equation 6-25 from Section 6.9 as follows:

(6-17) (mrem) (Ci) (~~m)

applying the conversion factor, 31.54 (Ci-sec/trCi-yr) and converting Q to Q in IlCiisec as it applies to the plant stack yields:

= 31.54 • STP DFGsieo Reos Qi

(6-18) Ci~ sec IlCi) (mr~m) J ( ( IlCl- yr sec ci

Off-Site Dose Calculation Manual Section 6 Rev. 32 Page 24 of 55 Vermont Yankee Nuclear Power Station Equation 6.8 is written in the form:

R = 31.54 DFGsico

(6-19) Ci ~sec /.lCi] J ( (mr~m] ( /.lCl- yr sec Ci

DFG~ico and DFG~ico (North Warehouse waste oil burner vent releases) incorporates the conversion constant of 31.54 and has assumed that the shielding factor (SF) applied to the direct exposure pathway from radionuclides deposited on the ground plane is equal to 1.0 in place of the SF value of 0.7 assumed in the determination of DFG sicoand DFG gicofor the integrated doses over time.

The selection of critical receptor (based on the combination of exposure pathways which include direct dose from the ground plane, inhalation and ingestion of vegetables, meat, and milk) which is outlined in Section 6.10 is inherent in Method I, as are the maximum expected off-site atmospheric dispersion factors based on past long- term site-specific meteorology.

The calculation of ground level release dispersion parameters are based on the location of the North Warehouse with respect to the site boundary that would experience the highest exposure. The North Warehouse contains a waste oil burner that can be used for the incineration of low level contaminated waste oil, and is designated as a ground level release point to the atmosphere. Due to differences in building cross sectional areas and resulting building wake effects, the North Warehouse atmospheric dispersion factors are conservative in comparison to those associated with the main plant facilities, such as the Turbine Building. As a consequence, any potential or unexpected ground level release from the Turbine Building or adjoining structures can utilize the above ground release dose assessment equations.

Should Method II be needed, the analysis for critical receptor critical pathway(s) and atmospheric dispersion factors may be performed with actual meteorologic and latest land use census data to identify the location of those pathways which are most impacted by these type of releases.

Off-Site Dose Calculation Manual Section 6 Rev. 32 Page 25 of 55 Vermont Yankee Nuclear Power Station 6.6.3 Method II

If Method I cannot be applied, or if the Method I dose exceeds the limit, then Method II may be applied. Method II consists of the models, input data and assumptions in Regulatory Guide 1.109, Rev. 1 (Reference A), except where site- specific models, data or assumptions are more applicable. The base case analysis, documented above, is a good example of the use of Method II. It is an acceptable starting point for a Method II analysis.

6.7 Method to Calculate the Gamma Air Dose from Noble Gases

Effluent Control 3.3.2 limits the gamma dose to air from all release sources of noble gases at any location at or beyond the site boundary to 5 rnrad in any quarter and 10 mrad in any year. Dose evaluation is required at least once per month.

Use Method I first to calculate the gamma air dose for elevated and ground level vent releases during the period. The total gamma air dose limit of Control 3.3.2 is the total contribution from both ground and elevated releases occurring during the period of interest.

Use Method II if a more accurate calculation is needed.

6.7.1 Method I

The gamma air dose from plant stack releases is:

0.024 Df'Y = 1

(6-21) (mrad) 3 PCi- yr) (Ci) (mra~- m J ( Ci-m3 pCI- yr where:

Q?T = total noble gas activity (Curies) released to the atmosphere via the plant stack of each radionuclide "i'' during the period of interest.

DF? = gamma dose factor to air for radionuclide "i." See Table 1.1.10.

Off-Site Dose Calculation Manual Section 6 Rev. 32 Page 26 of 55 Vermont Yankee Nuclear Power Station For ground level noble gas releases, the gamma air dose is calculated as follows:

Y, D arrg = 0.23 L: Q ~L DF! (6-41) i where:

Q9L = Total noble gas activity (curies) released to the atmosphere via ground level vents of each radionuclide, "i", during the period of interest.

The gamma air dose for the site is equal to D rirs + D ai~g •

Equations 6-21 and 6-41 can be applied under the following conditions (otherwise justify Method lor consider Method II):

1. Normal operations (not emergency event), and

2. Noble gas releases via either elevated or ground level vents to the atmosphere.

6.7.2 Basis for Method I

Method Imay be used to show that the Control limit for off-site gamma air dose from gaseous effluents (3.3.2) has been met for releases over appropriate periods. This Control is based on the Objective in lOCFR50, Appendix I, Subsection B.l, which limits the estimated annual gamma air dose at unrestricted area locations.

Exceeding the Objective does not immediately limit plant operation but requires a report to the NRC.

For any noble gas release, in any period, the dose is taken from Equations B-4 and B-5 of Regulatory Guide 1.109 with the added assumption that

Dhnite = DY [XlQ] Y /[XlQ] :

(6-22)

(mrad) (P~i- yr) (sec/m3)(Ci) (mrad- ~3 J CI- sec yr- pCI

Off-Site Dose Calculation Manual Section 6 Rev. 32 Page 27 of 55 Vermont Yankee Nuclear Power Station where:

[XJQn = maximum long term average gamma atmospheric dispersion factor for a stack release.

= 7.51E-07 (sec/rrr')

Q~T = number of curies of noble gas ''i" released from the plant stack which leads to:

0.024 = DFY1

(6-21) (mrad) PCi - yr) (Ci) [mra~-m3J ( Ci-m3 pCI- yr

For the ground level release:

D rirg = 3.17E + 04 [XlQ]~ L QpL DF! (6-42) i

where:

(XlQ)~ = Maximum long-term average gamma atmospheric dispersion factor for a ground level release

= 7.37E-06 sec/m ' leading to:

DIirg = 0.23 I QpL DF? (6-41) I

The calculation of ground level release dispersion parameters are based on the location of the North Warehouse with respect to the site boundary that would experience the highest exposure. The North Warehouse contains a waste oil burner that can be used for the incineration of low level contaminated waste oil, and is designated as a ground level release point to the atmosphere. Due to differences in building cross sectional areas and resulting building wake effects, the North Warehouse atmospheric dispersion factors are conservative in comparison to those associated with the main plant facilities, such as the Turbine Building. As a consequence, any potential or unexpected ground level release from the Turbine Building or adjoining structures can utilize the above ground release dose assessment equations.

Off-Site Dose Calculation Manual Section 6 Rev. 32 Page 28 of 55 Vermont Yankee Nuclear Power Station The main difference between Method I and Method II is that Method II would allow the use of actual meteorology to determine [X/Q]Y rather than use the maximum long-term average value obtained for the years 2002 to 2006.

6.7.3 Method II

If the Method Idose determination indicates that the Control limit may be exceeded, or if a more exact calculation is required, then Method IImay be applied. Method II consists of the models, input data and assumptions in Regulatory Guide 1.109, Rev. 1 (Reference A), except where site-specific models, data or assumptions are more applicable.

6.8 Method to Calculate the Beta Air Dose from Noble Gases

Effluent Control 3.3.2 limits the beta dose to air from all release sources of noble gases at any location at or beyond the site boundary to 10 mrad in any quarter and 20 mrad in any year. Dose evaluation is required at least once per month.

Use Method Ifirst to calculate the beta air dose for elevated and ground level vent releases during the period. The total beta air dose limit of Control 3.3.2 is the total contribution from both ground and elevated releases occurring during the period of interest.

Use Method IIif a more accurate calculation is needed or if Method Icannot be applied.

6.8.1 Method I

The beta air dose from plant vent stack releases is:

ST DF~ D~irs = 0.050 L QII (6-23) i

3 PCi- yr) (Ci) (mra~- m ) (mrad) ( Ci- m3 pCI- yr where:

DFr = beta dose factor to air for radionuc1ide "i". See Table 1.1.10.

Q~T = total noble gas activity (curies) released to the atmosphere via the plant stack of each radionuc1ide "i" during the period of interest.

Off-Site Dose Calculation Manual Section 6 Rev. 32 Page 29 of 55 Vermont Yankee Nuclear Power Station For ground level noble gas releases, the beta air dose is calculated as follows:

D~' = 1.16 L QG(, L DF~( a(fg (6-43) where:

Qar = Total noble gas activity (curies) released to the atmosphere via the ground level vents of each radionuclide "i" during the period of interest.

The beta air dose for the site is equal to D~irs + D~irg .

Equations 6-23 and 6-43 can be applied under the following conditions (otherwise justify Method I or consider Method II):

1. Normal operations (not emergency event), and

2. Noble gas releases via either elevated or ground level vents to the atmosphere.

6.8.2 Basis for Method I

This section serves three purposes: (1) to document that Method I complies with appropriate NRC regulations, (2) to provide background and training information to Method I users, and (3) to provide an introductory user's guide to Method II. The methods to calculate beta air dose parallel the gamma air dose methods in Section 6.7.3. Onl y the differences are presented here.

Method I may be used to show that the Control limit for off-site beta air dose from gaseous effluents (3.3.2) has been met for releases over appropriate periods. This Control is based on the Objective in 10CFR50, Appendix I, Subsection B.l, which limits the estimated annual beta air dose at unrestricted area locations.

Exceeding the Objective does not immediately limit plant operation but requires a report to the NRC within 30 days.

Off-Site Dose Calculation Manual Section 6 Rev. 32 Page 30 of 55 Vermont Yankee Nuclear Power Station For any noble gas release, in any period, the dose is taken from Equations B-4 and B-S of Regulatory Guide 1.109:

= 3.17E+04 XlQ s.c..," QSjT

(6-24) (mrad) 3 P~i - (Ci) (mra~ - m ] ( yrJ (sec] cr sec m3 pCl- yr substituting

XlQs = Maximum long term average undepleted atmospheric dispersion factor for a stack release.

= 1.S9E-06 sec/m3

We have (6-23) 0.050 DP.airs = DFf

(mrad) 3 (Ci) (mra~ - m ) pCt- yr

For the ground level release:

= 3.17E +04 (XlQ)g L Q?L DFf (6-44) j where:

(XlQ)g = Maximum long-term average undepleted atmospheric dispersion factor for a ground level release.

= 3.6SE-OS sec/m3 leading to:

D~jrg = 1.16 L: Dfi3 (6-43) i

Off-Site Dose Calculation Manual Section 6 Rev. 32 Page 31 of 55 Vermont Yankee Nuclear Power Station The calculation of ground level release dispersion parameters are based on the location of the North Warehouse with respect to the site boundary that would experience the highest exposure. The North Warehouse contains a waste oil burner that can be used for the incineration of low level contaminated waste oil, and is designated as a ground level release point to the atmosphere. Due to differences in building cross sectional areas and resulting building wake effects, the North Warehouse atmospheric dispersion factors are conservative in comparison to those associated with the main plant facilities, such as the Turbine Building. As a consequence, any potential or unexpected ground level release from the Turbine Building or adjoining structures can utilize the above ground release dose assessment equations.

6.8.3 Method II

If Method I cannot be applied, or if the Method I dose determination indicates that the Control limit may be exceeded, or if a more exact calculation is required, then Method II may be applied. Method II consists of the models, input data and assumptions in Regulatory Guide 1.109, Rev. 1 (Reference A), except where site- specific models, data or assumptions are more applicable.

6.9 Method to Calculate the Critical Organ Dose from Iodines, Tritium and Particulates

Effluent Control 3.3.3 limits the critical organ dose to a Member of the Public from all release sources of 1-131, 1-133, Tritium, and particulates with half-lives greater than 8 days (hereafter called "I+P") in gaseous effluents to 7.5 mrem per quarter and 15 mrem per year.

Use Method I first to calculate the critical organ dose from both elevated and ground level vent releases. The total critical organ dose limit of Control 3.3.3 is the total contribution from both ground level and elevated releases occurring during the period of interest

Use Method II if a more accurate calculation of critical organ dose is needed (i.e., Method I indicates the dose is greater than the limit).

Off-Site Dose Calculation Manual Section 6 Rev. 32 Page 32 of 55 Vermont Yankee Nuclear Power Station 6.9.1 Method I

o., = I Q~TP DFGsico (6-25) i

(mrem) (Ci) (mr~m)

Q 1TP = Total activity (Ci) released from the stack to the atmosphere of radionuclide "i" during the period of interest. For strontiums and tritium, use the most recent measurement.

DFGsico = Site-specific critical organ dose factor for a stack gaseous release of radionuclide "i" (mremlCi). For each radionuclide it is the age group and organ with the largest dose factor. See Table 1.1.12.

The critical organ dose is calculated for ground level releases as follows:

Deog = I Q~LP DFGgico

(6-44) (mrem) (Ci) (~~m)

Q 9LP = Total activity (Ci) released from ground level vents to the atmosphere of radionuclide "i" during the period of interest. For tritium, strontiums, and Fe-55 use the most recent measure.

DFGgico = Site-specific critical organ dose factor for a ground level release of nuclide "i" (mremlCi). For each radionuclide it is the age group and organ with the largest dose factor. See Table 1.1.12.

The critical organ dose for the site is equal to Deos+ Deog.

Equations 6-25 and 6-44 can be applied under the following conditions (otherwise, justify Method I or consider Method II):

1. Normal operations (not emergency event),

2. I+P releases via the plant stack, Turbine Building, and waste oil burner (see Appendix D for surveillance criteria on waste oil burning), to the atmosphere, and

3. Any continuous or batch release over any time period.

Off-Site Dose Calculation Manual Section 6 Rev. 32 Page 33 of 55 Vermont Yankee Nuclear Power Station 6.9.2 Basis for Method I

This section serves three purposes: (1) to document that Method I complies with appropriate NRC regulations, (2) to provide background and training information to Method I users, and (3) to provide an introductory user's guide to Method II.

Method I may be used to show that the Control limit for off-site organ dose from gases (3.3.3) has been met for releases over the appropriate periods.

Method I was developed such that "the actual exposure of an individual ... is unlikely to be substantially underestimated" (10CFR50, Appendix I). The use below of a single "critical receptor" provides part of the conservative margin to the calculation of critical organ dose in Method 1. Method II allows that actual individuals, with real behaviors, be taken into account for any given release. In fact, Method I was based on a Method II analysis of the critical receptor for the annual average conditions. For purposes of complying with the Control 3.3.3, maximum annual average atmospheric dispersion factors are appropriate for batch and continuous releases. That analysis was called the "base case"; it was then reduced to form Method 1. The base case, the method of reduction, and the assumptions and data used are presented below.

The steps performed in the Method I derivation follow. First, in the base case, the dose impact to the critical receptor in the form of dose factors (mremlCi) of 1 curie release of each I+P radionuclide to gaseous effluents was derived. Then Method I was determined using simplifying and further conservative assumptions. The base case analysis uses the methods, data and assumptions in Regulatory Guide 1.109 (Equations C-2, C-4 and C-13 in Reference A). Tables 6.9.1 and 6.9.2 outline human consumption and environmental parameters used in the analysis. It is conservatively assumed that the critical receptor lives at the "maximum off-site atmospheric dispersion factor location" as defined in Section 6.10. However, he is exposed, conservatively, to all pathways (see Section 6.10). The resulting site-specific dose factors are for the maximum organ and the age group with the highest dose factor for that organ. These critical organ, critical age dose factors are given in Table 1.1.12.

For any gas release, during any period, the increment in annual average dose from radionuclide "i" is:

(6-26)

where DFGico is the critical dose factor for radionuclide "i" and Qi is the activity of radionuclide "i" released in curies.

Method I is more conservative than Method II in the region of the effluent dose Control limit because it is based on the following reduction of the base case. The dose factors DFGico used in Method I were chosen from the base case to be the highest of the set for that radionuclide. In effect each radionuclide is conservatively represented by its own critical age group and critical organ. Off-Site Dose Calculation Manual Section 6 Rev. 32 Page 34 of 55 Vermont Yankee Nuclear Power Station 6.9.3 METHOD II

If Method I cannot be applied, or if the Method I dose exceeds the Control limit or if a more exact calculation is required, then Method II should be applied. Method II consists of the models, input data and assumptions in Regulatory Guide 1.109, Rev. 1 (Reference A), except where site-specific models, data or assumptions are more applicable. The base case analysis, documented above, is a good example of the use of Method II. It is an acceptable starting point for a Method II analysis.

Off-Site Dose Calculation Manual Section 6 Rev. 32 Page 35 of 55 Vermont Yankee Nuclear Power Station TABLE 6.9.1

Environmental Parameters for Gaseous Effluents at Vermont Yankee (Derived from Reference A)*

Variable Vegetables Cow Milk Goat Milk Meat Stored Leafy Pasture Stored Pasture Stored Pasture Stored YV Agricultural (Kg/m2) 2 2 0.70 2 0.70 2 0.70 2 Productivity

P Soil Surface (Kg/m2) 240 240 240 240 240 240 240 240 Density

T Transport Time to User(5) (Hrs) 48 48 48 48 480 480 TB Soil Exposure Time(l) (Hrs) 131400 l31400 l31400 l31400 131400 l31400 131400 l31400 TE Crop Exposure Time to Plume (Hrs) 1440 1440 720 1440 720 1440 720 1440 TH Holdup After Harvest (Hrs) 1440 24 0 2160 0 2160 0 2160 QF Animals Daily Feed (Kg/Day) 50 50 6 6 50 50 FP Fraction of Year on Pasture'" 0.50 0.50 0.50 FS Fraction Pasture When on Pasture" 1 1 1 FG Fraction of Stored Veg. Grown in Garden 0.76 FL Fraction of Leafy Veg. Grown in Garden PI Fraction Elemental Iodine = 0.5 A Absolute Humidity = 5.6(gm/rrr')'?'

*Regulatory Guide 1.109, Revision 1.

Off-Site Dose Calculation Manual Section 6 Rev. 32 Page 36 of 55 Vermont Yankee Nuclear Power Station TABLE 6.9.1 (Continued)

Notes:

(1) For Method II dose/dose rate analyses of identified radioactivity releases of less than one year, the soil exposure time for that release may be set at 8760 hours (1 year) for all pathways.

(2) For Method II dose/dose rate analyses performed for releases occurring during the first or fourth calendar quarters, the fraction of time animals are assumed to be on pasture is zero (nongrowing season). For the second and third calendar quarters, the fraction of time on pasture (FP) will be set at 1.0. FP may also be adjusted for specific farm locations if this information is so identified and reported as part of the land use census.

(3) For Method II analyses, the fraction of pasture feed while on pasture may be set to less than 1.0 for specific farm locations if this information is so identified and reported as part of the land use census.

(4) For all Method II analyses, an absolute humidity value equal to 5.6 (gm/nr') shall be used to reflect conditions in the Northeast (Reference: Health Physics Journal, Vol. 39 (August), 1980; Page 318-320, Pergammon Press).

(5) Variable T is a combination of variables TF and TS in Regulatory Guide 1.109, Revision 1.

Off-Site Dose Calculation Manual Section 6 Rev. 32 Page 37 of 55 Vermont Yankee Nuclear Power Station TABLE 6.9.2

Usage Factors for Various Gaseous Pathways at Vermont Yankee (from Regulatory Guide 1.109, Table E-5)

Leafy Age Vegetables Vegetables Milk Meat Inhalation Group (kg/yr) (kg/yr) (lIyr) (kg/yr) (rrr'zyr)

Adult 520.00 64.00 310.00 110.00 8000.00 Teen 630.00 42.00 400.00 65.00 8000.00 Child 520.00 26.00 330.00 4l.00 3700.00 Infant 0.00 0.00 330.00 0.00 1400.00

Off-Site Dose Calculation Manual Section 6 Rev. 32 Page 38 of 55 Vermont Yankee Nuclear Power Station 6.10 Receptor Point and Long- Tenn Average Atmospheric Dispersion Factors for Important Exposure Pathways

The gaseous effluent dose methods have been simplified by assuming an individual whose behavior and living habits inevitably lead to a higher dose than anyone else. The following exposure pathways to gaseous effluents listed in Regulatory Guide 1.109 (Reference A) have been considered for radioiodines, tritium, and particulates with half lives greater than 8 days:

1. Direct exposure to contaminated ground; 2. Inhalation of air; 3 Ingestion of vegetables; 4. Ingestion of cow's milk; and 5. Ingestion of meat.

Beta and gamma air doses have also been considered for noble gases in plant effluents along with whole body and skin dose rate calculations.

Section 6.10.1 details the selection of important off-site locations and receptors. Section 6.10.2 describes the atmospheric model used to convert meteorological data into atmospheric dispersion factors. Section 6.10.3 presents the maximum atmospheric dispersion factors calculated at each of the off-site receptor locations.

6.10.1 Receptor Locations

Distances to the site boundary from the two evaluated gaseous release pathways (the Stack and North Warehouse) are provided in Table 6.10.2. Four important off-site receptor locations are considered in the dose and dose rate equations for gaseous radioactive effluents from these two release pathways. They are:

1. The point of maximum gamma exposure (maximum gamma XlQ) from an overhead noble gas cloud for determining skin and whole body dose rates and gamma air doses;

2. The point of maximum ground level air concentration (maximum undepleted XlQ) of noble gases for determining skin and beta air dose rates and doses;

3. The point of maximum ground level air concentration (maximum depleted XlQ) of radioiodines and other particulates for determining critical organ dose from inhalation; and

4. The point of maximum deposition (maximum D/Q) of radioiodines and other particulates for determining critical organ dose from ingestion.

Off-Site Dose Calculation Manual Section 6 Rev. 32 Page 39 of 55 Vermont Yankee Nuclear Power Station The Stack release pathway was evaluated as an elevated release assuming a constant nominal Stack flow rate of 146,160 cfm. The point of maximum gamma exposure from Stack releases (SSE sector, 700 meters) was determined by finding the maximum five-year average gamma X/Q at any off-site location. The location of the maximum ground level air concentration and deposition of radioiodines and other particulates (WNW sector, 2150 meters) was determined by finding the maximum five- year average depleted X/Q and D/Q at any off-site location. For the purposes of determining the Method I dose factors for radioiodines, tritium, and particulates, a milk animal was assumed to exist at the location of highest calculated ground level air concentration and deposition of radioiodines and other particulates as noted above. This location then conservatively bounds the deposition of radionuclides at all real milk animal locations.

The North Warehouse release pathway was evaluated as a ground level release using the same meteorological period-of-record as the stack. The highest long-term atmospheric dispersion factors at the site boundary were determined (see Table 6.10.1) and doses and dose rates to the critical off-site receptor were calculated assuming the highest site boundary atmospheric dispersion factors all occurred at the same location.

6.10.2 Vermont Yankee Atmospheric Dispersion Model

The long-term average atmospheric dispersion factors are computed for routine releases using AEOLUS-2 Computer Code (Reference B). AEOLUS-2 is based, in part, on the constant mean wind direction model discussed in Regulatory Guide 1.111 (Reference C). Since AEOLUS-2 is a straight-line steady-state model, site-specific recirculation correction factors were developed for each release pathway to adjust the AEOLUS-2 results to account for temporal variations of atmospheric transport and diffusion conditions. The applicable recirculation correction factors are listed in Table 6.10.3.

AEOLUS-2 produces the following average atmospheric dispersion factors for each location:

1. Undepleted X/Q dispersion factors for evaluating ground level concentrations of noble gases;

2. Depleted X/Q dispersion factors for evaluating ground level concentrations of radioiodines and other particulates;

3. Gamma X/Q dispersion factors for evaluating gamma dose rates from a sector averaged finite cloud (undepleted source); and

4. D/Q deposition factors for evaluating dry deposition of elemental radioiodines and other particulates.

Off-Site Dose Calculation Manual Section 6 Rev. 32 Page 40 of 55 Vermont Yankee Nuclear Power Station The North Warehouse depleted XlQ and D/Q factors were derived using the plume depletion and deposition curves provided in Regulatory Guide 1.111. However, because the Regulatory Guide 1.111 depletion and deposition curves are limited to an effective release height of 100 meters or less and the Vermont Yankee Stack effective release height (stack height plus plume rise) can exceed 100 meters, the Stack depleted XlQ and D/Q factors were derived using the deposition velocity concept presented in "Meteorology and Atomic Energy - 1968" (Reference E, Section 5-3.2) , assuming a constant deposition velocity of 1 ern/sec.

Gamma dose rate is calculated throughout this aDeM using the finite cloud model presented in "Meteorology and Atomic Energy - 1968 (Reference E, Section 7 5.2.5). That model is implemented through the definition of an effective gamma atmospheric dispersion factor, [XlQY) (Reference B, Section 4), and the replacement of XlQ in infinite cloud dose equations by the [XlQY).

6.10.3 Long- Term Average Atmospheric Dispersion Factors for Receptors

Actual measured meteorological data for the five-year period, 2002 through 2006, were analyzed to determine all the values and locations of the maximum off-site long-term average atmospheric dispersion factors. Each dose and dose rate calculation incorporates the maximum applicable off-site long-term average atmospheric dispersion factor. The values used and their locations are summarized in Table 6.10.1. Table 6.10.1 also indicates which atmospheric dispersion factors are used to calculate the various doses or dose rates of interest.

Off-Site Dose Calculation Manual Section 6 Rev. 32 Page 41 of 55 Vermont Yankee Nuclear Power Station TABLE 6.10.1

Atmospheric Dispersion Factors

Release Dispersion Dose to Individual Dose to Air Pathway Factor Total Body Skin Critical Organ Gamma Beta

XJQ Depleted - - 1.25E-06 - - (sec/m ') (2150m WNW)

XJQ Undepleted - 1.59E-06 - - 1.59E-06 (sec/nr') (26500m SW) (2650m SW) Stack D/Q - - 1.25E-08 - - (11m2) (2150m WNW) XJQY 7.51E-07 7.51E-07 - 7.51E-07 - (sec/m ') (700m SSE) (700m SSE) (700m SSE)

XJQ Depleted - - 3.44E-05 - - (sec/m ') (451mENE)

XJQ Undepleted - 3.65E-05 - - 3.65E-05 North (sec/rrr') (451m ENE) (451m ENE) Warehouse D/Q - - 6.40E-08 - - 2 (1/m ) (357m S)

XJQY 7.37E-06 7.37E-06 - 7.37E-06 - (sec/m ') (451mENE) (451m ENE) (451mENE)

Off-Site Dose Calculation Manual Section 6 Rev. 32 Page 42 of 55 Vermont Yankee Nuclear Power Station TABLE 6.10.2

Site Boundary Distances

Downwind Stack North Warehouse Sector Releases Releases

N 400m 459m NNE 350m 417 m NE 350m 417 m ENE 400m 451 m E 500m 570m ESE 700m 561 m SE 750m 612 m SSE 850m 663 m S 385 m 357m SSW 300m 238m SW 250m 213 m WSW 250m 213 m W 300m 221 m WNW 400m 281 m NW 550m 697 m NNW 550m 680m

Off-Site Dose Calculation Manual Section 6 Rev. 32 Page 43 of 55 Vermont Yankee Nuclear Power Station TABLE 6.10.3

Recirculation Correction Factors

A. Stack Releases

Sector 0.5 Mi 1.5 Mi 2.5 Mi 3.5 Mi 4.5 Mi 7.5 Mi

N 1.4 1.4 1.2 1.1 1.0 1.0 NNE 1.8 1.8 1.4 1.2 1.0 1.0 NE 1.8 1.8 1.3 1.1 1.0 1.0 ENE 2.1 2.1 1.4 1.2 1.0 1.0 E 1.7 1.7 1.2 1.0 1.0 1.0 ESE 1.5 1.5 1.3 1.1 1.0 1.0 SE 1.8 1.8 1.3 1.2 1.1 1.0 SSE 1.4 1.4 1.2 1.2 1.2 1.2 S 1.3 1.3 1.1 1.1 1.2 1.2 SSW 1.8 1.8 1.5 1.4 1.4 1.2 SW 2.1 2.1 1.7 1.6 1.4 1.1 WSW 2.4 2.4 1.9 1.6 1.5 1.1 W 1.8 1.8 1.5 1.4 1.3 1.0 WNW 1.8 1.8 1.7 1.5 1.4 1.3 NW 1.5 1.5 1.3 1.3 1.3 1.1 NNW 1.5 1.5 1.2 1.2 1.1 1.1

B. North Warehouse Release

Sector 0.5 Mi 1.5 Mi 2.5 Mi 3.5 Mi 4.5 Mi 7.5 Mi

N 1.1 1.1 1.1 1.1 1.1 1.0 NNE 1.2 1.2 1.2 1.1 1.1 1.0 NE 1.1 1.2 1.1 1.1 1.0 1.0 ENE 1.2 1.3 1.4 1.4 1.4 1.3 E 1.1 1.3 1.4 1.4 1.4 1.2 ESE 1.1 1.1 1.2 1.1 1.1 1.0 SE 1.0 1.1 1.1 1.1 1.1 1.1 SSE 1.2 1.2 1.2 1.2 1.2 1.2 S 1.0 1.0 1.0 1.0 1.0 1.0 SSW 1.0 1.1 1.0 1.0 1.0 1.0 SW 1.2 1.3 1.2 1.0 1.0 1.0 WSW 1.1 1.1 1.0 1.0 1.0 1.0 W 1.2 1.2 1.1 1.0 1.0 1.0 WNW 1.2 1.4 1.3 1.2 1.2 1.0 NW 1.1 1.1 1.0 1.0 1.0 1.0 NNW 1.1 1.2 1.2 1.2 1.2 1.1

Off-Site Dose Calculation Manual Section 6 Rev. 32 Page 44 of 55 Vermont Yankee Nuclear Power Station 6.11 Method to Calculate Direct Dose From Plant Operation

Effluent Control 3.4.1 (40CFRI90) restricts the dose to the whole body or any organ to any member of the public from all station sources (including direct radiation from fixed sources on-site) to 25 rnrem in a calendar year (except the thyroid, which is limited to 75 rnrem).

6.11.1 Turbine Building

The maximum contribution of direct dose to the whole body or to any organ due to N-16 decay from the turbine is:

, = K N-16 K,-: Ks; DMSLRM (6-27a) where:

Dose contribution (rnrem) from NI6 decay to the site boundary critical receptor (West sector),

K'N-16 = 1.42E-05 [unitless correlation factor between the site boundary exposure (mR) and the time integral of the average MSLRM readings (mR)],

Ktissue = 0.60 [conversion factor, from radiation exposure in air to tissue dose (rnrernlrnR)] ,

KCa1ib = 508.8 (rnRlhr) / [Average MSLRM reading (rnRlhr) for a calibration source of 500 rnRIhr during the exposure interval of interest]

[Note: MSLRM calibrations would normally fall within the time interval of interest. In such cases, one approach would be to calculate the time integrals of the MSLRM readings separately for the periods before and after calibration, and then adjust each result by the corresponding calibration correction factor. A second (less complicated, though more conservative) approach would be to use the highest Kcalib factor during the interval for both the pre- and post-calibration periods.]

DMSLRM = Time integral of the MSLRM average reading (mR) during the interval LlT.

Off-Site Dose Calculation Manual Section 6 Rev. 32 Page 45 of 55 Vermont Yankee Nuclear Power Station The last variable is defined as:

11 m

DMSLRM I[I (R),;)/ mJ;!J.ti (6-27b) i=1 )=1 where

R·J,1 = MSLRM reading (rnRlhr) by radiation monitor j at sequential time step ti,assumed to be constant during the time subinterval ~ti (as defined below),

m = Number of functioning MSLRMs during the subinterval ~ti, = Time subinterval (hr), within ~T, defined to span the interval between t, and the next monitor reading, i.e.:

= (6-27c) n = Number of subintervals ~ti within ~T, such that

~T = (6-27d)

During plant shutdown conditions, zero MSLRM readings should be assigned since there is no NI6 production in the core. As a conservative alternative, actual readings (reflecting relatively-low background radiation) may be utilized. Also, archived monitor readings which get accidentally lost should be assigned estimated values; a single monitor reading may be provided for this, for any single time interval spanning the entire period with continuous loss in the archived data base.

The dose computed using the above equations may be conservatively applied to the nearest residence. However, it may be corrected for occupancy time (by multiplying the dose by the fraction of time typically spent by the resident at the location during the period of interest), if documented. Dose reduction by the shielding provided by the residential structure may also be considered.

Off-Site Dose Calculation Manual Section 6 Rev. 32 Page 46 of 55 Vermont Yankee Nuclear Power Station 6.11.2 North Warehouse

Radioactive materials and low level waste can be stored in the North Warehouse. The maximum annual dose contributions to off-site receptors (west site boundary line) from sources in the shielded (east) end and the unshielded (west) end of the North Warehouse are:

Ds = 0.25 x R s for the shielded end (6-28) mrem/yr) ("::mJ ( mrem/hr and

D-u - 0.53 x R u for the unshielded end (6-29) mrem/yr) ("::mJ ( mrem/hr where:

Ds = The annual dose contribution at the maximum site boundary location from fixed sources of radiation stored in the shielded east end of the North

Warehouse ( "::m J.

Du = The annual dose contribution at the maximum site boundary location from fixed sources of radiation stored in the unshielded west end of the North Warehouse (nrr;m}

R s = Dose rate measured at 1 meter from the source in the shielded end of the m north warehouse ( u:: ).

Ru = Dose rate measured at 1 meter from the source in the unshielded end of the m north warehouse ( u:: ).

Off-Site Dose Calculation Manual Section 6 Rev. 32 Page 47 of 55 Vermont Yankee Nuclear Power Station 0.25 = Dose rate to dose conversion factor which relates mrem/yr at the west site boundary per mrern/hr measured at 1 meter from the source in the shielded end of the warehouse assuming it is full to capacity for one year (:::;}

0.53 = Dose rate to dose conversion factor which relates mrem/yr at the west site boundary per mrern/hr measured at 1 meter from the source in the unshielded end of the warehouse assuming it is full to capacity for one year (:::;}

6.11.3 Low Level Waste Storage Pad

Interim storage of packaged Dry Active Waste (DA W) and spent ion exchange and filter media is permitted in modular concrete storage overpacks on the LLW storage pad facility adjacent to the north warehouse. The arrangement of the storage modules is such that DA W is placed in modules which shield higher activity ion exchange media from the west site boundary. The dose at the maximum site boundary receptor from both direct radiation and skyshine scatter can be calculated as follows:

(a) Direct Dose (line of sight)

DdE 0.28 x Rd X fd

(6-30) mrem mrem/yrJ (#) J ( ( yr-rnodule mremlhr

or

Dds 0.39 x Rd fd

(6-31) mrem mrem/yrJ J ( ( yr-rnodule mremfhr

Off-Site Dose Calculation Manual Section 6 Rev. 32 Page 48 of 55 Vermont Yankee Nuclear Power Station where:

DdE = The annual direct dose contribution at the maximum site boundary from a single rectangular storage module which has an unobstructed short end surface (not shielded by other modules) orientated toward

the west site boundary ( mrem ) . yr- module

DdS = The annual direct dose contribution at the maximum site boundary from a single rectangular storage module which has an unobstructed long side surface (not shielded by other modules) orientated toward

the west site boundary ( mrem ) . yr- module

Rei = Maximum dose rate measured at 3 feet from the side of the storage module whose unobstructed face (i.e., a side or end surface which is not shielded by other waste modules) is toward the west site boundary.

fd = The fraction of a year that a storage module is in use on the storage pad.

0.28 = Dose rate to dose conversion factor which relates mremlyr at the west site boundary per mrem/hr measured at 3 feet from the narrow end of the rectangular storage module when that face is orientated toward the west boundary.

0.39 = Dose rate to dose conversion factor which relates mremlyr at the west site boundary per mrem/hr measured at 3 feet from the long side of the rectangular storage module when that face is orientated toward the west boundary.

Off-Site Dose Calculation Manual Section 6 Rev. 32 Page 49 of 55 Vermont Yankee Nuclear Power Station (b) Scatter From Skyshine

(6-32) DSKR = 0.016 X RSKR X fsk

mrem ) mremlyr) (#) ( ( yr-Iiner mremlhr

and

(6-33) DSKD = 0.015 X RSKD X fSK

rnrem ) rnremlyr) (#) ( ( yr- module rnrernJhr

where:

RSKR = The annual skyshine scatter contribution to the dose at the maximum site boundary from a single spent ion exchange media liner in a storage module whose top surface is not obstructed due to

stacking of modules ( rnr~m ). yr-Iiner

RSKD = The annual skyshine scatter contribution to the dose at the maximum site boundary from a rectangular storage module containing DA W whose top surface is not obstructed due to stacking of modules ( rnrem J. yr- module

RSKR = For Resins, the maximum dose rate measured at 3 feet over the top of each liner in a storage module (rnrernJhr).

RSKD = For DAW, the maximum dose rate measured at 3 feet over the top surface of a storage module with DAW (rnrernJhr).

fSK = The fraction of a year that a storage module is in use on the storage pad.

Off-Site Dose Calculation Manual Section 6 Rev. 32 Page 50 of 55 Vermont Yankee Nuclear Power Station 0.016 = Dose rate to dose conversion factor for the scatter dose from each resin liner source in storage which relates rnrem/yr at the west site boundary per mremlhour at 3 feet from the top of the module.

0.015 = Dose rate to dose conversion factor for the scatter dose from DAW boxes in storage which relates rnrem/yr at the west site boundary per rnremlhr at 3 feet from the top of the module.

(c) Dose From Resin Liners During Transfer

During the movement of resin liners from transfer casks to the storage modules, the liners will be unshielded in the storage pad area for a short period of time. The maximum dose contribution at the site boundary during the unshielded movement of resin liners can be calculated from:

Dtrans = 0.0025 x R tran x T trans (6-34) (rnrem) rnremlhr) ( rad) (hr) ( radlhr hr where:

Dtrans The dose contribution to maximum site boundary resulting from the unshielded movement of resin liners between a transfer cask and a storage module (rnrem).

~:rans = Dose rate measured at contact (2") from the unshielded top surface of the resin liner in RJhr.

Ttran = The time (in hours) that an unshielded resin liner is exposed in the storage pad area.

0.0025 = The dose rate to dose conversion factor for an unshielded resin liner which relates rnremlhour at the west site boundary per radlhr at contact (2") from the unshielded surface of the liner.

Off-Site Dose Calculation Manual Section 6 Rev. 32 Page 51 of 55 Vermont Yankee Nuclear Power Station (d) Intermodular Gap Dose

In addition to the above methods for determining doses at the west site boundary from the LLW storage pad, another dose assessment model has been included to address the possible condition of spaces or gaps existing between the placement of the DAW storage modules situated along the west facing side of the pad. This could result in a radiation streaming condition existing if ion exchange resin liners were placed in storage directly behind the gap. The direct dose equations (6-30 and 6-31) consider that the storage modules situated on the outside of the pad area provide a uniform shield to storage modules placed behind them. The intermodular gap dose equation (6-35) accounts for any physical spacing between the outside storage modules which have not been covered by additional external shielding.

(6-35) Doap = 2.44 E- 2 X WOap x ARL X fOap

(in) (Ci) (# ) mrem ) (mrem) ( yr yr- in- Ci

where:

DGap = The annual dose contribution at the maximum site boundary (west) from radiation streaming through the intermodular gap between DAW storage modules used to shield resin modules from direct radiation (mremlyr).

WGap = The intermodular gap width (inches) between adjacent DAW storage modules facing the west site boundary.

ARL = The total gamma activity contained in a condensate resin liner stored directly in line with the intermodular gap adjacent DAW modules ( Ci).

fGap = The fraction of a year that the intermodular gap is not shielded.

2.44E-2 = The activity to site boundary dose conversion factor for a one-inch wide intermodular gap ( ~em. J. yr-rn- ci

The site boundary dose from waste materials placed into storage on the Low Level Waste Storage Pad Facility is determined by combining the dose contribution due to direct radiation (line of sight) from Part (a) above with the skyshine scatter dose from Part (b), resin liner transfer dose from Part (c), and any intermodular gap dose from Part (d). Off-Site Dose Calculation Manual Section 6 Rev. 32 Page 52 of 55 Vermont Yankee Nuclear Power Station 6.11.4 Independent Spent Fuel Storage Installation Dose Contribution

The Independent Spent Fuel Storage Installation (ISFSI) has been constructed to provide a secure location for the long term storage of spent nuclear fuel bundles. This installation is located just north of the Radwaste Building and just east of the North Warehouse within the Vermont Yankee Protected Area. The vendor, Holtec International, has prepared a study report to satisfy the requirements of 10CFR72.104 and this document is included as Reference H. During the first fuel storage evolution, five casks will be located on the installation pad. Over subsequent years, up to 35 casks will be stored on the pad.

The shielding analysis of the Independent Spent Fuel Storage Installation is provided in Reference H. The report analyzes the dose generated from a single cask as well as the dose generated from 5 casks for both the first row (266 meters to the west site boundary) and the last row (300 meters from the west site boundary) on the ISFSI pad. The dose from each cask to the west site boundary (DR-53 Location) is computed using the following equation:

(a) Direct Dose From Each Cask at 266 Meters Distance to the West Site Boundary

Dec-266m = 3.19E-5 x H (6-36)

[mrem/cask] [mrem/hour ] [hours per period]

where:

Dec-266m = Direct Dose calculated at the West Site Boundary where the cask is located at the west end of the pad approximately 266 meters from the DR-53 Location

3.19E-5 = Dose rate (hourly) from each cask calculated to the DR-53 Location

H = Number of hours in the period of interest (168 hours per week, 720 or 744 hours per month and 2208 hours per standard quarter)

Off-Site Dose Calculation Manual Section 6 Rev. 32 Page 53 of 55 Vermont Yankee Nuclear Power Station (b) Direct Dose From Each Cask at 300 Meters Distance to the West Site Boundary

Dec-300m = 2.05E-5 x H (6.37)

[mremlcask] [mrem/hour] [hours per period]

where:

Dec-300m = Direct Dose calculated at the West Site Boundary where the cask is located at the west end of the pad approximately 300 meters from the DR-53 Location

2.05E-5 = Dose rate (hourly) from each cask calculated to the DR-53 Location H = Number of hours in the period of interest (168 hours per week, 720 or 744 hours per month and 2208 hours per standard quarter)

(c) Dose From All Casks on the ISFSI Pad

The total dose at the west site boundary (DR-53 Location) for all casks located on the ISFSI Pad during a period of interest is calculated as follows:

Dac-Total = (Dec-266m x N(266m)) + (Dee-300m X N(300m») (6-38)

[mremlall casks] [mremlperiod] [casks per period] [mremlperiod] [casks per period]

where:

Dac-Total = Dose (mrem) at the West Site Boundary (DR-53 Location) from all Casks located on the ISFSI pad during the period of interest

Dec-266m = Direct Dose calculated at the West Site Boundary from cask(s) located at the west end of the pad approximately 266 meters from the DR-53 Location

N(266m) = Number of casks located at the west end of the pad approximately 266 meters from the DR-53 Location during the period of interest

Dec-300m = Direct Dose calculated at the West Site Boundary from casks located at the west end of the pad approximately 300 meters from the DR-53 Location

N(300m) = Number of casks located at the east end of the pad approximately 300 meters from the DR-53 Location during the period of interest Off-Site Dose Calculation Manual Section 6 Rev. 32 Page 54 of 55 Vermont Yankee Nuclear Power Station 6.11.4 Total Direct Dose Summary

The dose contributions from the N-16 source in the Turbine Building, fixed sources in the North Warehouse, and fixed sources on the Low Level Waste Storage Pad Facility, shall be combined to obtain the estimate of total off-site dose to any member of the public from all fixed sources of radiation located on-site.

6.11.5 Other Fixed Sources

In addition to the fixed sources noted above (Turbine Building, North Warehouse, and LLW Storage Pad), other identified temporary or fixed sources that are created due to plant operations will be included in the total direct summary of 6.11.4 if the projected annual dose contribution would add any notable addition to the reported total (i.e., ;:::0.1mremlyr).

In 1995, turbine rotors and casings were replaced in the Turbine Hall with the old rotors and casings placed in storage sheds located on site west of the switch yard along the railroad spur. Radiation surveys (December 1995) of low level contamination (principally Co-60) on the components led to a projected maximum west site boundary dose of 0.2 mremlyr. This contribution will be added to the maximum site boundary total dose until the contribution is less than 0.1 mremlyr, or the components are removed from storage location.

6.12 Cumulative Doses

Cumulative Doses for a calendar quarter and a calendar year must be maintained to demonstrate a compliance with Controls 3.2.2, 3.3.2, and 3.3.3 (lOCFR50, Appendix I dose objectives). In addition, if the requirements of the Action Statement of Control 3.4.1 dictate, cumulative doses over a calendar year must be determined (demonstration of compliance with total dose, including direct radiation per requirements of 40CFR 190). To ensure the limits are not exceeded, a running total must be kept for each release.

Demonstration of compliance with the dose limits of 40CFR190 is considered as demonstrating compliance with the 0.1 rem limit of 10CFR20.1301(a)(1) for members of the public in unrestricted areas.

Off-Site Dose Calculation Manual Section 6 Rev. 32 Page 55 of 55 Vermont Yankee Nuclear Power Station :-. IPaMVRPOIP_ AN ORPM_RVMPL SVRLVAO

_lh wdgmtptkmfdp hsmwtsrhsydp rtsmytwmsk xydymtsx dwh pmxyhg ms _deph :-/- _lh ptfdymtsx ti ylh xydymtsx myl whxuhfy yt ylh ahwrtsy cdsohh updsy dwh xlts ts ylh rdux ms Jmkzwhx :/ yt :7-

:-/ Msyhwftrudwmxts Swtkwdr

App wtzymsh wdgmtptkmfdp dsdpxhx itw hsmwtsrhsydp xdruphx dwh uhwitwrhg dy tiixmyh hsmwtsrhsydp pdetwdytwmhx- _lh pdetwdytwmhx udwymfmudyh ms xhhwdp ftrrhwfmdp msyhwftrudwmxts uwtkwdrx ms dggmymts yt ds msyhwsdp TD xdruph dsdpxmx uwtkwdr dsg ylh dsdpxmx ti fpmhsymsywtgzfhg TD xdruph uwtkwdrx- _lh hyhwsdp uwtkwdrx rd msfpzgh ylh Ehudwyrhsy ti Ishwk Omhg Asdpyh Shwitwrdsfh Idpzdymts Swtkwdr &OASIS') Asdpymfx DwtxxDlhfo Swtkwdr Ismwtsrhsydp Msyhwpdetwdytw Dwtxx Dlhfo Swtkwdr) dsg Ismwtsrhsydp Vhxtzwfhx Axxtfmdymts Ismwtsrhsydp Vdgmtdfymmy Shwitwrdsfh Idpzdymts Swtkwdr tw tylhw PVDduuwthg xtzwfhx-

:-0 Amwetwsh Sdyld Otsmytwmsk

_lh hsmwtsrhsydp xdrupmsk uwtkwdr mx ghxmkshg yt dflmhh xhhwdp rdntw tenhfymhx) msfpzgmsk xdrupmsk dmw ms uwhgtrmsdsy zudpph dsg gtsdpph msg gmwhfymtsx) dsg xdrupmsk dmw ms shdwe ftrrzsmymhx dsg dy d uwtuhw ftsywtp ptfdymts) lmph rdmsydmsmsk ftsymszmy myl yt hdwx ti uwhtuhwdymtsdp gdyd dsg dpp xzexhvzhsy hdwx ti tuhwdymtsdp gdyd &utxy /=:0-' _lh fltxhs dmw xdrupmsk ptfdymtsx dwh gmxfzxxhg ehpt-

_t dxxzwh yldy ds zsshfhxxdwmp iwhvzhsy whptfdymts ti xdruphwx mpp sty eh whvzmwhg gzh yt xltwyyhwr tw dsszdp ipzfyzdymtsx ms rhyhtwtptk) ylzx msfzwwmsk shhgphxx huhsxh dsg ghxywtmsk ylh ftsymszmy ti ylh uwtkwdr) ptsk yhwr) xmyh xuhfmimf kwtzsg phhp-~./ &imhhdw dhwdkhx /=:; ylwtzkl /=;0' hwh hdpzdyhg ms ftrudwmxts yt ylh hmxymsk dmw rtsmytwmsk ptfdymtsx yt ghyhwrmsh ylhmw dghvzdf ms rhhymsk ylh dethxydyhg tenhfymhx ti ylh uwtkwdr dsg ylh msyhsy ti ylh PVD khshwdp kzmgdsfh- _lh ptskyhwr dhwdkh rhyhtwtptkmfdp gdyd edxh uwhfpzghx ylh shhg itw ds dsszdp wh hdpzdymts ti dmw xdrupmsk ptfdymtsx edxhg ts d xmskph hdw"x rhyhtwtptkmfdp lmxytw-

_lh Dtsshfymfzy Vmhw adpph ms ylh mfmsmy ti ylh ahwrtsy cdsohh updsy ldx d uwtstzsfhg zu dsg gtsdpph msg ipt- Cdxhg ts imh hdwx ti rhyhtwtptkmfdp gdyd) msg eptx msyt ylh 1 ~zudpph~ xhfytwx &P) PPb) dsg Pb' 0: uhwfhsy ti ylh ymrh) dsg ylh 3 ~gtsdpph~ xhfytwx~,! YYI) YI) dsg IYI' 3. uhwfhsy ti ylh ymrh) itw d ytydp ~msdpph~ ymrh ti 7: uhwfhsy-

RiiYmyh Etxh Ddpfzpdymts Odszdp Yhfymts : Vh- 0; Sdkh / ti /0 ahwrtsy cdsohh Pzfphdw Sthw Yydymts Suauionf«£iy,;J ~NNY& /)3 km" in Nosuh Iintdale& Nex Iampthise& moniuost uhe vp'wallez tecuost) Ju it locaued in uhe tecuos uhau sankt fovsuh owesall in uesmt of xind fservencz ~i)e)& in uesmt of hox ofuen uhe xind bloxt inuo uhau tecuos"& and it appsoyimauelz ,)1 milet fsom uhe locauion of uhe calcvlaued mayimvm gsovnd lewell/ ~i)e)& fos anz locauion in anz tecuos& fos uhe enuise Vesmonu _ankee enwisont") Thit tuauion psowidet a tecond fvncuion bz iut locauion in uhau iu alto moniuost Nosuh Iintdale& Nex Iampthise& uhe commvniuz xiuh uhe tecond highetu gsovnd lewell/ fos tvssovnding commvniuiet& and iu hat been in opesauion tince uhe pseopesauional pesiod)

The doxn'wallez disecuion it moniuosed bz uxo tuauiont ' au Riwes Suauion Nvmbes /)/ ~f«£iy,! SSE& -); km" and au Nosuhfield& Mattachvteuut~f«£iy,;a! SSE& --)3 km") Thez bouh setide in uhe tecuos xiuh uhe mayimvm xind fservencz and uhez bovnd uhe doxn'wallez poinu of calcvlaued mayimvm gsovnd lewell/ ~uhe tecond highetu owesall gsovnd lewell/ fos anz locauion in anz tecuos") Suauionf«£iy,;; it appsoyimauelz one mile fsom uhit poinu& beuxeen iu and uhe planu) Suauionf«£iy,;a alto teswet at a commvniuz moniuos fos Nosuhfield& Mattachvteuut) Aouh tuauiont hawe been in opesauion tince uhe pseopesauional pesiod)

Jn addiuion uo uhe vp' and doxn'wallez locauiont& uxo commvniuiet hawe been choten fos commvniuz tampling locauiont) The fovs neasetu popvlauion gsovpt xiuh uhe highetu long'uesm awesagel/ walvet& in decseating osdes& ase Nosuhfield& Mattachvteuut& Nosuh Iintdale& Nex Iampthise& Asauuleboso& Vesmonu& and Iintdale& Nex Iampthise) The commvniuz tamples fos Nosuhfield it au Suauionf«£iy,;a ~menuioned abowe") Nosuh Iintdale it alseadz moniuosed bz uhe vp'wallez tuauion ~f«£iy,;J! NNY& /)3 km"& xhich alto indiseculz moniuost uhe ciuz of Asauuleboso& locaued fvsuhes ovu in uhe tame tecuos) The tecond tamples tpecificallz detignaued fos a commvniuz it au Iintdale Svbtuauion ~f«£iy,;M! E& /)- km" in Iintdale)

The conusol ais tamples xat locaued au Spoffosd Lake~f«£iy,J;! NNE& -3)0 km" dve uo iut dituance fsom uhe planu and uhe lox fservencz fos xind bloxing in uhau disecuion bated on uhe long'uesm ~fiwe'zeas" meueosological hituosz) Secuost in uhe genesal xetu uo tovuhxetu disecuion& xhich xovld ouhesxite hawe been psefesable dve uo loxes xind fservenciet& xese nou choten tince uhez appsoached uhe segion tvssovnding uhe _ankee =uomic planu in Roxe& Mattachvteuut)

=n addiuional ais tamples it mainuained au uhe Tzles Iill tiue~f«£iy,;d! YNY& /)- km"& xhich it along uhe xetuesn tide of uhe wallez in genesal psoyimiuz of hituosical daisz opesauiont) ~The tiyuh locauion it nou a tpecific Psogsam servisemenu at deuailed in Table /)1)-)"

Off'Siue Dote Calcvlauion Manval Secuion 7 Rew) .: Page . of -. Vesmonu _ankee Nvcleas Poxes Suauion 0'- ;dmnShV_m ShY ;dl_Vndihm ni Eihdnildhb NnSndihm

Cn mciofY T_ hin_Y ncSn nc_ YdmnShV_m ShY Ydl_Vndihm ail Ydl_Vn lSYdSndih gihdnildhb fiVSndihm dh OSTf_ 0')" Sm r_ff Sm nc_ m_Vnilm mcirh dh Adbol_m 0&. ShY 0&/" Sl_ e_s_Y ni nc_ V_hn_l ia nc_ OolTdh_ 7odfYdhb Yo_ ni nc_ VldndVSf hSnol_ ia nc_ OolTdh_ 7odfYdhb&ni& OD; YdmnShV_ ail Vfim_&dh mnSndihm' Ail mdgkfdVdns" Sff inc_l lSYdifibdVSf _hpdlihg_hnSf mSgkfdhb fiVSndihm om_ nc_ kfShn mnSVe Sm nc_ ildbdh'

:ihnlif OSTf_ -'.')" Aiinhin_ S" mk_Vdad_m ncSn dh nc_ 3hhoSf MSYdifibdVSf =hpdlihg_hnSf Jk_lSndhb M_kiln ShY J;:E" nc_ l_SVnil mcSff T_ om_Y Sm nc_ ildbdh ail Sff YdmnShV_m ShY Ydl_Vndihm ni mSgkfdhb fiVSndihm' P_lgihn RShe__ dhn_lkl_nm ~nc_ l_SVnil~ ni g_Sh nc_ l_SVnil mdn_ rcdVc dhVfoY_m nc_ kfShn mnSVe ShY nc_ OolTdh_ 7odfYdhb' Oc_ YdmnShV_m ni nc_ kfShn mnSVe ShY OolTdh_ 7odfYdhb rdff" nc_l_ail_" T_ om_Y dh nc_ 3hhoSf MSYdifibdVSf =hpdlihg_hnSf Jk_lSndhb M_kilnm ShY J;:E ail nc_ mSgkfdhb ShY OD; gihdnildhb mnSndihm" l_mk_Vndp_fs'

Jaa&Ndn_ ;im_ :SfVofSndih EShoSf N_Vndih 0 M_p' ,1 LSb_ - ia ), P_lgihn RShe__ IoVf_Sl Lir_l NnSndih afgrk :).

Yfiourumohfr Itowutsktyfr Rutoyuwotm _yfyoutx~r"

Ivuxzwk Vfynf _fsvrk Puhfyout Eoxyfthk fti,uw _fsNOrk fti Ekxomtfyki Duik~/" ~ps"~3" Eowkhyout~3"

.) ANYCTYSI ~Yfiououiotk fti Vfwyohzrfyk"

ai!df~,, Yokw _yfyout Su) 0'0 .);; __I ai!df~,/ S) Motxifrk& SM 0)7. SSd ai!df~,; Motxifrk _zgxyfyout 0)-3 4 ai!df~,J Suwynlokri& RA ..)7. __I ai!df~,M arkw Morr Yufi~1" 0).1 dSd ai!df~/, _vulluwi Pfpk .7)07 SSI

/) dAaIYCTYSI

f) _zwlfhk dY'rr Yokw _yfyout Su) 0'0 .);; Eutwokw dY'/. Yy) = Cwoimk ..);0 bvwokw

g) Lwuzti dL'rr Vrfty dkrr -)/1 Tt'_oyk dL'./ ckwtut Szwxotm dkrr /).0 __I dL'.0 DTC dkrr~1" -)/7 Tt'_oyk dL'.1 Vrfty _zvvuwy Crim dkrr~1" -)/: Tt'_oyk dL'// Duvkrfti dkrr .0):0 S

h) _kioskty _I'.. _nuwkrotk Eutwokw -)3: __I Jwus _I'./ Suwyn _yuws -).0 I _nuwkrotk Ewfot Tzylfrr~0"

0) NSLI_aNTS

f) Rorp ~.! aR'.. Rorrkw Jfws -);/ d aR'.1 Cwut Jfws /)// _ aR'.; Cruimkyy Jfws 0)7- _I aR'// Jwftprot Jfws~1" =):0 d_d aR'/1 Duzty Jfws /.)71 S

g) Roki aL'.. Yokw _yfyout Su) 0'0 .);; __I Lwfxxkx aL'./ S) Motxifrk& SM 0)7. SSd aL'.0 Motxifrk _zgxyfyout 0)-3 I aL'.1 Suwynlokri& RA ..)7. __I aL'.3 arkw Morr Yi)~1" 0)-: dSd aL'/. _vulluwi Pfpk .7)07 SSI Tll'_oyk Euxk Dfrhzrfyout Rftzfr _khyout : Yk)-. Vfmk 1 ul+- ckwsuty eftpkk Szhrkfw Vukw _yfyout aDEPL ;,/ "Iutyotzki&

Lvuxzwk Vfynf _fsvrk Puhfyout Joxyfthk fti-uw _fsvrk fti Jkxomtfyki ~;!,/ "ps&"7& Jowkhyout"7&

h, _orfmk aI)rr Rorrkw Mfws .,=0 d aI)/3 Ewut Mfws 0,00 _ aI)/= Eruimkyy Mfws 1,:. _L aI)00 Mwftprot Mfws"3& A,;1 d_d aI)03 Iuzty Mfws 0/,:3 S

i, Moxn MN)rr cksutVuti ":& ":& MN)0/ Yy, A Ewoimk //,=1 bvwokw

3, JOYLIa YDJODaOTS

JY)r Yokw _yfyout Su, 1)1 /,:/ __L JY)0 S, Notxifrk' SN 1,== SSd JY)1 Notxifrk _zgxyfyout 0,A= L JY)3 Suwynlokri' RD //,13 __L JY)7 _vulluwi Pfpk /:,71 SSL JY): cksut _hnuur .,70 d_d JY); _oyk Euztifw~C~ .,0= d JY)= _oyk Euztifw .,07 __d JY)A Ottkw Yotm /,;0 S JY)rT Tzykw Yotm 3,3A S JY)rr Ottkw Yotm /,:7 SSL JY)/0 Tzykw Yotm 1,7= SSL JY)/1 Ottkw Yotm /,01 SL JY)/3 Tzykw Yotm 1,== SL JY)/7 Ottkw Yotm /,3: LSL JY)/: Tzykw Yotm 0,=3 LSL JY)/; Ottkw Yotm /,03 L JY)/= Tzykw Yotm 0,A; L JY)/A Ottkw Yotm 1,:7 L_L JY)0. Tzykw Yotm 7,11 L_L JY)0/ Ottkw Yotm /,=0 _L JY)00 Tzykw Yotm 1,0= _L JY)01 Ottkw Yotm /,A: __L JY)03 Tzykw Yotm 1,=A __L JY)07 Ottkw Yotm /,A/ _

Tll)_oyk Juxk Ifrhzrfyout Rftzfr _khyout ; Yk, 0= Vfmk 7 ul /0 ckwsuty eftpkk Szhrkfw Vukw _yfyout _CDOJ :). ~Etsymszhg"

Jutxzwh Tdyld Ydruph Otfdymts Imxydsfh dsg,tw Ydruph dsg Ihxmksdyhg Etgh~/" ~or"~3" Imwhfymts~3"

IV'/7 Szyhw Vmsk 0):: Y IV'/: Nsshw Vmsk .).- YYb IV'/; Szyhw Vmsk /)/0 YYb IV'/= Nsshw Vmsk -)=/ Yb IV'0- Szyhw Vmsk /)07 Yb IV'0. Nsshw Vmsk -):. bYb IV'0/ Szyhw Vmsk 3)-= bYb IV'00 Nsshw Vmsk -)77 bRb IV'01 Szyhw Vmsk 1)7. ~ IV'03 Nsshw Vmsk .)0- bRb IV)&07 Szyhw Vmsk 1)10 bRb IV'0: Nsshw Vmsk /):7 Rb IV'0; Szyhw Vmsk :)01 Rb IV'0= Nsshw Vmsk 0).0 RRb IV'1- Szyhw Vmsk 3)-3 RRb

~." Ydruph ptfdymtsx dwh xlts ts Lmkzwhx :). yt :)7)

~/" Yydymts Rtx) .- ylwtzkl .= dwh msgmfdytw xydymtsx) Yydymts Rtx) /- ylwtzkl /= dwh ftsywtp xydymtsx ~itw dpp hfhuy rmpo& xmpdkh dsg ylh gmwhfy wdgmdymts xydymtsx")

~0" _t eh xdruphg dsg dsdphg xhrmdsszdpp)

~1" Rts'whvzmwhg Etsywtp xydymts)

~3" Imxydsfh dsg gmwhfymts iwtr ylh fhsyhw ti ylh _zwemsh Dzmpgmsk itw gmwhfy wdgmdymts rtsmytwxA iwtr ylh updsy xydfo itw dpp tylhwx)

~7" Lmxl xdruphx dwh ftpphfyhg iwtr dslhwh ms ahwsts Ttsg& lmfl mx dgndfhsy yt ylh updsy ~xhh Lmkzwh :'.")

~:" IV': xdymximhx Etsywtp _deph 0)3). itw ds msshw wmsk gmwhfy wdgmdymts rtsmytwmsk ptfdymts) Mthhw& my mx dhwdkhg dx d Ymyh Dtzsgdw _OI gzh yt myx fptxh uwtmrmy yt ylh updsy)

~;" Ns dfftwgdsfh myl Etsywtp _deph 0)3).& stydymts d& xdruphx mpp eh ftpphfyhg ts ylh whvzmwhg xflhgzph dx ddmpdempmy ti rmpo uhwrmyx) Cpp ghmdymtsx iwtr ylh xdruph xflhgzph mpp eh whutwyhg ms ylh Csszdp Vdgmtptkmfdp Jsmwtsrhsydp Suhwdymsk Vhutwy)

Sii'Ymyh Itxh Edpfzpdymts Pdszdp Yhfymts : Vh) /; Tdkh 7 ti ./ ahwrtsy cdsohh Rzfphdw Tthw Yydymts 0OMc_J )~& /TdO_VTSJTbER AESYROTM 1VIEbOVTa OT -RVaJ ;_VfOSObg bV bNJ ;RETb

:LL~AObJ .VaJ -ERIcREbOVT 3ETcER AJIbOVT ) =Jd" ', ;EMJ ) VL &' CJ_SVTb DETPJJ 7cIRJE_ ;VeJ_ AbEbOVT L ~

-~

b ") &") '

1TRgdO ,~' 0ahTdba_OafMY DM_cYTaR 7bNMfTbae ITfSTa ) 3_ bP AYMaf

=PP~DTfO /beO .MYNgYMfTba :MagMY DONfTba , COh" '- AMRO - bP &' EOd_baf JMaVOO ;gNYOMd AbiOd DfMfTba J""~A

, £-:= _-:= ~

~

~, R

!

+ R

£4_-:: PO s"" T"0 I= !ff

..... £\+! "dl I

f

+

N !

CE

-i :8 - ~ i

:dbol_ -~) 7hpdlihg_hnVf NVgkfdhb DiYVndihm ;l_Vn_l ncVh , Cg alig LfVhn

Jaa~Ndn_ 3im_ 1VfYofVndih EVhoVf N_Yndih - M_p" '. LVb_ / ia &' P_lgihn SVhe__ IoYf_Vl Lir_l NnVndih ~.:-.44:.

I=I

!+8

1ONbYL -~,IDC 3VJIaOVT_ OT /RV_L =YVeOSOaf aV =RITa

;MM~COaL 0V_L /IRJbRIaOVT 7ITbIR CLJaOVT - ALc" ). =INL '& VM ') DLYSVTa EITPLL :bJRLIY =VdLY CaIaOVT 0ROdaM ,~)31- 3_LJcR_Yb ERcPRY ) 1V _N =TJYc

;NN~CRcM /_bM .JTLdTJcR_Y 7JYdJT CMLcR_Y , AMe" '- =JOMCC_N&' DMaV_Yc IJYSMM :dLTMJa =_fMa CcJcR_Y "''~ 1c=' )

:aYkgT /&. NC7 CfSRiafeh ;gTRiTg N_Re - Ad Vgfd JcRei

IVV&MaiT 7fhT 3RcSkcRiafe DRekRc MTSiafe / LTl' ,0 JRYT ), fV ), OTgdfei PRebTT EkScTRg JfmTg MiRiafe :)- SETPOJNT DETERMJN=TJONS

Cg_otdr : bnmt_hms tgd a_shs enr ok_mt ornbdcurds usdc tn lddt tgd sdtonhmt rdpuhrdldmts ne tgd R_chn_bthvd Eeekudmt Jmstruldmt_thnm Cnmtrnks) Tgdy _rd Cnmtrnk 0).). enr khpuhcs _mc Cnmtrnk 0).)/ enr f_sds) E_bg nutkhmds tgd hmstruldmt_thnm bg_mmdks _mc tgd a_shs enr d_bg sdtonhmt)

:). Lhpuhc Eeekudmt Jmstruldmt_thnm Sdtonhmts

Cnmtrnk 0).).). rdpuhrds tg_t tgd r_chn_bthvd khpuhc deekudmt hmstruldmt_thnm hm Cnmtrnk T_akd 0).). g_vd _k_rl sdtonhmts hm nrcdr tn dmsurd tg_t Cnmtrnk 0)/). hs mnt dxbddcdc) Cnmtrnk 0)/). khlhts tgd _bthvhty bnmbdmtr_thnm _t _my thld hm khpuhc deekudmts tn tdm htdls nr kdss tgd deekudmt bnmbdmtr_thnm v_kuds hm =oodmchx A& T_akd /& Cnkulm / ne kOCIR/-).-- . tgrnufg /-)/1-/& _mc _ tnt_k mnakd f_s bnmbdmtr_thnm khlht ne /E'-1 JkCh,lJ)

:).). Lhpuhc R_cw_std Dhsbg_rfd Mnmhtnr ~RM'.7'03-"

Tgd s_lokd t_mi o_tgw_ys sgnwm nm Ihfurd ;'. _rd lnmhtnrdc ay tgd khpuhc r_cw_std chsbg_rfd lnmhtnr ~RM'.7'03-") Pdrhnchb a_tbg rdkd_sds l_y ad l_cd ernl tgd w_std s_lokd t_mis& cdtdrfdmt w_std t_mi nr eknnr cr_hm s_lokd t_mi)

Oee'Shtd Dnsd C_kbuk_thnm M_mu_k Sdbthnm : Rdv) 0- P_fd J ne // Vdrlnmt Y_midd Nubkd_r Pnwdr St_thnm =-0-0-0 Pizmuh zu Jizittnti zmi Yizvuntz uk zmi Onwnh Veheyzi Jnygmexli Putnzux &VP,0; ,3:/'

_mi ntyzxsitz xiyvutyi &nt gutzy vix yiguth' kux zmi rnsnzntl gutgitzxeznut ez zmi vuntz uk hnygmexli ny zmi yizvuntz) hituzih Vyizvuntz)eth ny hizixsntih ey kurruyA

&=,0' JM Vyizvuntz~ JM- YN / Isn ss

&gvy' &"' gvy ,-srd &.,OIn' & .,OIN sr

bmixiA Mh JM ~ ~ Jnrznut kegzux &ey e gutyixezni sieyxi) e JM uk Ms ez rieyz 0/// ny yih' &hnsitynutriyy' &=,1'

Ms C Mru xezi veyz sutnzux &lvs'

Mh C Mru xezi uz uk hnygmexli geter &lvs'

JMsnt C Pntnss erruefri hnrznut kegzux &hnsitynutriyy'

Isn C !~, / &=,3' LIOn LIOo C Lkkritz gutgitzxeznut eriy kux xehnutgrnhi ~n~ kxus rSIMV1/-0//0,1/-17/1) Dvvithn E) _efri 1) Iurst 1 &.,OIn.sr'

C Dgznnz gutgitzxeznut uk xehnutgrnhi ~n~ nt snzxi ez zmi sutnzux &.,OIn.sr'

C Jizigzux gutzntl ikkngnitg kxus zmi suyz xigitz rnwnh xeheyzi hnygmexli sutnzux gernfxeznut gxi &gvy.&.,OIn.sr''

Skk,Ynzi Juyi Iergreznut Peter Yigznut = Vi- 3/ Teli 1 uk11 aixsutz cetpii Rgriex Tuix Yzeznut A.1.1.3 Oltxlf Vcfzcvwg Jlvekcuig Prplwru Ygwsrlpw Lcosng

_kg hrnnrzlpi cncuo vgwsrlpw gcosng lv hru c flvekcuig rh wkg hnrru fuclp vcosng wcpm. _kg nltxlf ucfzcvwg flvekcuig orplwru kcv c wslecn erxpwlpi ghhlelgpe, Y" rh :.CL)0; esv sgu M/nIl/on rh icooc golwwguv zklek golw rpg skrwrp sgu flvlpwgiucwlrp.

_kg cewlylw erpegpwucwlrp rh gcek ucflrpxenlfg, Iol, lp wkg hnrru fuclp vcosng wcpm lv fgwguolpgf d cpcnvlv rh c ugsugvgpwcwlyg iucd vcosng rdwclpgf cw wkg ucfzcvwg vcosng vlpm. _klv vgwsrlpw gcosng lv dcvgf rp wkg hrnnrzlpi fcwcD

Iol &/nIl/on' LI~ &/nIl/on'

Iv-17: 4-/_;~O_ CL-0= Iv-17= =.:AL-SY nL-0; Ir-;0 4-_8;~O_ 7L-0;

4- Iol E 4-/_; ~O_ + =.:AL-SY ~ 4-_8;~O_

&~lN &~lN &~lN &~lN E 1.33L-0:

&~lN

&A-7'

!~~~~~-. : .-/4-/_;~O_ ) =.:AL-SY + 4-_8;~O_ CL - 0= ML - 0; 7L - 0;

/nIl - onN /nIl - onN /nIl - onN & on-/nIl &on-/nIl &on-/nIl

O IDCN

Shh-Ylwg Jrvg Icnexncwlrp Pcpxcn Ygewlrp A Vgy. 70 Tcig 7 rh 33 aguorpw bcpmgg Rxengcu Trzgu Ywcwlrp Ymi sntnss hnrznut kegzux' ILsnt' tiihih zu hnygmexli zmi snzxi uk xehnutg.nhiy nt zmny iesvri ny .-,:, Dy e gutyixezni sieyxi' et egzer hnrznut kegzux' IL' uk .'--- ny yerr yih, Ymi xirieyi xezi uk zmi kruux hxent yesvri zetpA se fi ehoyzih kxus 4zu 3- lvs eth zmi hnrznut vsvy get yvvr v zu /-'--- lvs uk hnrznut ezix, bnzm zmi hnrznut kru zepit ey .;'--- lvs' zmi xirieyi xezi kxus zmi kruux hxent yesvri zetp se fi hizixsntih ey kurruyA

Lh s R ";)1& IL

"lvs& "lvs&

.;'--- lvs C .; s .'--- lv

_thix zmiyi guthnznuty' zmi yizvuntz uk zmi rnwnh xeheyzi hnygmexli sutnzux nyA

";).& IL TyizvuntzC VM . Esn ILsnt n

"gvy& !~+ " gvy)sr& NrEr "~n&

.'--- 1,=J - -7 .,//J)-1 C .-,:

"gvy& !~+ d gvy)sr& NrEr "~n& C 33';7= gvy

Mt zmny iesvri' zmi gergrezih rnsnzntl gutz xezi erexs vuntz kux zmi rnwnh xeheyzi hnygmexli sutnzux urh fi 33';7= gvy efui fegplxuth, Sretz vxugihxiy evvr ehsntnyzxezni rnsnzy firu zmi gergrezih rnsnzntl gutz xezi zu eggutz kux ygm irisitzy ey ntyzxsitz tgixzentz eth iexr erexs extntl fikuxi igiihntl Eutzxur rnsnzy,

Rkk)Vnzi Iuyi Eergreznut Oeter Vigznut ; Ti, 0- Seli 1 uk // aixsutz cetpii Pgriex Suix Vzeznut :,/,/,1 Cbvkv gru wif Lktxke Rbezbvwf Ekvdibuhf Mrpkwru Sfwsrkpw

Tif nktxke ubezbvwf ekvdibuhf orpkwru vfwsrkpw oxvw fpvxuf wibw Drpwurn 1,0,/ kv prw fdffefe gru wif bssursukbwf kp)snbpw sbwizbv, Tif nktxke ubezbvwf ekvdibuhf orpkwru kv snbdfe xsvwufbo rg wif oblru vrxudf rg eknxwkrp gnrz bpe ufvsrpev wr wif drpdfpwubwkrp rg ubekrbdwkykw ekvdibuhfe kp cbwdi ufnfbvfv bv grnnrzv;

":)3& .

"dsv& -)nDk& "dPv ) ,ona " on -)nDJ

Yifuf;

R - Rfvsrpvf rg wif orpkwru "dsv&

Snk - Efwfdwru drxpwkph fggkdkfpd gru ubekrpxdnkef ~k~ "dsv-"-)nDknon&&

Dok - Adwkykw drpdfpwubwkrp rg ubekrpxdnkef ~k~ kp okwxuf bw wif orpkwru "-)nDknon&

Tif efwfdwru dbnkcubwkrp surdfexuf fvwbcnkvifv b drxpwkph fggkdkfpd gru b hkyfp ok rg pxdnkefv vffp c wif efwfdwru, Tifufgruf' kp Itxbwkrp :)3 rpf ob vxcvwkwxwf S' gru Snk' zifuf S' ufsufvfpwv wif drxpwkph fggkdkfpd efwfuokpfe gru wif dxuufpw ok rg pxdnkefv, Jg wif ok rg pxdnkefv dibphfv vkhpkgkdbpwn' b pfz drxpwkph fggkdkfpd virxne cf efwfuokpfe gru dbndxnbwkph wif vfwsrkpw, ":)7& . =

"dsv& dsv ),ona " -)nDJ !~4+

Ogg)Skwf Ervf Dbndxnbwkrp Mbpxbn Sfdwkrp : Rfy, 1. Pbhf 3 rg 00 Vfuorpw _bpmff Nxdnfbu Przfu Swbwkrp Vif fggmvfou dpodfousbukpo gps b hkwfo sbekpovd0kef nvtu opu fydffe 0/ uknft uif 0/ ELS Rbsu 1/ JEM bu uif rpkou pg ektdibshf up bo vosftuskdufe bsfb bu boz uknf- _ifo b nkyuvsf pg sbekpovd0keft kt rsftfou) uif dpodfousbukpo bu uif rpkou pg ektdibshf up bo vosftuskdufe bsfb tibmm cf mknkufe bt gpmmpxt= R

.mEk , nm' &nm,.mEk

_ifsf=

A Cdukwkuz dpodfousbukpo pgsbekpovd0kef "k" ko uif nkyuvsf bu uif rpkou pg ektdibshf up bo vosftuskdufe bsfb &.mEk.nm'

JE~ A Jggmvfou dpodfousbukpo mknku gps sbekpovd0kef "k" gspn mPELS1/-0//0, 1/-17/1) Crrfoeky D) Vbcmf 1) Epmvno 1 &.mEk.nm'

Vif bdukwkuz dpodfousbukpo pg sbekpovd0kef "k" bu uif rpkou pg ektdibshf kt sfmbufe up uif bdukwkuz dpodfousbukpo pg sbekpovd0kef "k" bu uif npokups bt gpmmpxt= R

.mEk' &.mEk' &hrn' &nm nm hrn

_ifsf=

A Cdukwkuz dpodfousbukpo pg sbekpovd0kef "k" ko uif nkyuvsf bu uif rpkou pg ektdibshf &.mEk.nm'

A Lmpx sbuf rbtu npokups &hrn'

A Lmpx sbuf pvu pg ektdibshf dbobm &hrn'

Pgg,Tkuf Iptf Ebmdvmbukpo Nbovbm Tfdukpo ; Sfw- 3/ Rbhf : pg 11 Yfsnpou abolff Ovdmfbs Rpxfs Tubukpo Vzexymyzymsk ylh wmkly ldpi ti Ivzdymts ;-; itw Dgm ms Ivzdymts ;-: dsg xtpmsk itw JgpJr mhpgx ylh rmsmrzr gmpzymts idfytw shhghg yt ftrup myl Ivzdymts ;-:=

';-3) Jg f., EJrms ~ .--- :- Jr IDN= ! 0/

ckur M '"phmrp ~ M kur rp- n.pDm alhwh=

Jg 4 Jpt wdyh tzy ti gmxfldwkh fdsdp 'kur)

Jr 4 Jpt wdyh udxy rtsmytw 'kur)

Drm 4 Cfymmy ftsfhsywdymts ti wdgmtszf0mgh &m& ms rmyzwh dy ylh rtsmytw 'n.pDmprp)

ID~ A Iiipzhsy ftsfhsywdymts pmrmy itw wdgmtszf0mgh &m& iwtr 0/DJT1/.0//0- 1/.17/1, Cuuhsgm 8+Ydeph 1, Dtpzrs 1 'n.pDmprp)

0/ 4 Ylh msxydsydshtzx ftsfhsywdymts rzpymupmhw dppthg e Dtsywtp 3.1.0

Li JgpJr mx phxx ylds EJrms, ylhs ylh ydso rd sty eh gmxfldwkhg zsymp hmylhw Jg tw Jr tw etyl dwh dgnzxyhg xzfl yldy= ';-3)

Rii-Vmyh Etxh Ddpfzpdymts Odszdp Vhfymts ; Th. 3/ Sdkh : ti 11 _hwrtsy bdsohh Pzfphdw Sthw Vydymts fkvv~-.~/ t roko skx ORwtx )t/o/- soo t wyo ntvtyx skx xomok y mywzv ts Pktyx D.C,/ eso ozyxo yp so vttn knko ntmskro wyxty k so ozytx t soopyoI )D.3, OR cozytxJ dS \: Nwt ORwtx t

)mz, +!- )Nbd 4if T ~f_I )~t,

D/3/7 dotmo hko Otmskro Yyxty )cY.3C.:=3,

eso otmo ko zksk syx yx Rtro E.3 t myxtxyv wyxtyon l so otmo ko ntmskro wyxty )cY.3C.:=3,/ eso ko tx st vtxo t xy kntykmto xno xywkv yzoktxr myxnttyx/ eso kvkw ozytx yx so dotmo hko Yyxty )dhY, t o tx kmmynkxmo ts so wyxty' kltvt y noom ntvo myxmoxktyx yp kntyxmvtno wto sk ko lkon yx wokon xmvtno nttltyx tx okmy myyvkx/ Ryw ytxo myyvkx kwzvo rkwwk tyyztm kxkvo- k Nywzyto Yktww bowttlvo Nyxmoxktyx )NYbN, t mkvmvkon k pyvvyI

N)p,SYbN8 . p7SYbN7 ///,= N0NYbN

y

NYbN J vS)pSSYbNS. p7SYbN7 ///, )D.77,

sooI

N J eykv myxmoxktyx yp noomon kntykmtt tx okmy myyvkx kwzvo )"vNtvxS,

pt J Rkmtyx yp ykv kntyxmvtno myxmoxktyx ozooxon l so ts kntyxmvtno tx so wt

YbNt J Yktww bowttlvo Nyxmoxktyx vtwt py kntyxmvtno &t& k vton tx vaNRc71/31A- Lzzoxnt M- eklvo SS- Nyvwx 7 )"vNt0wv,

eso Nywzyto Pppvox Nyxmoxktyx Vtwt )NPNV, t kvy mkvmvkon txr so oktyx klyo l lttxr so kzzyztko PNV kvo pyw 3aNRc71/3 11 3. 71/7;17- Lzzoxnt M- eklvo 7- Nyvwx 7- py Ybm/ Sp so dhY' wtxtww kmstoklvo kvkw ozytx t strso skx so oton NYbN otkvox myx ko )y so NPNV otkvox myx ko tp t t vyo skx so NYbN myx ko,- so wyxty t nomvkon txyzoklvo- kxn nktv dhY rkl kwzvo ko myvvomon kxn kxkvon xtv so mkvmvkon myyvkx NYbN )y NPNV, otkvox myx ko t klyo so dhY' kvkw ozytx/ app.dto Oyo Nkvmvktyx Ykxkv domtyx D co/ :1 bkro D yp 77 gowyx ikxuoo _mvok byo dktyx Oy niwzvn) so rn nily lyyvix imsyxlvsmn ws mssksyx s i vsnm knvy) rnx rn lynzyxmsxp LVaL s livlvinm i oyvvyD

oR "lyxl-.yiv 0/LOb1/ VaLt o.VaLt Ylvsmn Lyxn ~«! lyxn& ~«! "wRvSvLs& 0,030 ;-//N,; yJ£;f 3-/N,= fJfa, 0,033 c-//N,; Jl£;f 0-/N,; Jl£,l Ly,;/ A-//N,c A-=CN,0 iJa; 1-C3N'7 dyiv C-v_N,c 0-// iJal,

LVaL E dMiJal, E 3-1CN,; ~«!

drn LNLT s ivy livlvinm k sxp rn ikyn wnrymyvyp ixm kssxp rn izzyzsin NLT vsnm sx v_LOb1/-0//0,1/-17/1) Izznxms J) dikvn 1) Lyvwx 1) oy VaL ivn- Oy rs niwzvn) rn livlvinm LNLT s niv y 1-=3N,;«J!

Ro rn cgV iviw s n i Lac "3// LaV& ikyn kilupyxm) ixm rn lnx livskisyx oily oy rs wyxsy s 0-0=N'A««/ rnx rn cgV svv iviw so i lyxlnxisyx i vy ifJy;y « ikyn kilupyxm zin k rn wyxsy- csxln rn wy vswssxp LVaL y LNLT "livlvinm ikyn y kn 1-=3N,;«! s ikyn rn iviw nzysx "niv yfJy;y «!/ rn cgV svv kn lizikvn yo iviwsxp so imsyilss sx nln yo vswssxp lyxlnxisyx ivn oy nvnin y xnslnm ini zin k rn wyxsy- Pynn) so rn lywzysn lyxlnxisyx "LVaL y LNLT& oy rn nsln in i oyxm y kn vn rix rn cgV iviw nzysx yo 1-:;N,;«/ rnx misv nsln in pik iwzvn yvm rin y kn lyvvnlnm ixm ixivnm xsv rn lywzysn lyxlnxisyx knlywn pnin rix rn lyxlnxisyx lynzyxmsxp y rn cgV~ iviw nzysx-

Ivy) nsln in s iwzvnm so rn wyxsy s y yo nsln y so rn iviw yxm-

exmn xywiv yznisxp lyxmssyx) rn lyxlnxisyx yo imsyxlvsmn i rn zysx yo mslripn y ix xnslnm ini oyw rn nsln in noovnx ziri svv xy nlnnm rn noovnx lyxlnxisyx vsws znlsosnm sx v_LOb1/-0//0,1/-17/1) Izznxms J) dikvn 1) Lyvwx 1-

_oo,csn Myn Livlvisyx Vixiv cnlsyx A bn- 3/ aipn C/o11 fnwyx hixunn Ylvni ayn cisyx b-1 Ofzkvz Mllsku Puzytkufovu bkwvouz

Jvuyvs 3-0-1 ykxoykz nf nk yfiovfhok mfzkvz kllsku ouzytkufovu ou Jvuyvs cfgsk 3-0-1 nfk nkoy fsfyt zkwvouz zk v kuzyk nf ckhnuohfs bwkholohfovu 3-b-S-0 fui Jvuyvs 3-3-0 fyk uv khkkiki- ckhnuohfs bwkholohfovu 3-b-S-0 "fui Jvuyvs 3-3-;& sotoz nk myvzz yfiovfhoo ykskfzk yfk f nk zkft pk foy kpkhvy "bREM& v /-0: Jo.zkh-

=-1-0 _sfu bfhr Vvgsk Ofz Ehoo Tvuovyz JaT,0;,07: fui aT,0;,07;& fui Emtkuki Yll,Ofz bzkt Vvgsk Ofz Ehoo Tvuovyz "aEV,YO,301; fui aEV,YO,301b&

cnk wsfu zfhr fui EYO uvgsk mfz fhoo tvuovyz fyk znvu vu Nomyk A,1-

b-1-0-0 Tknvi v Lkkytouk nk bkwvou vl nk _sfu bfhr Vvgsk Ofz Ehoo Tvuovyz JaT,0;,07: fui aT,0;,07;& fui nk Emtkuki Yll,Ofz bzkt Vvgsk Ofz Ehoo Tvuovyz JaEV,YO,301; fui aEV,YO,301b&

cnk zkwvouz vl nk wsfu zfhr fui EYO zzkt uvgsk mfz fhoo tvuovyz fyk ikkytouki ou nk zftk tfuuky- cnk wsfu zfhr vy EYO zzkt uvgsk mfz fhoo tvuovy ykzwvuzk ou hvuz touk f nk sotooum vll,zok uvgsk mfz ivzk yfk v nk

vfs gvi vy v nk zrou oz nk zkwvou) ikuvki azw-oz nk skzzky vlC

"b,A& = N LNIh

48.4~-/ 8 =-_ "hwt& f 3p hwt,~t30 +~I + wJo,y I + y, wJo 'zkh " !/~! , ht3 tykt , t3

fuiC "=,0/&

4 zrou 4 a zw D 3)/// N \:! h

3 "hwt& tyktR "hwt , ~t .,sJo, y & " R "~& " y .,sJP kyu3 tykt , zkh

Yll,bok Lvzk Jfshsfovu Tfufs bkhovu = ak- 3/ _fmk 4. vl 11 dkytvu efurkk Vhskfy _vky bfovu olxlC

zh - ywz D blywvuyl vm zol tvupzvx gz zol sptpzpun zvzgs hvk kvyl xgzl 'iwt) : ,~~ 'txlt . 0.sJp. t ;;; R D 'PM , 1;) '=/csM . 1=) x . wJp . yli

,~~ D Sptpzpun zvzgs hvk kvyl xgzl 'txlxu0x) sM,1; D Vthlx vm wJp wlx 0.sJp'wJp00.sJp)

=/csM.1= D ;/M!J f- tgptt mpl.lgx glxgnl ngttg gztvywolxpi kpywlxypvu mgizvx 'yli0t:)

.4 D Ewwxvwxpgzl 'wsguzyzgir/ vx EYO yyzlt)/ klzlizvx ivuzpun lmmpiplui mxvt zol tvyz xliluz igsphxgzpvu 'iwxu0'0.sJp0ii))

+ D Ewwxvwxpgzl 'wsguzyzgi~ vxEYOyyzlt)mPv xgzl 'it:0yli)

LNIi D Jvtwvypzl zvzgs hvk kvyl mgizvx 'txlt.t:0wJp.x)

'A.33)

!

ap ! dol xlsgzpl xlslgyl xgzl vm uvhsl ngy "p" pu zol tpzxl gz zol tvupzvx 'lpzolx zol yzgir acd vx zol EYO- aEYO ) mvx uvhsl ngyly pkluzpmplk '0.sJp0yli)

LNIp ! dvzgs hvk kvyl mgizvx 'yll dghsl 3/3.31) 'txlt.t:0wJp.x)

b ~~~8 D blywvuyl vm zol tvupzvx gz zol sptpzpun yrpu kvyl xgzl 'iwt)

:-111 ! Sptpzpun yrpu kvyl xgzl 'txlxu0x)

LN&i ! Jvtwvypzl yrpu kvyl mgizvx 'txlt.yli0gJp.x)

Ymm.cpzl Lvyl Jgsisgzpvu Tgugs clizpvu A bl/ :1 _gnl 33 vm 77 elxtvuz fgurll Vislgx _vlx czgzpvu &C-13' I

I Mowsr yw rs tnp &ss gnozs 1.1.10' &s-sp/Mw-'

C.3.1.3 czn fnpy aozs Rn Jpww _w fsw Onzs

gvs tzzwu sw snzs t vs zn npy ozs un npww w rsns vs s t Onw C-D nr C-10 t rsswwu sw.

gvs zn npy ozs un npww w, stssr nSt ~fnpy Rn &e_-1A-1;=' nr ~fnpy Rn SS~ &e_-1A-1;A', pw t osn swws pwwzznw rssp, szspwp, n nsss snr, nr n rwuwnz pnzs vwpv p vs rssp zs. J w pvn sprs wrs n sns spr t vs nsss . gvs w vns wpnz pnzwonw tnp, fu, t no 7O)0A p s /.zMw/pp t ozs un. gvs wnz zn npy tz w A.73O)0A pp/sp &&1;;,000 pt 3C,700 pp/t7'/=0 sp/w'.

ivs w ss wrwpns vn npww zssz ns osz vs YYN n vs npy & JbR' w, vs sznws pwow t snpv ozs un nrwpzwrs pn psnwsz os nwnsr o nnzw t n nzs t tt-un onwsr rwu zn snw n vs sn xs nw sxsp &fTJO'. gvw sw snzs w onsr vs tzzwu rnn &ss gnozs 1.1.10 t NPLx nr NP"x'E

~ /4-. dx NPLx NPw

7 &/.zMw' m s- T &s-sp' sp Mz- /.zMz-

ks-17C 1.07O)0: C.C7O-07 1.:7O-03 V-CA :.A7O)03 ;.D3O-07 3.0=O-03 V-CC 3.;AO)03 1.:AO-03 1.=:O-03 V-C; 1.30O)03 1.1AO-07 7.7;O-07 ks-17; 7.A0O)03 1.C1O-07 :.;=O-07 ks-177 1.DAO)bz 3.D:O-0: A.C1O-0:

btt-fws Ns Mnzpznw _nnz fspw C es. 70 cnus 13 t33 hs lnyss apzsn cs fnw &_-NN' ~ VfOIM8:.i 8:._ E ~~~~+i \ ~ VfOIM

=

~ VfOIM8:.i - &1.07M)0:' &_._7M-07' ) &:.A7M-03' &_.D3M-07' =

) &3._AM)03' &1.:AM-03' ) &1.30M)03' &1. 1AM-07'

) &7.A0M)03' &1._1M-07' ) &1.DAM)0k' &3.D:M-0:'

E D._7M)Sk &O.1Jh-lpel-l7/red-oJh-wp'

E 1.07M)0: ) :.A7)03 ) 3._AM)03

) 1.30M)03 ) 7.A0M)03 ) 1.DAM)Sk

E 1.N_M)0: NkJh/red

8:.4 E D._7M ) 01 1.1_M)0:

E _._3M-07 &lpel-ppp"&oJh-wp'

!! Y~~s - === If : 8:._

- &==='&7M ) 0A' C C &A.73M ) 0A' &_.;3M - 07' - 73,07=dol

Sff-_hse Lnre Jckdtkcshnm Pcmtck _edshnm C Yeu. 70 Tcge 17 nf 33 aeplnms bcmiee Rtdkecp Tnvep _scshnm 'D.33) ! f+ LVMP - Y// T ORTf I \+ J 4444:i+....=.=..:.. R fVMP _: du i

_: dLVMPOR&k kf J '3/1:P,1;) 'w/;:P.17) , ';/C:P,17) '7/1AP.17) i

, '7/=CP,17) '3/A;P.17) , '3/71P,17) ':/:=P.1:)

, ':/C1P,17) ';/=AP.1:) , '3/ECP,bw) 'C/D3P.1;)

J 3/A:P,17 'Nu.ypx.pn0pn.&Nu.)

T/A:P - 17 OR& N J 3/TfP - 1;

J 3/;7P.17 'ypx.pn0Nu.)

vuy 8 8 e = :-111 fs . R O~ 8 8 J ':-111) ':P , 1C) 'C/:7P,1C) 'w/;7P.17) = DA-=D= nx

gtp pzuy-e/ u tp wppe zr~~£ lyo e ~~:l4Rz tp yzmwp sl xup uy tu plxwp~~£ e u wp tly~~Iy- e uyounluys tl tp zlw mzo ozp lp u xzp punup/ gtpprzp- uy tu plxwp tp "flnv Sl T" lyo "flnv Sl TT" yzmwp sl lnuu xzyuz tzwo plnt mp p l zxp loxuyulup lwp mpwz :7-1:A nx lmzp mlnvszyo z zuop nzyplux rz nt up l uyxpy ynpluy lyo pnzyol pwplp rzx ztp wznluzy/ M ly plxwp- l nzyplup lwp xust mp mlpo zy nzyzwwuys pwplp lp rzx tp wly uy zop z xluyluy zrr.up lu nzynpyluzy mpwz 71 PNY tpy lplspo zp ly tz- z z lnnzy rz ztp xuyz pwplp rzx tp lp zuw myp/ Rz plxwp- ur ly loxuyulup wuxu zr C1 pnpy zr tp Nzyzw tzwp mzo ozp wuxu =11 xpx0 ':7-1:A nx) u ntzpy- tpy tp yzmwp sl xzyuz lwlx tzwo mp p l yz xzp tly 77-;7= nx lmzp mlnvszyo '1/C :7-1:A J 77-;7=)/

brr.fup Ozp Nlwnwluzy _lylw fpnuzy D ep/ :1 clsp 3; zr 77 hpxzy ilyvpp anwpl czp fluzy A-1-0-3 Jfyoy lux znk Yrftz azfhp fti IVO ayzks Tugrk Ofy Ihzooz Sutozux akzvuotzy

bnk ykzvuotzy ul znk vrftz yzfhp fti IVO yyzks tugrk mfy fhzooz sutozuxy syz ktyxk znfz Lutzxur 3-3-0-f oy tuz khkkiki- akhzouty ;-7 fti ;-: ynu znfz Nwfzouty ;,: fti ;,= fxk fhhkvzfgrk skznuiy lux ikzkxsototm husvrofthk ozn znk Lutzxur rosozy- dnohn kwfzout &o-k-) iuyk zu zuzfr gui ux ypot' oy suxk rosozotm ikvktiy ut znk tugrk mfy sozxk- bnkxkluxk) kfhn kwfzout syz gk hutyoikxki ykvfxfzkr- bnk ikxofzouty ul Nwfzouty A,C fti A,0/ gkmot ozn znk mktkxfr kwfzout lux znk xkyvutyk _ ul f xfiofzout sutozuxD

&A,03' ! E ~

&hvs' hvs , ~s3 R &.-rLo~ & .-rLP hs3

nkxkD

_ E _kyvutyk ul znk otyzxsktz &hvs'

amoE Mkzkhzux hutzotm kllohokth lux tugrk mfy "o" &hvsR&.-rLo.hs3''

Lso E Ihzooz huthktzxfzout ul tugrk mfy "o" ot znk sozxk fz znk tugrk mfy fhzooz 3 sutozux &.-rLo.hs '

Vll,aozk Muyk Lfrhrfzout Sftfr akhzout A _k- 3/ Yfmk 0: ul 11 ckxsutz eftpkk Thrkfx Yukx azfzout ami wireyni wiriexi weyi uk iegm tufri lex&VnJ,,f;df gs "') nt ymi yuyer wiriexi weyi nx tuwserr hiyiwsntih f eterxnx uk e xesvri uk ukk,lex ufyentih ey ymi _yies Niy Anw Eoigyuw &_NAE'- Rufri lex wiriexi weyix ey ymi vrety xyegp eth ymi ASJ hnxgmewli ewi zxzerr xu ru ymey ymi egynny gutgityweynut nx firu ymi Ouiw Onsny uk Diyigynut &OOD' kuw xesvri eterxnx- Ax e wixzry) ymi wiriexi weyi sn weynux siexzwih ey ymi _NAE ewi zxih yu wivwixity et wehnuegynny fintl hnxgmewlih kwus ymi xyegp) xzgm ex se mei wixzryih kwus vrety xyies riepx ymey mei fiit gurrigyih f fznrhntl itynreynut- Iuw ymi ASJ sutnyuw hutxywies uk ymi gmewguer hire fihx) ymnx riehx yu e gutxiweyni xiyvunty xntgi xiiwer xmuwy,rnih &mnlm huxi kegyuw' tufri lex wehnutzgrnhix ewi ymit exxzsih yu fi vwixity ey ymi sutnyuw) mngm nt wierny) uzrh tuy fi ivigyih yu fi vwixity nt ymi xxyis ey ymey vunty- Dzwntl viwnuhx mit ymi vrety nx xmzyhut &ekyiw kni hex') eth tu wehnuegynny wiriexi weyix get fi siexzwih ey ymi _NAE) ci,/11 nx ymi husntety rutl,rnih tufri lex eth se fi zxih ex ymi wikiwitgih wehnutzgrnhi yu hiyiwsnti ukk,xnyi huxi weyix eth sutnyuw xiyvuntyx- Aryiwteyir) e wireyni wehnutzgrnhi) "n") sn kwegynut) &ko') se fi yepit kwus aefri :-0-/ ex e kztgynut uk ynsi ekyiw xmzyhut &ntgrzhntl viwnuhx xmuwyiw ymet kni hex' yu hiyiwsnti ymi wireyni kwegynut uk iegm tufri lex vuyitynerr eenrefri kuw wiriexi yu ymi yuyer- Luiiw) vwnuw yu vrety xyewyzv fikuwi e _NAE xesvri get fi yepit eth eterih) ymi sutnyuw erews xiyvuntyx xmuzrh fi fexih utci,/1: ex wivwixityntl ymi suxy vwierity mnlm huxi kegyuw tufri lex ivigyih yu fi vwixity xmuwyr ekyiw ymi vrety wiyzwtx yu vuiw- Putnyuw erews xiyvuntyx mngm mei fiit hiyiwsntih yu fi gutxiweyni zthiw et vrety guthnynutx se fi zynrnih ey et ynsi nt rniz uk ymi efui exxzsvynutx- Csn) ymi egynny gutgityweynut uk tufri lex "n" ey ymi tufri lex egynny sutnyuw) se fi ivwixxih nt yiwsx uk.~ f hnnhntl f I) ymi evvwuvwneyi kru weyi- Mt ymi gexi uk ymi vrety xyegp tufri lex egynny sutnyuwx ymi evvwuvwneyi kru weyi nx ymi vrety xyegp kru weyi eth kuw ymi ASJ tufri lex egynny sutnyuwx ymi evvwuvwneyi kru weyi nx ymi ASJ xxyis kru weyi- &:,/3' ! -sn + I

N--rCn' &N--rCnN &~' & gs1 xig gs1

miwi;

Vn = ami wiriexi weyi uk tufri lex "n" nt ymi snyzwi kuw iegm tufri lex nhitynknih &N--rCnrxig'-

~ I + Avvwuvwneyi kru weyi~Mi /laM!

Skk,_nyi Duxi Cergzreynut Petzer _igynut : Yi- 1. Teli /7 uk00 biwsuty detpii Rzgriew Tuiw _yeynut Vxdvwlwxwlpi wkg ulikw kcnh rh Itxcwlrp ;).1 lpwr Itxcwlrp ;).0 hru Dol lgnfv=

";).3& ~ T A ~ +

"eso& "eso)~o0 N"NnDl& "~& NnDn vge eo0

Ykg fgwgewru ecnlducwlrp suregfxug gvwcdnlvkgv c erxpwlpi ghhlelgpe hru c ughgugpeg ucflrpxenlfg' ag).00 "kcnh nlhg 3,/1 fcv&, Jru urxwlpg erpflwlrpv zkgug rhhicv lv suregvvgf wkurxik wkg CRL' cnn vkruw nlygf icvgv cug fgecgf czc dghrug flvekcuig ngcylpi rpn nrpi nlygf ucflrpxenlfgv cv wkg vliplhlecpw erpwuldxwruv wr wkg orplwru ugvsrpvg, Mp wklv ecvg' ag).00 cv wkg ughgugpeg ucflrpxenlfg hru wkg fgwgewru erxpwlpi ghhlelgpe lv ugsugvgpwcwlyg rh wkg gsgewgf ugngcvg erpflwlrpv, Jru rhh pruocn erpflwlrpv wkcw olikw ngcf wr lpenxvlrp rh vkruw nlygf ucflrcewlylw lp wkg icv vwugco dglpi ugngcvgf' ag).00 cv wkg ughgugpeg ucflrpxenlfg lv gsgewgf wr ngcf wr c erpvguycwlyg ugvsrpvg hcewru hru wkg fgwgewruv vlpeg wkg vkruw nlygf prdng icvgv wgpf wr kcyg klikgu gpguilgv wkcw ecp ecxvg wkgo wr rygu ugvsrpf, Ykgughrug' lp Itxcwlrp ;).3' rpg oc vxdvwlwxwg Vi hru Vil' zkgug Vi ugsugvgpwv wkg fgwgewru erxpwlpi ghhlelgpe fgwguolpgf huro wkg ag).00 ecnlducwlrp, Mh pgegvvcu' wkg cewxcn erpegpwucwlrp cpf flvekcuig ucwg rh lpflylfxcn icvgv dglpi ugngcvgf huro wkg vwcem "ru CRL& ecp dg fgwguolpgf d flugew iucd vcosng cpf ncdrucwru cpcnvlv fxulpi vsgelhle sgulrfv rh lpwgugvw,

";).7& -!

so "eso& e ) ~o0 N "~& "NnDl& . NnDn eo0 vge

Rhh)Vlwg Ervg Dcnexncwlrp Ocpxcn Vgewlrp ; Tgy, 0- Scig .: rh// _guorpw bcpmgg Pxengcu Srzgu Vwcwlrp brn yiv kym myn in mn y xykvn pin s mnnwsxnm sr Nisyx C.;D

'C.;) D C 1/A; MOJ/ 3-1 -

: wnw) 'VLs . nlh 0.vLs) gwnw . w h ' ' 0.vLs. w& nl zLs .

drnnD

. k E yiv kym myn in 'wnwv) mn y xykvn pin oyw ilu nvnin

1/A; + '3/1N,1=) 'A/;3N.1A) 'zLs.nl00.vLs.w:)

vN,1= + xwkn yo zLs zn 0.vLs'zLsvo/vLs)

A/;3N.1A E ge0Yh.~ wisww vyxp nw inipn piwwi iwyzrnsl msznsyx : oily 'nl0w )

Ys E rn nvnin in yo xykvn pi "s" sx rn wsn oy nilr xykvn pi smnxsosnm 'o/vLsvnl)'NsivnxYb yoy xykvn pin nvninm i rn zvix ilu/)

MOJt E yiv kym myn oily 'nn bikvn 3/3/31) 'wnw.xzLs.)

I lywzysn yiv kym piwwi myn oily- MOJl/ wi kn mnosxnm lr riD

'C.3A) - 8

: wn~.w:P o/vLs) o/vLs) 'wnw . w P ' zLv. ' nl ' nl zLs .

ayvsxp Nisyx C.7: oy MOJl snvmD 'C.33) - Ys MOJs MOJ . ~~~~~!8 4 l .

Too.asn Myn Livlvisyx Rixiv anlsyx C _n/ :1 Vipn 3C yo 77 cnwyx fixunn Slvni Vyn aisyx JutzxuO7.7.1.1.f rosozy znk iuyk xfzk zu znk zuzfr gui lxus tugrk mfyky fz ft ruhfzout fz ux gkuti znk yozk gutifx zu :00 sxks/x. I ykzzotm kwfr zu :00 sxks/x fti ygyzozzotm LNIh lux LNIo ot Mwfzout A-:, utk sf yurk lux :- Yo fz 8 znk rosozotm nurk gui tugrk mfy iuyk xfzkD 'A-1A)

agyzozzotm znoy xkyrz luxI~ ~ ot Mwfzout A-1; okriy _~~z, znk xkyvutyk ul znk sutozux fz 8 znk rosozotm tugrk mfy zuzfr gui iuyk xfzkD 'A-C) g 1 ! Rzyvz E ;;; 4 LNIh 't"~~~D7)

bnk ypot iuyk xfzk ik zu tugrk mfyky oy ikzkxsotki ozn Mwfzout ;-=D ';-=) =ypot . :- 8

/.rJo) 'sxk~ - ykhP ' ykh /.rJO- x

dnkxkD

3ECAD C apot iuyk xfzk 'sxks/x)

bnk xkrkfyk xfzk ul tugrk mfy &o& ot znk sozxk lux kfhn tugrk mfy oiktzoloki '/.rJo/ykh) kwofrktz zuY~b lux tugrk mfyky xkrkfyki fz znk vrftz yzfhp). ~ -1 AE C Jusgotki ypot iuyk lfhzux 'ykk bfgrk 1.1.10) 'sxks-ykh/l.o-x).

Tll-aozk Luyk Jfrhrfzout Rftfr akhzout A _k. 70 Vfmk!+ ul33 ckxsutz eftpkk Shrkfx Vukx azfzout D gtrutxnyi gtrfnsih xons htxi kegytw) JMi) re fi hiknsih xzgm ymeyA

&;,0='

rwi~ , xig O &.-PIn' &.-PIn' &rwi~ , xig O & .-PIN, w xig xig .-PIN, w

atpnsl Lvzeynts ;,0= ktw JM" niphxA

- 4~JM&x + -----A0dd ,A,,d JM"i

Itsywtp 3-3-0-e pnrnyx ymi htxi weyi yt ymi xons kwtr stfpi lexix ey es ptgeynts ey

tw fitsh ymi xnyi ftzshew yt 3)/// rwir.w- E xiyynsl .xons ivzep yt 3)/// rwir.w esh xzfxynyzynsl JM~ ktw JM& ns Lvzeynts 7,: tsi re xtpi ktw-4~ ey ymi pnrnynsl ! xons stfpi lex htxi weyiA

! - Yn + 3)/// JM"i

.-PIn' &rwirO & .-PIn,w ' &xig w rwir , xig

azfxynyzynsl ymnx wixzpyNYn ktw ns Lvzeynts ;,07 niphx _~~~s)ymi wixutsxi tk ! ymi rtsnytw ey ymi pnrnynsl stfpi lex xons htxi weyiA &;,0/'

xons ! ! _ xuy C 3)/// M JM"i

&gur' rwirO &gur,~r3 O &~' &.-PIn, w ' & w .-PIN ir 3 rwir , xig

Tkk,anyi Jtxi Iepgzpeynts Reszep aigynts ; _i- 3/ Veli 1/ tk 11 biwrtsy cesoii Szgpiew Vtiw ayeynts Y=ANE 7'-',

Tgnculwg Isceulrpt rh Crsg Lpwgpursy Prdng Jctgt =hugs Vkvufrxp

Ylog Ms&7.o Ms&70o Ms&70 Ms&73 Ms&77 ag&,.,o ag&,..o ag&,.. ,.0 ag&,.7 ag&,.0o ag&

u ;-/k ')- ')/. ')), ')7. ',,7 '))- '),) '.)1 ')1, '):. '-1. -/ ks "u ;/7 k &&& ')). '))/ &&& ')), '))/ ')-- '307 '),) ',:7 /7 k "u ;0 f &&& &&& '))0 &&& &&& '))1 ')-/ ':)3 ')), ')07 0 f "u ;,) f &&& &&& '))3 &&& &&& '))7 '),1 ':1: ,) f "u ;,0 f &&& &&& '),/ &&& &&& '),/ '))1 ':11 ,0 f"u ;-) f &&& &&& ')-1 &&& &&& ')-- '))- ':0) -) ~!+ ;.) f &&& &&& ')/7 &&& &&& ')./ ')), ':,3 .) f "u ;/) f &&& &&& ',0- &&& &&& ')3) &&& '333 /) f"u ;0) f &&& &&& '.37 &&& &&& ',)0 &&& '0,3 0) f"u ;1) f &&& &&& '10- &&& &&& ',)7 &&& '-/) 1) f" u ;3) f &&& &&& '7.0 &&& &&& ')7. &&& ')7- u ~3) f &&& ':-) &&& &&& ')00 &&& ')-/

Rhh&Vlug Drtg Ccnevnculrp Ocpvcn Vgeulrp 7 Tgw' .) _gsorpu bcpmgg Pvengcs Srxgs Vuculrp Scig -, rh-- =-1-1 clgu Rl Epz Mrliwz "cREM& Ywhtl Og Eipp Vwvpwz "bV,0;,07/E gvk bV,0;,07/I&

dol cREM vwhtl ng gipp uwvpwz gzl owv pv Npnzl A,1-

=-1-1-0 Vlowk w Lllzupvl ol clxwpv wm ol clgu Rl Epz Mrliwz _mmng Eipp Vwvpwz "bV,0;,07/E gvk bV,0;,07/I&

dol cREM vwhtl ng gipp uwvpwz zlxwvl pv ub.oz g ol tpuppvn zltlgl zgl p ol lxwpv) klvwlk) gvk p kllzupvlk g mwttwC "=,10& ! cREM b x + 0-:M ~ /7 N

"ub.oz& .,tJp& "ub , i~& "li& " li oz , .,tJP --

cREM 4 x + blxwvl wm ol uwvpwz g ol tpuppvn zltlgl zgl "ubtoz&

0-:M'/7 D Tpuppvn zltlgl zgl mwz ol cREM xlipmplk pv dliovpigt cxlipmpigpwv 3-=-S-0 ".,tJp.li&

D Llliwz iwvpvn lmmpiplvi mzwu ol uw zlilv igtphzgpwv ub.oz&.".,tJp.ii

N D cREM nglw kpiogznl mtw "ii.li&

=-1-1-1 Igp mwz ol cREM Ywhtl Og Eipp Vwvpwz clxwpv

dol cREM vwhtl ng gipp uwvpwz lxwpv u lvzl og dliovpigt cxlipmpigpwv 3-=-S-0 p vw lillklk- dol klzpgpwv wm Mygpwv =,10 p zgpnomwzgzk- cpuxt gspvn Mygpwv =,0: gvk hppvn ol tpuppvn zltlgl zgl g ol cREM mwz. pltk Mygpwv =,10) ol lxwpv lygpwv mwz ol cREM vwhtl ng gipp uwvpwz-

_mm,cpl Lwl Jgtitgpwv Vgvgt clipwv = bl- 3/ agnl 11 wm11 elzuwv fgvsll Yitlgz awlz cgpwv 9.0 LIOUID AND GASEOUS EFFLUENT STREAMS. RADIATION MONITORS AND I RADWASTE TREATMENT SYSTEMS

Figure 9-1 shows the normal (design) radioactive liquid effluent streams, radiation monitors, and the appropriate Liquid Radwaste Treatment System. Figure 9-2 shows the normal (design) gaseous effluent systems, radiation monitors, and the appropriate Gaseous Radwaste Treatment System.

9.1 In-Plant Radioactive Liauid Effluent Pathways I The Liquid Radwaste System collects, processes, stores, and disposes of all radioactive liquid wastes. Except for the cleanup phase separator equipment, the condensate backwash receiving tank and pump and waste sample tanks, floor drain sample tank and waste surge tank, the entire Radwaste System is located in the Radwaste Building. The Radwaste System is controlled from a panel in the Radwaste Building Control Room.

The Liquid Radwaste System consists of the following components:

1. Floor and equipment drain system for handling potentially radioactive wastes.

2. Tanks, piping, pumps, process equipment, instrumentation and auxiliaries necessary to collect, process, store, and dispose of potentially radioactive wastes.

The liquid radwastes are classified, collected, and treated as either high purity, low purity, chemical or detergent wastes. "High" purity and "low" purity mean that the wastes have low conductivity and high conductivity, respectively. The purity designation is not a measure of the amount of radioactivity in the wastes.

High purity liquid wastes are collected in the 25,000-gallon waste collector tank. They originate from the following sources:

1. Drywell equipment drains. 2. Reactor Building equipment drains. 3. Radwaste Building equipment drains. 4. Turbine Building equipment drains. 5. Decanted liquids from cleanup phase separators. 6, Decanted liquids from condensate phase separators, 7. Resin rinse.

Revision 27 Date 10/09/00 9- 1 Low purity liquid wastes are collected in the 25,000-gallon floor drain collector tank. They originate from the following sources:

1. Drywell floor drains. 2. Reactor Building floor drains. 3. Radwaste Building floor drains. 4. Turbine Building foor drains. 5. Other floor drains in RCA (e.g., AOG and Service Building, stack, etc.).

Chemical wastes are collected in the 4,000-gallon chemical waste tank and then pumped to the floor drain collector tank. Chemical wastes arise from the chemical laboratory sinks, the laboratory drains and sample sinks. Radioactive decontamination solutions are classified as detergent waste and collected in the 1,000-gallon detergent waste tank.

Once the wastes are collected in their respective waste tanks, they are processed in the most efficient manner and discharged or reused in the nuclear system. From the waste collector tank, the high purity wastes are processed in one of three alternative filter demineralizers and then, if needed, in one "polishing" demineralizer. After processing, the liquid is pumped to a waste sample tank for testing and then recycled for additional processing, transferred to the condensate storage tank for reuse in the nuclear system or discharged.

The low purity liquid wastes are normally processed through the floor drain filter demineralizer and collected in the floor drain sample tank for discharge or they are combined with high purity wastes and processed as high purity wastes.

Chemical wastes are neutralized and combined with low purity wastes for processing as low purity wastes.

Although there is only one discharge pathway from the Radwaste System to the river, there are three locations within the Radwaste System from which releases can be made. They are: the detergent waste tank (detergent wastes), the floor drain sample tank (chemical and low purity wastes), and waste sample tank (high purity wastes). The contents of any of these tanks can be released directly to the river.

The liquid wastes collected in the tanks are handled on a batch basis. The tanks are sampIed from the radwaste sample sink and the contents analyzed for radioactivity and water purity. A release is allowed once it is determined that the activity in the liquid wastes will not exceed Control release limits. I

Revision 27 Date 10/09/00 9-2 A discharge from any of the tanks is accomplished by first starting the sample pumps, opening the necessary valves, and positioning the flow controller. The release rate in the discharge line is set between 0 and 50 gpm. The dilution pumps which supply 20,000 gpm of dilution water are then started. An interlock does not allow discharge to the river when dilution water is unavailable.

The effluent monitor (No. 171350) in the discharge line provides an additional check during the release. The alarm or trip setpoint on the monitor is set according to the effluent Control limits and an analysis of the contents of the tank. The monitor warns the operator if the activity of the liquid waste approaches regulatory limits. In response to a warning signal from the monitor, the operator may reduce the flow rate or stop the discharge.

Revision 27 Date 10/09/00 9-3 9.2 In-Plant Radioactive Gaseous Effluent Pathwavs

The gaseous radwaste system includes subsystems that dispose of gases from the main condenser air ejectors, the startup vacuum pump, the gland seal condenser, the standby gas treatment system and station ventilation exhausts.

The processed gases are routed to the plant stack for dilution and elevated release to the atmosphere.

The plant stack provides an elevated release point for the release of waste gases. Stack drainage is routed to the liquid radwaste collection system through loop seals.

The air ejector Advanced Off-Gas Subsystem (AOG) reduces the ejector radioactive gaseous release rates to the atmosphere. The AOG System consists of a hydrogen dilution and recombiner subsystem, a dual moisture removalldryer subsystem, a single charcoal absorber subsystem, and dual vacuum pumps. Equipment is located in shielded compartments to minimize the exposure of maintenance personnel.

Radioactive releases from the air ejector off-gas system consist of fission product noble gases, activation product gases, halogens, and particulate daughter products from the noble gases. The particulates and halogens are effectively removed by the charcoal beds and high efficiency particulate filters in the AOG System. The activation product gases that are generated in significant quantities have very short half-lives and will decay to low levels in the holdup pipe, as well as in the absorber beds. The noble gases, therefore, are expected to provide the only significant contribution to off-site dose. The charcoal off-gas system is designed to provide holdup of 24 hours for krypton and 16.6 days for xenon at a condenser air inleakage rate of 30 scfm.

Steam dilution, process control, and instrumentation systems are designed to prevent an explosive mixture of hydrogen from propagating beyond the air ejector stages. An explosive mixture of hydrogen should never exist in the recombiner subsystem, "30-minute" delay pipe, condenser/dryer, or charcoal absorber beds. To prevent a hydrogen explosion in the recombinerlpreheater and upstream lines during shutdown, the residual off-gas steam mixture containing hydrogen is purged with steam or air. Starting procedures insure sufficient steam is introduced upstream of the preheater to dilute any hydrogen entering the AOG System as the air

Revision 27 Date l0/09/00 9-4 ejector line is prepared for operation. To prevent operating unsafely, instrumentation is used to detect an explosive mixture.

Hydrogen control is accomplished by providing redundant hydrogen analyzers on the outlet from the Recornbiner System. These analyzers initiate recombiner system shutdown and switchover if the hydrogen concentration at the system outlet exceeds 2% by volume. During an automatic shutdown, two main air process valves close to isolate the recombiner system. Additionally, the recombiner bed temperatures and recombiner outlet temperature provide information about recombiner performance to insure that inflammable hydrogen mixtures do not go beyond the recombiner.

Should a number of unlikely events occur, it would be hypothetically possible for a hydrogen explosion to occur in the off-gas system. Such an explosion within the recombiner system could propagate into the large "30-minute" delay pipe, through the condenserldryer subsystem, and into the charcoal absorber tanks. However, the recombinerladsorber subsystems, piping, and vessels are designed to withstand hydrogen detonation pressures of 500 psi at a minimum so that no loss of integrity would result. Furthermore, the seven tanks of charcoal would significantly attenuate a detonation shock wave and prevent darnage to the downstream equipment.

During normal operation, the dryerladsorber subsystem may be bypassed if it becomes unavailable provided the releases are within effluent Control limits. With the dryerladsorber I subsystem bypassed, the air ejector off-gas exhausts through the recombinerlcondenser subsystems, and the 30-minute delay pipe.

The off-gas mixture combines with steam at the air ejector stage to prevent an inflammable hydrogen mixture of 4%by volume from entering the downstream hydrogen recombiners. Approximately 6,400 lbhr of steam introduced at the second stage air ejector reduces the concentration of hydrogen to less than 3% by volume.

The recombiner subsystem consists of a single path leading from the hydrogen dilution steam jet ejectors to two parallel flow paths for hydrogen recombination. Each recombination subsystem is capable of operating independently of the other and each is capable of handling the condenser off-gas at a startup design flow of 1,600 lblhr air and the normal off-gas design flow rate of 370 lblhr. The major components of each recombiner flow path are a preheater, a h ydrogen-oxygen recombiner, and a desuperheating condenser.

Revision 27 Date 10l09l00 9-5 The preheater assures that the vapor entering the hydrogen-oxygen recombiner is heated to approximately 300OF. At this temperature, the water vapor in the stream becomes superheated steam, thereby, protecting the recombiner catalyst.

During passages through the recombiner, the recombination of H2 and 0, in an exothermic reaction increases the stream temperature to approximately 52OOF. This recombination results in a maximum effluent H2 concentration of 0.1% by volume.

The desuperheating condenser is designed to remove the heat of recombination and condense the steam from the remaining off-gas. The condensers discharge the off-gas through moisture separators into the initial portion of an underground 24-inch diameter delay pipe which allows for 40% of the total system holdup volume. The pipe slopes away from the off-gas particulate (HEPA) filters in both directions for drainage purposes. Loop seals prevent gas escaping through drainage connections. Shorter lived radionuclides undergo a substantial decrease in activity in this section of the system. The preheatersh-ecombinersoperate at pressures slightly above atmospheric; the condenser and the subsystems that follow operate at subatmospheric pressures.

Particulate (mPA) filters with flame suppressant prefilters are located at the exit side of the delay pipe ahead of the moisture removal subsystem to remove radioactive particulates generated in the delay pipe.

In the moisture removalidryer subsystem, the moisture of the gas is reduced to incfease the effectiveness of the charcoal absorber beds downstream. The subsystem consists of two parallel cooling condensers and gas dryer units. Each condenser is cooled by a mechanical glycollwater refrigeration system that cools the off-gas to -40OF as it removes bulk moisture. The dryer is designed to remove the remaining moisture by a molecular sieve desiccant to a dew point of less than -40°F (1% RH). One of the dryers absorbs moisture from the off-gas; the other desorbs moisture by circulating heated air through the bed in closed cycle.

The mixed refrigerantldryer concept improves the reliability of the system. If the refrigerant system fails, the two dryer beds operate in parallel to remove the moisture and maintain the off-gas near the design dew point (-4OOF). If the dryer fails, the -40°F dew point air leaving the mechanical system can enter the guard bed for over 6 hours without affecting the performance of the charcoal beds downstream.

Revision 27 Date 10/09/00 9-6 The charcoal absorber subsystem consists of seven tanks of charcoal preceded by a smaller charcoal guard bed upstream. The guard bed protects the seven main tanks from excessive radioactivity levels or moisture in the event of a malfunction upstream in the moisture removal subsystem. The guard bed also removes compounds which might hinder noble gas delay, The seven tanks hold a minimum of approximately 90,OOO pounds of charcoal.

The first two main tanks can be bypassed and used for storing a "batch of high activity" gas for static decay. The remaining five are all in series with no bypassing features so that the off-gas to the stack must be delayed.

Redundant particulate (HEPA) after-filters are used to remove charcoal fines prior to the vacuum pumps.

A water-sealed vacuum pump boosts the gas stream pressure to slightly over-atmospheric pressure before it is vented through the stack. To assure maintaining constant operating pressures in the system, a modulating bypass valve will recirculate process gas around the pump as required. During periods of high flow rates, both pumps can be operated in parallel.

Discharge of the vacuum pump then passes through the remaining 60% of the delay pipe prior to being vented through the station stack.

The gland seal off-gas subsystem collects gases from the gland seal condenser and the mechanical vacuum pump and passes them through a charcoal filter (if required) and then through holdup piping prior to release to the stack. The gases from the gland seal condenser system are discharged to the atmosphere via the ventilation stack after passing through the filter for iodine removal (if required) and then through the same 1-314 minute holdup piping that is used for the startup vacuum pump system. One automatic valve on the discharge side of each steam packing exhauster closes upon the receipt of high level radiation signal from the main steam line radiation monitoring subsystem to prevent the release of excessive radioactive material to the atmosphere. The exhausters are shut down at the same time the valves close. In addition, the mechanical vacuum pump is automatically isolated and stopped by a main steam line high radiation signal. The filter assembly is located in the air ejector room.

The release of significant quantities of gaseous and particulate radioactive material is prevented by the combination of the design of the air ejector AOG system and automatic isolation of the system from the stack. Gas flow from the main condenser stops when the air

Revision 27 Date 10/09/00 9-7 ejectors are automatically isolated from the main condenser by either a high radiation signal in the main steam line or by high temperature and/or pressure signals from the AOG System. The gland seal off-gas system is automatically isolated and stopped by a main steam line high radiation signal. In addition, monitoring the stack release provides a backup warning of abnormal conditions.

Revision 27 Date J0/09/00 9-8 Revision 27 Date 10/09/00 9-9 A

T

'6P z

B r r-

Revision 27 Date 10/09/00 9-10 /.-. eVPaeM bM_YbdPVO bMaePbMTMVdc

/.-/ Exxiv bimsyilsn Moovnx bnvnin bnzy

Px illymixln sr vYJNb 7.-1:i) rn bimsyilsn Moovnx bnvnin bnzy lynsxp rn yznisyx yo rn xs rivv kn kwsnm k Ti /7 yo nilr ni-

drn bimsyilsn Moovnx bnvnin bnzy rivv sxlvmn i wwi yo rn ixssn yo imsyilsn vssm ixm piny noovnx ixm yvsm in nvninm oyw rn xs i yvsxnm sx bnpviy Osmn /-0/) bnssyx /) Rxn /A;3) ~Tnisxp) Mivisxp ixm bnzysxp bimsyilss sx cyvsm gin ixm bnvnin yo bimsyilsn Tinsiv sx Sssm ixm Oiny Moovnx oyw Sspr,gin,Jyyvnm Vlvni _yn _vix)~ sr mii wwisnm yx i inv kis oyvvysxp rn oywi yo Ezznxms I rnnyo- Ny yvsm in rn oywi oy dikvn 1 sx Ezznxms I yo bnpviy Osmn /-0/ rivv kn zzvnwnxnm sr rnn immssyxiv linpysnC lvi yo yvsm in "imnownm kv.JNb_i :/&) zn yo lyxisxn "n-p-)ScE) dzn E) dzn I) Sipn aixs&) ixm yvsmsoslisyx ipnx y ikyknx) so ix-

Px immssyx) rn bimsyilsn Moovnx bnvnin bnzy rivv sxlvmnix ixxiv xxiyo ryv wnnyyvypsliv mii lyvvnlnDs yn rn znsy ni- drs ixxiv wwi wi kn nsrn sx rn oyw yo ix ry,k,ry vssxp yx wipxnsl izn yo sxm znnm) sxm msnlsyx) iwyzrnsl iksvs) ixm znlszsisyx "so wninm&) y sx rn oyw yo tysx onnxl mssksyx yo sxm znnm) sxm msnlsyx) ixm iwyzrnsl iksvs-~ drs iwn nzy rivv sxlvmn ix inwnx yo rn imsisyx myn mn y rn imsyilsn vssm ixm piny noovnx nvninm oyw rn xs msxp rn znsy livnxmi ni- drn bimsyilsn Moovnx bnvnin bnzy rivv ivy sxlvmn ix inwnx yo rn imsisyx myn oyw imsyilsn noovnx y wnwkn" & yo rn zkvsl mn y ix ivvynm nlnisyxiv ilsssn sxsmn rn sn kyxmi msxp rn znsy livnxmi ni- Evv iwzsyx nm sx wiusxp rnn inwnx "n-p-) znlsosl ilss) nzyn swn ixm vylisyx& rivv kn sxlvmnm sx rnn nzy- Ny ix kilr y mslnn pi yvwn nvnin) rn wnnyyvypsliv lyxmssyx lyxlnx sr rn swn yo nvnin yo imsyilsn winsiv sx piny noovnx "i mnnwsxnm k iwzvsxp onnxl ixm wninwnx& rivv kn nm oy mnnwsxsxp rn piny ziri myn- Ny imsyilsn winsiv nvninm sx lyxsxy noovnx niw) inv inipn wnnyyvypsliv lyxmssyx lyxlnx sr rn inv nvnin znsym rivv kn nm oy mnnwsxsxp rn piny ziri myn- drn inwnx yo imsisyx myn rivv kn znoywnm sx illymixln sr rn Yoo,csn Lyn Jivlvisyx Tixiv "YLJT&-

'Px vsn yo kwssyx sr rn bimsyilsn Moovnx bnvnin bnzy) rn vslnxnn ri rn yzsyx yo nisxsxp rs wwi yo nsnm wnnyyvypsliv mii sx i svn ri rivv kn zysmnm y rn VbJ zyx nn- Yoo,csn Lyn Jivlvisyx Tixiv cnlsyx /. bn- 0= _ipn / yo; fnwyx hixunn Vlvni _yn cisyx Repd pda gehepo kb ;kipnkg /)0)- Vaeic auYaa_a_ _rneic pda YTgai_Tn vaTn& pda MT_ekTYpesa Abbgraip MagaToa Malknp odTgg Tgok eiYgr_a Ti Tooaoohaip kb nT_eTpeki _koao pk pda gefagv hkop aulkoa_ naTg hahVan~o" kb pda lrVgeY bnkh naTYpkn nagaToao ~eiYgr_eic _koao bnkh lnehTnv abbgraip lTpdtTvo Ti_ _enaYp nT_eTpeki" bkn pda lnasekro YTgai_Tn vaTn pk odkt YkibknhTiYa tepd 0,;CM-:,& AisenkihaipTg MT_eTpeki LnkpaYpeki NpTi_Tn_o bkn IrYgaTn Lktan JlanTpeki)

Oda MT_ekTYpesa Abbgraip MagaToa Malknp odTgg eiYgr_a T geop Ti_ _aoYnelpeki kb rilgTiia_ nagaToao bnkh pda oepa pk oepa Vkri_Tnv kb nT_ekTYpesa hTpaneTgo ei cToakro Ti_ gemre_ abbgraipo hT_a _rneic pda nalknpeic lanek_)

Repd pda mrTipepv kb nT_ekTYpesa hTpaneTg ei Tiv krpoe_a pTif auYaa_eic pda gehep kb OaYdieYTg NlaYebeYTpeki /)7)=)g& _aoYneVa pda asaipo gaT_eic pk pdeo Yki_epeki ei pda iaup MT_ekTYpesa Abbgraip MagaToa Malknp)

Db eiklanTVga nT_ekTYpesa gemre_ abbgraip hkiepkneic eiopnrhaipTpeki eo ikp naprnia_ pk klanTVga opTpro lnekn pk pda iaup nagaToa lrnorTip pk Ikpa 0 kb ;kipnkg OTVga /)-)-& aulgTei ei pda iaup MT_ekTYpesa Abbgraip Malknp pda naToki~o" bkn _agTv ei YknnaYpeic pda eiklanTVegepv&

Db eiklanTVga cToakro abbgraip hkiepkneic eiopnrhaipTpeki eo ikp naprnia_ pk klanTVga opTpro tepdei /, _Tvo lrnorTip pk Ikpa 1 kb ;kipnkg OTVga /)-).& aulgTei ei pda iaup MT_ekTYpesa Abbgraip MagaToa Malknp pda naToki~o" bkn _agTv ei YknnaYpeic pda eiklanTVegepv&

Repd hegf oThlgao ik gkican TsTegTVga bnkh kia kn hkna kb pda oThlga gkYTpekio namrena_ Vv ;kipnkg OTVga /)1)-& e_aipebv pda YTroa~o" kb pda oThlga~o" ik gkican Vaeic TsTegTVga& e_aipebv pda iat gkYTpeki~o" bkn kVpTeieic TsTegTVga nalgTYahaip oThlgao& Ti_ eiYgr_a naseoa_ J=;E becrna~o" Ti_ pTVga~o" nabgaYpeic pda iat gkYTpeki~o" ei pda iaup MT_ekTYpesa Abbgraip MagaToa Malknp)

Repd T gTi_ roa Yaioro e_aipebveic kia kn hkna gkYTpekio tdeYd veag_ Tp gaTop T ., lanYaip cnaTpan _koa kn _koa Ykhhephaip pdTi pda sTgrao Yrnnaipgv Vaeic YTgYrgTpa_ ei ;kipnkg 0)/)/& e_aipebv pda iat gkYTpeki~o" ei pda iaup MT_ekTYpesa Abbgraip MagaToa Malknp)

;dTicao hT_a _rneic pda nalknpeic lanek_ pk pda LnkYaoo ;kipnkg LnkcnTh ~L;L" Ti_ pk pda Jbb'Nepa =koa ;TgYrgTpeki ETirTg ~J=;E"& odTgg Va e_aipebea_ ei pda iaup MT_ekTYpesa Abbgraip MagaToa Malknp)

Jbb'Nepa =koa ;TgYrgTpeki ETirTg NaYpeki -, Mas) .7 LTca . kb3 Panhkip STifaa IrYgaTn Lktan NpTpeki )'&, AlufpmlkblsVi NVafmimdf_Vi Imlfsmpfld

Peb 7lltVi NVafmimdf_Vi AlufpmlkblsVi LnbpVsfld Nbnmps _mubpfld seb mnbpVsfml mc seb tlfs atpfld npbufmtr _ViblaVp xbVp reVii Yb rtYkfssba Yx IVx )/se mc bV_e xbVp&

Peb pbnmps reVii fl_itab rtkkVpfbr~ flsbpnpbsVsfmlr~ Vla Vl VlVixrfr mc spblar mc seb pbrtisr mc seb pVafmimdf_Vi blufpmlkblsVi rtpubfiiVl_b V_sfufsfbr cmp seb pbnmps nbpfma& Peb kVsbpfVi npmufaba reVii Yb _mlrfrsbls vfse seb mYgb_sfubr mtsiflba fl seb L=;I Vla fl iL;CN /'~ 7nnblafw D~ Ob_sfmlr DR&:&,~ DR&:&-~ Vla DR&;&

Peb 7lltVi NVafmimdf_Vi AlufpmlkblsVi LnbpVsfld Nbnmps reVii fl_itab rtkkVpfyba Vla sVYtiVsba pbrtisr mc Vii pVafmimdf_Vi blufpmlkblsVi rVknibr sVhbl atpfld seb pbnmps nbpfma ntprtVls sm PVYib 1") Vla Cfdtpbr 1") sepmtde 1"0& Dl seb bubls seVs rmkb pbrtisr Vpb lms VuVfiVYib cmp fl_itrfml vfse seb pbnmps~ seb pbnmps reVii Yb rtYkfssba lmsfld Vla bwniVflfld seb pbVrmlr cmp seb kfrrfld pbrtisr& Peb kfrrfld aVsV reVii Yb rtYkfssba Vr rmml Vr nmrrfYib fl V rtnnibkblsVpx pbnmps&

Sfse seb ibubi mc pVafmV_sfufsx fl Vl blufpmlkblsVi rVknifld kbafV Vs mlb mp kmpb mc seb im_Vsfmlr rnb_fcfba fl ;mlspmi PVYib -&/&) bw_bbafld seb pbnmpsfld ibubir mc ;mlspmi PVYib -&/&,~ seb _mlafsfml reVii Yb abr_pfYba fl seb lbws 7lltVi NVafmimdf_Vi AlufpmlkblsVi LnbpVsfld Nbnmps mlix fc seb kbVrtpba ibubi mc pVafmV_sfufsx vVr lms seb pbrtis mc niVls bccitblsr& fse seb pVafmimdf_Vi blufpmlkblsVi kmlfsmpfld npmdpVk lms Ybfld _mlat_sba Vr rnb_fcfba fl ;mlspmi PVYib -&/&)~ V abr_pfnsfml mc seb pbVrmlr cmp lms _mlat_sfld seb npmdpVk Vr pbotfpba Vla seb niVlr cmp npbublsfld V pb_tppbl_b reVii Yb fl_itaba fl seb lbws 7lltVi NVafmimdf_Vi AlufpmlkblsVi LnbpVsfld Nbnmps&

Peb 7lltVi NVafmimdf_Vi AlufpmlkblsVi LnbpVsfld Nbnmps reVii Virm fl_itab seb pbrtisr mc seb iVla trb _blrtr pbotfpba Yx ;mlspmi -&/&,& 7 rtkkVpx abr_pfnsfml mc seb pVafmimdf_Vi blufpmlkblsVi kmlfsmpfld npmdpVk fl_itafld V kVn mc Vii rVknifld im_Vsfmlr hbxba sm V sVYib dfufld afrsVl_br Vla afpb_sfmlr cpmk seb pbV_smp reVii Yb fl seb pbnmpsr& Dc lbv blufpmlkblsVi rVknifld im_Vsfmlr Vpb fablsfcfba fl V__mpaVl_b vfse ;mlspmi -&/&,~ seb lbv im_Vsfmlr reVii Yb fablsfcfba fl seb lbws 7lltVi NVafmimdf_Vi AlufpmlkblsVi LnbpVsfld Nbnmps&

Peb pbnmpsr reVii Virm fl_itab V afr_trrfml mc Vii VlVixrbr fl vef_e seb EE= pbotfpba Yx ;mlspmi PVYib .&/&) vVr lms V_efbuVYib&

Peb pbrtisr mc if_blrb nVpsf_fnVsfml fl seb flsbp_mknVpfrml npmdpVk pbotfpba Yx ;mlspmi -&/&- reVii Yb fl_itaba fl seb pbnmpsr& Sfse VlVixrbr lms Ybfld nbpcmpkba Vr pbotfpba Yx ;mlspmi -&/&-~ seb _mppb_sfub V_sfmlr sVhbl sm npbubls V pb_tppbl_b reVii Yb pbnmpsba sm seb ;mkkfrrfml fl seb lbws 7lltVi NVafmimdf_Vi AlufpmlkblsVi LnbpVsfld Nbnmps&

Lcc"Ofsb =mrb ;Vi_tiVsfml IVltVi Ob_sfml )' Nbu& ,3 MVdb - mc1 Rbpkmls TVlhbb Jt_ibVp Mmvbp OsVsfml -,)/ IRDRI Pdonrthmf Pdpuhrdldmts

Im _bbnrc_mbd whtg -,=DP1.)00~c"~/"& tgd ;mmu_k Imcdodmcdmt ~Imtdrhl" Rodmt Dudk Rtnr_fd Imst_kk_thnm P_ch_bthvd Ceekudmt =nmtrnk Ornfr_l Pdonrt ~;IRDRIPC=OP" whkk ad fdmdr_tdc _mc hssudc ay Ddaru_ry .3netg d_bg yd_r)

Rhmbd ht g_s addm cdtdrlhmdc ay Enktdb Imtdrm_thnm_k hm tgdhr Dhm_k R_edty ;m_kyshs Pdonrt ~Pdedrdmbd I" tg_t tgd Enktdb EI'RSNPL -,, =_si Rystdl cnds mnt brd_td _my r_chn_bthvd l_tdrh_ks nr g_vd _my r_chn_bthvd w_std trd_tldmt systdls& sodbhehb nodr_thmf ornbdcurds enr tgd bnmtrnk ne r_chn_bthvd deekudmts _rd mnt rdpuhrdc) Rodbhehb_thnm /)-)-& Lukth'Ouronsd =_mhstdr ~LO="& ornvhcds _ssur_mbd tg_t tgdrd _rd mn r_chn_bthvd deekudmts ernl tgd RDR=)

Im khfgt ne tgd hmenrl_thnm ordsdmtdc hm tgd ordvhnus o_r_fr_ogs& tgd ;IRDRIPC=OP& tn ad hssudc ay Ddaru_ry .3tgne d_bg yd_r& sg_kk st_td tg_t mn r_chn_bthvd deekudmts wdrd chsbg_rfdc ernl tgd Imcdodmcdmt ~Imtdrhl" Rodmt Dudk Rtnr_fd Imst_kk_thnm _mc tgdrdenrd mn IRDRI'sodbhehb lnmhtnrhmf ornfr_l hs hm ok_bd _t Tdrlnmt Y_midd _mc tgdrd _rd mn IRDRI'sodbhehb c_t_ tn rdonrt enr tgd ordvhnus b_kdmc_r yd_r rdonrthmf odrhnc)

-,)0 Rodbh_k Pdonrts

Rodbh_k rdonrts sg_kk ad sualhttdc tn tgd Ahrdbtnr ne tgd Neehbd ne Imsodbthnm _mc Cmenrbdldmt Pdfhnm_k Neehbd whtghm tgd thld odrhnc sodbhehdc enr d_bg rdonrt)

-,)0)- Jhpuhc Ceekudmts ~=nmtrnks /).). _mc /).)/"

Vhtg tgd b_kbuk_tdc cnsd ernl tgd rdkd_sd ne r_chn_bthvd l_tdrh_ks hm khpuhc deekudmts dxbddchmf _my ne tgd khlhts ne =nmtrnk /).).& ordo_rd _mc sualht tn tgd =nllhsshnm whtghm /, c_ys _ sodbh_k rdonrt wghbg hcdmthehds tgd b_usd~s" enr dxbddchmf tgd khlht~s" _mc cdehmds tgd bnrrdbthvd _bthnms t_idm tn _ssurd tg_t suasdpudmt rdkd_sds whkk ad hm bnlokh_mbd whtg tgd khlhts ne =nmtrnk /).).)

Vhtg khpuhc r_cw_std adhmf chsbg_rfdc whtgnut ornbdsshmf tgrnufg _oornorh_td trd_tldmt systdls _mc dsthl_tdc cnsds hm dxbdss ne =nmtrnk /).)/& ordo_rd _mc sualht tn tgd =nllhsshnm whtghm /, c_ys _ sodbh_k rdonrt wghbg hmbkucds tgd enkknwhmf hmenrl_thnm7

~-" dxok_m_thnm ne wgy khpuhc r_cw_std w_s adhmf chsbg_rfdc whtgnut trd_tldmt& hcdmthehb_thnm ne _my hmnodr_akd dpuholdmt nr suasystdls& _mc tgd rd_snms enr tgd hmnodr_ahkhty:

~." _bthnm~s" t_idm tn rdstnrd tgd hmnodr_akd dpuholdmt tn nodr_akd st_tus: _mc

~/" sull_ry cdsbrhothnm ne _bthnm~s" t_idm tn ordvdmt _ rdburrdmbd) Nee'Rhtd Ansd =_kbuk_thnm L_mu_k Rdbthnm!~ Pdv) .3 O_fd 0 ne1 Tdrlnmt Y_midd Mubkd_r Onwdr Rt_thnm 4//;.8 Jateovt Efflvenut ~Conusolt 0)0)/& 0)0)0&:.:/; and 0)0)3"

Yiuh uhe calcvlaued ais dote fsom sadioacuiwe noble gatet in gateovt efflvenut eyceeding anz of uhe limiut of Conusol 0)0)/& psepase and tvbmiu uo uhe Committion xiuhin 0- dazt a tpecial seposu xhich idenuifiet uhe cavte~t" fos eyceeding uhe limiu~t" and uhe cossecuiwe acuion~t" uaken uo attvse uhau tvbtervenu seleatet xill be in compliance xiuh uhe limiut of Conusol 0)0)/) Yiuh uhe calcvlaued dote fsom uhe seleate of Lodine'.0.& Lodine'.00& usiuivm& and,os sadionvclidet in pasuicvlaue fosm eyceeding anz of uhe limiut of Conusol 0)0)0& psepase and tvbmiu uo uhe Committion xiuhin 0- dazt a tpecial seposu xhich idenuifiet uhe cavte~t" fos eyceeding uhe limiu~t" and uhe cossecuiwe acuion~t" uaken uo attvse uhau tvbtervenu seleatet xill be in compliance xiuh uhe limiut of Conusol 0)0)0)

Yiuh gateovt sadxatue being ditchasged xiuhovu psocetting uhsovgh appsopsiaue useaumenu tztuemt at defined in Conusol:.:/; fos mose uhan tewen ~7" contecvuiwe dazt& os in eycett of uhe limiut of Conusol 0)0)3& psepase and tvbmiu uo uhe Committion xiuhin 0- dazt a tpecial seposu xhich inclvdet uhe folloxing infosmauion=

~." eyplanauion of xhz gateovt sadxatue xat being ditchasged xiuhovu useaumenu ~Conusol:.:/;~- os xiuh setvluanu dotet in eycett of Conusol 0)0)3& idenuificauion of anz inopesable ervipmenu os tvbtztuemt& and uhe seatont fos uhe inopesabiliuzA

~/" acuion~t" uaken uo setuose uhe inopesable ervipmenu uo opesable tuauvtA and

~0" tvmmasz detcsipuion of acuion~t" uaken uo psewenu a secvssence)

4//;.: Toual Dote ~Conusol:/;.4~

Yiuh uhe calcvlaued dote fsom uhe seleate of sadioacuiwe mauesialt in lirvid os gateovt efflvenut eyceeding uhe limiut of Conusol:/;.4- psepase and tvbmiu uo uhe Committion xiuhin 0- dazt a tpecial seposu xhich definet uhe cossecuiwe acuion~t" uo be uaken uo sedvce tvbtervenu seleatet uo psewenu secvssence of eyceeding uhe limiut of Conusol :/;.4 and inclvdet uhe tchedvle fos achiewing confosmance xiuh uhete limiut) Thit tpecial seposu& servised bz lOCIR Pasu /-)//-0~a"~1"& thall inclvde an analztit uhau etuimauet uhe sadiauion eypotvse ~dote" uo a membes of uhe pvblic fsom tuauion tovscet& inclvding all efflvenu pauhxazt and disecu sadiauion& fos uhe calendas zeas uhau inclvdet uhe seleate~t" cowesed bz uhit seposu) Lu thall alto detcsibe lewelt of sadiauion and concenusauiont of sadioacuiwe mauesial inwolwed& and uhe cavte of uhe eypotvse lewelt os concenusauiont) Lf uhe etuimaued dotet eyceed anz of uhe limiut of Conusol:/;.4- and if uhe seleate condiuion setvluing in wiolauion of 1-CIR Pasu .;- hat nou alseadz been cossecued& uhe tpecial seposu thall inclvde a servetu fos a wasiance in accosdance xiuh uhe psowitiont of 1-CIR Pasu .;-) Svbmiuual of uhe seposu it contidesed a uimelz servetu& and a wasiance it gsanued vnuil tuaff acuion on uhe servetu it compleue)

Off'Siue Dote Calcvlauion Manval Secuion .- Rew) /: Page 3 of7 Vesmonu _ankee Nvcleas Poxes Suauion /.,3,3 Vehnurulnger Ltnxutsitzer Putnzuxntl ~Iutzxur 1,7,/"

cnzm zmi riir uk xehnuegznnz ey zmi xiyrz uk vretz ikkritzy nt et itnxutsitzer yesvrntl sihne ez uti ux suxi uk zmi rugeznuty yvignknih nt Iutzxur _efri 1,7,/ igiihntl zmi xivuxzntl riiry uk Iutzxur _efri 1,7,0' vxivexi eth yfsnz zu zmi Iussnyynut nzmnt 1. hey kxus zmi xiginvz uk zmi Oefuxezux Eteryiy e yvigner xivuxz mngm ntgrhiy et iereznut uk et xirieyi guthnznuty' itnxutsitzer kegzuxy ux uzmix kegzuxy mngm geyih zmi rnsnzy uk Iutzxur _efri 1,7,0 zu fi igiihih, _mny xivuxz ny tuz xiwnxih nk zmi sieyxih riir uk xehnuegznnz ey tuz zmi xiyrz uk vretz ikkritzy' muiix' nt ygm et iitz' zmi guthnznut ymerr fi xivuxzih eth hiygxnfih nt zmi Etter Vehnurulnger Ltnxutsitzer Svixezntl Vivuxz,

/.,3,7 Oeth ayi Iityy ~Iutzxur 1,7,0"

cnzm e reth yi gityy tuz fintl guthgzih ey xiwnxih f Iutzxur 1,7,0' vxivexi eth yfsnz zu zmi Iussnyynut nzmnt 1. hey e yvigner xivuxz mngm nhitznkniy zmi xieyuty m zmi yxi ey tuz guthgzih' eth mez yzivy exi fintl zepit zu guxxigz zmi ynzeznut,

/.,7 Peoux Imetliy zu Vehnuegzni Onwnh' Neyiuy' eth Yurnh ceyzi _xiezsitz Yyzisy ~~

Ongityii)ntnznezih seoux gmetliy zu zmi xehnuegzni eyzi yyzisy ~rnwnh' leyiuy' eth yurnh"C

E, Ymerr fi xivuxzih zu zmi gussnynut nt zmi Vehnuegzni Lkkritz Virieyi Vivuxz kux zmi vixnuh nt mngm zmi iereznut ey xiniih f zmi Stynzi Yekiz Vini Iussnzzii ~SYVI", _mi hnygyynut uk iegm gmetli ymerr gutzentC

/, E yssex uk zmi iereznut zmez rih zu zmi hizixsnteznut zmez zmi gmetli gurh fi sehi nt egguxhetgi nzm rSIMV Texz 7.,7AD

0, Ykkngnitz hizenrih ntkuxseznut zu yvvuxz zmi xieyut kux zmi gmetli nzmuz fitiknz uk ehhnznuter ux yvvrisitzer ntkuxseznutD

1, E hizenrih hiygxnvznut uk zmi iwnvsitz' gusvutitzy' eth vxugiyyiy nturih eth zmi ntzixkegiy nzm uzmix vretz yyzisyD

3, Et iereznut uk zmi gmetli' mngm ymuy zmi vxihngzih xirieyiy uk xehnuegzni sezixnery nt rnwnh eth leyiuy ikkritzy eth-ux wetznz uk yurnh eyzi zmez hnkkix kxus zmuyi vxinuyr vxihngzih nt zmi rngityi evvrngeznut eth esithsitzy zmixizuD

&&Ongityii se gmuuyi zu yfsnz zmi ntkuxseznut gerrih kux nt zmny xivuxzntl xiwnxisitz ey vexz uk zmi etter MYEV vhezi, Skk)Ynzi Juyi Iergreznut Peter Yigznut /. Vi, 0= Teli : uk; bixsutz detpii Rgriex Tuix Yzeznut /) :f VoPdnPmbgf gY maV SaPf_V& pabSa lagpl maV VrhVSmVT ePrbene VrhglnkVl mg eVeRVk~l" gY maV hnRdbS Pm maV lbmV RgnfTPks PfT mg maV _VfVkPd hghndPmbgf maPm TbYYVk Ykge maglV hkVobgnlds VlmbePmVT bf maV dbSVflV PhhdbSPmbgf PfT PeVfTeVfml maVkVmg7

0) : SgehPkblgf gY maV hkVTbSmVT kVdVPlVl gY kPTbgPSmboV ePmVkbPdl& bf dbinbT PfT _PlVgnl VYYdnVfml PfT bf lgdbT pPlmV& mg maV PSmnPd kVdVPlVl Ygk maV hVkbgT hkbgk mg paVf maV SaPf_Vl PkV mg RV ePTV7

1) :f VlmbePmV gY maV VrhglnkV mg hdPfm ghVkPmbf_ hVklgffVd Pl P kVlndm gY maV SaPf_V7 PfT

3) AgSneVfmPmbgf gY maV YPSm maPm maV SaPf_V pPl kVobVpVT PfT YgnfT PSSVhmPRdV Rs IML=)

;) MaPdd RVSgeV VYYVSmboV nhgf kVobVp PfT PSSVhmPfSV Rs IML= PfT PhhkgoPd Rs maV CVfVkPd DPfP_Vk)

IYY'MbmV AglV =PdSndPmbgf DPfnPd MVSmbgf -, LVo) .3 JP_V 1 gY 1 NVkegfm OPfcVV EnSdVPk JgpVk MmPmbgf REFERENCES

A. Regulatory Guide 1.109, "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10CFR50, Appendix I," U.S. Nuclear Regulatory Commission, Revision 1, October 1977.

B. Hamawi, J. N., "AEOLUS-2 - A Computer Code for the Determination of Continuous and Intermittent-Release Atmospheric Dispersion and Deposition of Nuclear Power Plant Effluents in Open-terrain Sites, Coastal Sites, and Deep-River Valleys for Assessment of Ensuing doses and Finite-Cloud Gamma Radiation Exposures," Entech Engineering, Inc., P100R13A, March 1988 (Mod 5, Revised by Yankee Atomic Electric Company, March 1992).

C. Regulatory Guide 1.111, "Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases from Light-Water Cooled Reactors," U.S. Nuclear Regulatory Commission, Rev. 1, July 1977.

D. National Bureau of Standards, "Maximum Permissible Body Burdens and Maximum Permissible Concentrations of Radionuclides in Air and in Water for Occupational Exposure," Handbook 69, June 5, 1959.

E. Slade, D. H., "Meteorology and Atomic Energy - 1968, USAEC, July 1968.

F. Lowder, W. M., P. D. Raft, and G. dePlanque Burke, "Determination of N-16 Gamma Radiation Fields at BWR Nuclear Power Stations," Health and Safety Laboratory, Energy Research and Development Administration, Report No. 305, May 1976.

G. Letter from Charles L. Miller of the United States Nuclear Regulatory Commission to John F. Schmidt of the Nuclear Energy Institute, dated December 26, 1995.

H. "Dose vs Distance at the Vermont Yankee ISFSI" Holtec Report No: HI-2073701, Holtec Project No: 90348, Approved on 12/10/07.

1. Certificate of Compliance, Holtec International, Final Safety Analysis Report, Amendment 2, 06/07/05.

J. AREVA Calculation #32-9068362-000 "Vermont Yankee Site Boundary Direct Dose From N-16 Methodology", April 4, 2008, Mark Strum and John Hamawi.

Off-Site Dose Calculation Manual Section R Rev. 29 Page I of I Vermont Yankee Nuclear Power Station APPENDIX B

Approval of Criteria for Disposal of S1 ightly Contaminated

Septic Waste On-Site at Vermont Yankee

d Revision -9- Date 3/2/90

E-1 UNITED STATES NUCLEAR REGULATORY COMMLSSION WASHINGTON. D, C 20555 August 30, 1989

Docket No. 50-271

Mr. L. A. Tremblay Licensing Engi neeri ng Vermont Yankee Nuclear Power Corporation Engi neeri ng Offi ce 580 Main Street Bolton, Massachusetts 01740-1398

Dear Mr. Tremblay:

SUBJECT: APPROVAL UNDER 10 CFR 20.302(a) OF PROCEDURES FOR DISPOSAL OF SLIGHTLY CONTAMINATED SEPTIC WASTE ON SITE AT VERMONT YANKEE fTAC NO. 73776)

REFERENCE: (a) June 28, 1989 letter from R. Ld. Capstick to US NRC Document Control Desk, including Attachment I and Attachment 11. (b) Final Environmental Statement related to the operation of Vermont Yankee Nuclear Power Station, dated July 1972.

In reference (a) Vermont Yankee Nuclear Power Corporation (Vermont Yankee, or the licensee) submitted an application for disposal of licensed material on site. This disposal was not previously considered by the staff in the Vermont Yankee Final Environmental Statement (FES), reference fb). This extensive application, prepared in accordance with 10 CFR 20.302(a), contains a detailed description of the licensed material, thoroughly analyzes and evaluates the information pertinent to the effects on the environment of the proposed disposal of the licensed material, and commits the licensee to follow specific procedures to minimize the risk of unexpected or hazardous exposures. In the FES, the NRC staff considered the potential effects on the environment of licensed material from operation of the plant and, in the assessment of the total radiological impact of the Vermont Yankee Station concluded that: "...operation of the Station will contribute only an extremely small increment to the radiation dose that area residents receive from natural background. Since fluctuations of the background dose may be expected to exceed the increment contributed by the plant, the dose will be immeasurable in itself and will constitute no meaningful risk to be balanced against the benefits of the plant."

Revision -9- Date 3/2/90

B-2 Mr. L. A. Tremblay -2- August 30, 1989

4 Since the disposal proposed by the licensee involves licensed material containing less than 0.1 percent of the radioactive materials, primarily cobalt-60 and cesium-137, already considered acceptable in the FES, and involves exposure pathways much less significant than those considered in the FES, we consider the site-specific application (Reference (a)) for Vermont Yankee Nuclear Power Station to have insignificant radiological impact. We accept the commitments and evaluations of the licensee, documented in reference (a), as further assurance that the proposed disposal procedures will have a negligible effect on the environment and the general population in comparison to normal background radiation.

LA1 In conclusion, we find the licensee’s procedures with commitments as 855 documented in reference (a) to be acceptable, provided that reference (a) is permanently incorporated into the licensee’s Offsite Dose Calculation Manual (ODCM) as an Appendix, and future modifications of reference (a) be re~orted to NRC in accordance with licensee commitments reqardinq ODCM chanqes.

Pursuant to 10 CFR 51.22(~)(9), no environmental assessment is required. This completes our -review under TAC No. 73776.

Sincerely ,

Morton 8. Fairtile, Project Manager Project Directorate 1-3 Division of Reactor Projects 1/11 Office of Nuclear Reactor Regulation

cc: See next page

I Revision 9 Date 3/2/90

8-3 Mr. L. A. Tremblay -3-

d cc : Mr. J. Gary Weigand G. Dean Weyman President & Chief Executive Officer Chairman, Board of Selectman Vermont Yankee Nuclear Power Corp. Post Office Box 116 R.D. 5, Box 169 Vernon, Vermont 05354 Ferry Road Brattleboro. Vermont 05301 Mr. Raymond N. McCandless Vermont Division of Occupational Mr. John DeVi ncenti s, Vice President and Radiological Health Yankee Atomic Electric Company Admi nist rat i on Bui 1 ding 580 Main Street Montpel ier, Vermont 05602 Bolton. Massachusetts 01740-1398 Honorable John J. Easton New England Coalition on Nuclear Attorney General Pol 1 ution State of Vermont Hill and Dale Farm 109 State Street R.D. 2, Box 223 Montpel ier, Vermont 05602 Putney, Vermont 05346 Conner & Wetterhahn, P.C. Vermont Publ ic Interest Research Suite 1050 Group, Inc. 1747 Pennsylvania Avenue, N.W. 43 State Street Washington, D.C. 20006 Montpelier, Vermont 05602 Diane Curran, Esq. Regional Admi nistrator, Regi on I Harmon. Curran & Tousley U.S. Nuclear Regulatory Commission 2001 S Street. N.W., Suite 430 - 475 Allendale Road Washington, D.C. 20009 King of Prussi a, Pennsyl vani a 19406 David J. Mullett, Esq. R. K. Gad, I11 Special Assistant Attorney General Ropes & Gray Vermont Department of Publ ic Service 225 Franklin Street 120 State Street Boston, Massachusetts 02110 Montpel ier, Vermont 05602

Mr. W. P. Murphy, Vice President, Jay Gutierrez and Manager of Operations Regional Counsel Vermont Yankee Nuclear Power Corporation U.S. Nuclear Regulatory Commission R.D. 5, Box 169 475 All.endale Road Ferry Road King of Prussi a, Pennsyl vani a 19406 Brattleboro, Vermont 05301 G. Dana Eisbee, Esq. Mr. George Sterzinger, Commissioner Office of the Attorney General Vermont Department of Publ ic Service Envi ronmental Protection Bureau 120 State Street, 3rd Floor State House Annex Montpelier, Vermont 05602 25 Capitol Street Concord, New Hampshire 03301-6397 Publ ic Service Board State of Vermont Atomic Safety and Licensing Board 120 State Street U. S. Nuclear Regulatory Commi ssi on Montpelier, Vermont 05602 Washington, D.C. 20555

.. , Revision 9 Date 3/2/90

8-4 Mr. L. A. Tremblay -4-

cc : Mr. Gustave A. Linenberger, Jr. Admini strative Judge Atomic Safety and Licensing Board U.S. Nuclear Regulatory Commission Washington, D.C. 20555

Resident Inspector Vermont Yankee Nuclear Power Station U. S. Nuclear Regul atory Commi ssi on P.O. Box 176 Vernon, Vermont 05354

John Traficonte, Esq. Chief Safety Unit Office of the Attorney General One Ashburton Place, 19th Floor Boston, Massachusetts 02108

Geoffrey M. Huntington, Esquire Office of the Attorney General Envi ronmental Protection Bureau State House Annex 25 Capitol Street - Concord, New Hampshire 03301-6397 Charles Bechhoefer, Esq. Administrative Judge Atomic Safety and Licensing Board U. S. Nucl ear Regul atory Commi ssi on Washington, D.C. 20555

Or. James H. Carpenter Administrative Judge Atomic Safety and Licensing Board U.S. Nuclear Regulatory Commission Washington, D.C. 20555 Adjudicatory File (2) Atomic Safety and Licensing Board Panel Docket U.S. Nuclear Regulatory Commission Washington, D.C. 20555

/ Revision -9- Date 3/2/90 ‘VERMONT YANKEE NUCLEAR POWER CURF’OELATION

Ferry Road. Brattlebom. VT 05301-7002 KCL. IO ENGINEERING OFFICE $80 LWNSTREET June 28, 1989 BOLTON. MA 01 ?# BVY 89-59 T706711

United States Nuclear Regulatory Commi ssion Washington, DC 20555

Attention: Document Control Desk

Reference: License No. DPR-28 (Docket No. 50-271).

Subject: Request to Routinely Dispose of Slightly Contaminated Septic Waste in Accordance with 10 CFR 20.302(a)

Dear Sir:

In accordance with the criteria of the Code of Federal Regulations, Title 10, Section 20.302(a) (10CFR20.302(a)), enclosed please find the subject application for the disposal of very low level radioactive waste materials. Vermont Yankee Nuclear Power Corporation (Vermont Yankee) hereby requests NRC approval of the proposed procedures for the disposal of slightly contaminated septic waste generated at the Vermont Yankee Nuclear Power Plant in Vernon, Vermont.

This appl icati on specifically requests approval to dispose of septic tank waste, contaminated at minimal levels, which have been or might be generated through the end of station operations at the Vermont Yankee Nuclear Power Plant. The proposed method of disposal is for the on-site land spreading in designated areas in compliance with State of Vermont health code requirements for septic waste. Disposal of this waste in the manner proposed, rather than at a 10 CFR Part 61 licensed facility would save Vermont Yankee not only substantial cost, but also valuable disposal site space which would then be avai 1 ab1 e for wastes of higher radioactivity 1 eve1 s. Disposal as radioactive waste would require treatment of the biological aspects of the septage and solidification to a stable waste form, thereby increasing the volume substanti a1 ly.

A radiological assessment and proposed operational controls, based upon the continued on-site disposal of septic waste as presently contained in the plant’s septic tanks, are detailed in Attachments 1 and 2. Based upon this analysis, Vermont Yankee requests approval to dispose of septic tank waste on-site by land spreading in such a manner that the radioactivity concentration limit in any batch of septage to be spread does not exceed one-tenth of the MPC values listed in 10 CFR 20, Appendix B. Table 11; and the combined radi ologi cal impact for a1 1 disposal operations shall be 1 imited to a total body or organ dose of a maximally exposed member of the public of less than one mremlyear (less than 5 mrem/year to an inadvertent intruder).

Revision -9- Date 3/2/90

B-6 United States Nuclear Regulatory Commi ssi on June 28, 1989 c Page 2

Due to our expected need to utilize the proposed methodology of land application of septic waste on-site during the spring of 1990, we request your review and approval of this proposed disposal method by the end of the first quarter of 1990.

We trust that the information contained in the submittal is sufficient; however, should you have any questions or require further information concerning this matter, please contact this office

Very truly yours,

VERMONT YANKEE NUCLEAR POWER CORPORATION

Robert W. Capstick, Jr. ti censi ng Engineer

/ MSSlemd

Enclosures

cc: USNRC - Region I USNRC - Resident Inspector, VTNPS

Revision -9- Date 3/2/90

8-7 ATTACHMENT 1

VERMONT YANKEE NUCLEAR POWER PLANT

APPLICATION FOR APPROVAL TO ROUTINELY DISPOSE OF

SEPTIC WASTE WITH M~NIMALLEVELS OF RADIOACTIVITY

- Revision -9- Date 3/2/90

B-8 ATTACHMENT 1

VERMONT YANKEE NUCLEAR POWER PLANT

Application for Approval to Routinely Dispose of Septic Waste With Minimal Levels of Radioactivity

1.O INTRODUCTION

Vermont Yankee Nuclear Power Corporation (Vermont Yankee) requests approval, pursuant to 10CFR20.302(a). of a method proposed herein for the routine disposal of slightly contaminated septic tank waste. Vermont Yankee proposes to dispose of this waste by spreading it on designated areas within the plant’s site boundary fence. This application addresses specific information requested in 10CFR20.302(a).

2 .O HASTE STREAM DESCRIPTION

The waste involved in this application consists of residual solids and water associated with the sewage collection system at Vermont Yankee. The - plant’s sewage systems are of the septic tank and disposal field type. The two systems servicing the majority of the plant’s sanitary waste are identified as (1) main septic system and (2) the south sewage disposal system.

The main septic system (design flow capacity 4,950 gallonsfday) consists of a wastewater lift station, septic tank, and dual alternating disposal fields located on the north side of the plant. This system services the main complex of buildings central to the plant and processes approximately 3,500 gallons of wastewater per day. The septic tank, shown in Figure (l), will typically contain 9,250 gallons of septage.

The south sewage disposal system is a newly-installed (January 1989) pressurized mound system, which is used in lieu of the construction office building (COB) holding tank that had previously serviced the lavatory facilities on the south end of the plant. The new system is composed of a septic tank (5,700 gallon capacity, see Figure 2). pumping station, and pressurized mound disposal field. When dosing the field. a force main pressurizes the disposal field’s piping system with the septic tank effluent, which distributes throughout the field. The south sewage disposal system has - Revision 9 Date 3/2/90 the design flow capacity to process 4,607 gallons of wastewater per day. The system is typically loaded at approximately 2,500 gallons per day during

4 normal plant operations. Figure (3) indicates diagrammatically the flow of both potable and wastewater throughout Vermont Yankee.

Both the main septic system and the south sewage disposal system’s septic tanks collect waste from the plant’s lavatories, showers, kitchens, and janitorial facilities outside the Radiological Control Area (RCA). No radioactivity is intentionally discharged to either of the septic systems. However, plant investi gations into the source of 1 ow 1 eve1 s of contami nati on found in septic waste have identified that very small quantities of radi‘oacti ve materi a1 s, which are bel ow detection 1 imits for radioactivity releases from the RCA, are carried out of the control area on individuals and accumulate in the septic waste collection tanks by way of floor wash water, showers, and hand washing. As a means of minimizing the transport of radioactive materials into the septic collection tanks, the primary source of the radioactivity ( .e., floor wash water) is now poured through a fi ter bag to remove suspended solids and dirt before the water is released into a janitorial sink.

The majority of the radioactivity found in waste sludge has been d associated with the main septic tank. Grab samples of sludge from the bottom of the COB and main septic tank were analyzed by gamma spectroscopy with the following results of plant - re1ated radi onucl ides :

Activity Concentration IsotoDe fl Siqma (DCi/kq Met)

COB Sludge CS-137 10.3 rt 1.8 (June 8, 1988) Co - 60 45.4 k 3.1

Main Tank Sludge Mn - 54 39.3 f 4.3 (June 8, 1988) Co-60 853.0 f 12.0 Zn - 65 52.7 f 8.2 CS - 134 13.0 j, 2.2 CS - 137 120.7 f 5.2

Revision -9- Date 3/2/90

B-10 The principle radionuclide is Cobalt-60, which accounts for 79% of the plant related activity in the septage samples. In comparison to in-plant 4 smear samples taken for 10CFR61 waste characterizations, the septage sample from the main tank correlates very close with the distribution of radionuclides identified in-plant as shown below:

Re1 ative I sotoDi c Dist ri buti ons

IsotoPe In-P1 ant Smears Main lank Sludge

Mn - 54 3.6% 3.6% co-60 81.5 79.1 Zn - 65 3.3 4.9 CS - 134 0.4 1.2 CS - 137 10.3 11.2

Additional analyses of the main tank septage showed that the liquid portion of the collected sample did not contain any plant-related activation or fission products, and that essentially all of the activity i.n the waste was associated with the solid sludge fraction. The average density of the collected sludge was found to be approximately equal to that of water, with a wet to dry ratio of 25.4 to 1.

"4 Both the liquid and solid fractions of the main tank septic waste were also analyzed for strontium with no detectable activity found. The liquid portion of the waste sample was also analyzed for tritium with no activity above the minimum detectable levels found. Appendix A to Attachment 2 contains the laboratory analysis reports of the samples taken from the COB and main septic tanks.

Prior to identification of the plant-related radioactivity in septage waste, the COB holding tank was being pumped on the average of twice per week, with the sludge and waste liquid transported off-site primarily to the Brattfeboro, Vermont, sewage treatment facility. Waste from the main septic tank was being pumped and transported off-site for disposal on the average of twice per year.

Revision -9- Date 3/2/90 B-11 With the replacement of the COB holding tank by the new south sewage disposal system, and the requested implementation of on-site land disposal of 4 accumulated septic waste, the frequency of collection tank pump-outs with land application of the waste is expected to be once per year. With the past pump- out frequency of the main tank being every six months, the accumulation of sludge at the bottom of the tank was well below its design capacity. During the 1988 sample collections, it was estimated that the sludge thickness was less than 1 foot of its 6-foot depth. However, for conservatism in the radiological evaluations, it is assumed that the sludge layer in the main septic tank and south disposal tank occupies 30% of their combined design volume, and that the frequency of pump-outs is semiannual as opposed to the expected annual cycle. Also, as noted above from laboratory analyses of the sludge layer taken from the bottom of the main tank, the average density of the tank contents is approximately equal to that of water, with a wet-to-dry ratio of 25.4 to 1. Hence, the weight of solids (W,,,) being disposed of is estimated, for purposes of this bounding dose assessment, to be approximately:

Wso, = 14.950 [gall x 3,785.4 Eccfgall x Ekg/ccl x 0.30 [solids fraction] x (1125.41 Cdrylwet ratio] - 700 Ekgl per pump-out of both tanks

or, 1,400 kg of dry solids per year.

3.0 DISPOSAL METHOD

Approval of this application will allow Vermont Yankee to dispose of septage by utilization of a technique of land spreading or surface injection in a manner consistent with all applicable state of Vermont health regulations regarding disposal of septic waste. Details of the chemical and biological controls necessary to satisfy state health code requirements are provided in Reference 5.

The septage will be spread or surface injected on land areas owned by Vermont Yankee and situated within the plant’s site boundary. Transportation of the septage waste to the disposal areas will involve pumping from one of the septic waste collection tanks (i.e., main septic tank, COB holding tank,

Revision -9- Date 3/2/90 B-12 new replacement COB septic tank, or from any other on-site septic waste collection point) into an enclosed truck-mounted tank. The enclosed tank -.c truck is used to prevent spillage while in transit to the disposal areas. The septage will be transported to one of the two disposal sites designated for land application for septage from Vermont ankee, and applied at a fixed rate based on either limitations imposed by the state of Vermont for heavy metals or organic content of the waste, or on the radioactivity content such that projected maximum individual doses wi 11 no exceed established dose objectives.

3.1 Seutic Haste Disposal Procedure

Gamma isotopic analysis of septic waste shall be made prior to each disposal by obtaining a representative sample from each tank prior to pump- out. At least two septic waste samples will be collected from each tank to be pumped by taking a volumetric column of sludge and waste water which allows for analysis of the solid’s distribution and content from top to bottom of each tank. The weight percent of solid content of the collected waste will be determined and applied to the gamma isotopic analysis in order to estimate the total radioactivity content of each tank to be pumped and spread on designated - disposal fields. These gamma isotopic analyses of the representative samples will be performed at the environmental Technical Specification lower limit of detection (LLD) requirements for liquids (see Technical Specification Table 4.9.31 in order to document the estimation of radiological impact from septage disposal .

The radionuclide concentrations and total radioactivity identified in the septage will be compared to the concentration and total curie limits established herein prior to disposal. The methodology and limits associated with determining compl iance with the disposal dose and activity criteria are described in Attachment 2. If the concentration and total activity limits are met, compliance with the dose assessment criteria will have been demonstrated since the radiological analysis (Section 4.5 and Attachment 2) was based on evaluating the exposure to a maximally exposed individual and inadvertent intruder after the accumul ation of twenty years of periodic semi annual

d Revision -9- Date 3/2/90 8-13 spreading of the septic waste on a single (2 acre) plot within one of the designated disposal areas. If the activity limit per disposal area is --cl projected to be exceeded, the appropriate exposure pathways as described in Section 4.5 will be evaluated prior to each additional application, or a separate plot within the designated disposal area will be utilized.

Annually, for years in which disposal occurs, the potential dose impact from disposal operations conducted during the year, including the impact from previous years, will be performed and results reported in the plant’s Semi annual Radioactive Effluent Re1 ease Report which is f 1’ 1 ed after January 1 A1 1 exposures wi11 be assessed uti1 izi ng the methodot ogy described in Attachment 2.

The established dose criteria requires that all applications of septage within the approved designated disposal areas shall be limited to ensure the dose to a maximally-exposed individual be maintained less than 1 mremlyear to the whole body and any organ, and the dose to the inadvertent intruder be maintained less than 5 mrem/year. The total activity based on the measured radionuclide distribution for any single disposal plot is not expected to exceed the following: Maximum Accumul ated Radi oacti vity A1 1 owed Per Acre Isotope -1 ~.limwCi 3

Mn - 54 1.4 Co-60 120.0 Zn - 65 1.4 CS - 134 0.7 CS-137 46.5

If any of the above radionuclides are projected to exceed the indicated activity val ues , then dose cal cul ations wi 11 be performed prior to spreading, in accordance with the methods detailed in Section 4.2.2 of Attachment 2, to make the determination that the dose limit criteria will not be exceeded.

Revision -9- Date 3/2/90 8-14 The concentration of radionuclides in any tank of septic waste to be disposed of will also be limited to a combined Maximum Permissible

1_ Concentration of Water (MPC) (as listed in 10CFR. Part 20, Appendix B, Table 11, Column 21 ratio of less than or equal to 0.1.

For radi ol ogi cal control , each appl icati on of septage wi 11 be appl ied on the designated land area by approved plant procedure which adheres to the following assumptions which were used in developing the dose impact:

0 During surface spreading or injection, the septage. and any precipitation falling onto or flowing onto the disposal field, shall not overflow the perimeter of the designated area.

0 Septage shall not be surface spread or injected into the top 6-inch soil layer within 300 feet from any drinking water well SUPPl Y .

0 Septage shall not be surface spread closer than 300 feet from the nearest dwelling or public building (or within 100 feet f injected into the top 6-inch surface layer).

0 Septage shall not be surface spread closer than 50 feet or within 25 feet if injected into the top 6-inch surface layer) from any roads or site boundary adjacent to land areas.

0 Septage shall not be surface spread within 100 feet (or within 50 feet if injected into the top 6-inch surface layer) of any surface water (rivers, streams, drainage ditches).

0 Low areas of the approved fields, subject to seasonally high groundwater levels, are excluded from the septage application

In addition to the radiological controls to limit the total accumulation of radioactive materials released by septic waste spreading, state of Vermont health code requirements will be followed to ensure the protecti on of the pub1 i c and envi ronment f rom chemi cal and bi ol ogi cal hazards. The application rate and acreage will be determined prior to each

J Revision -9- Date 3/2/90 B-15 disposal operation. This will vary with the chemical composition of the septage, the percent solids, and the radioactive concentrations. --.-

3.2 Administrative Procedures

Complete records of each disposal will be maintained. These records will include the concentration of radionuclides in the septage, the total volume of septic waste disposed, the total activity in each batch as well as total accumulated on the disposal plot at time of spreading, the plot on which the septage was applied, and the results of any dose calculations required.

The annual disposal of septage on each of the approved plot areas will be limited to within the established dose, activity, and concentration criteria noted above, in addition to limitations dictated by chemical and biol ogi cal condi tions. Dose guide1 ines, and concentration and acti vity limits, will be maintained within the appropriate values as detailed in Attachment 2.

Any farmer using land which has been used for the disposal of septic waste will be notified of any applicable restrictions placed on the site due to the land spreading or injection of waste. d

4.0 EVALUATION OF ENVIRONMENTAL IMPACT

4.1 Site Characteristics

4.1.1 Site Toposracihv

The proposed disposal sites consist of two fields located on the Vermont Yankee Nuclear Power Plant site, which is located on the west bank of the Connecticut River in southwestern Vermont at 1 atitude 42 degrees, 47 minutes north and longitude 72 degrees 31 minutes west. Both fields are on plant property within the site boundary and surrounded by a chain link fence.

i Revision -9- Date 3/2/90 B-16 Site A contains an approximate eight-acre parcel of usable land centered - approximately 2,200 feet northwest of the Reactor Building. Site B contains about two acres and is centered approximately 1,700 feet south of the Reactor Building. The usable acreage of both the north and south disposal fields is restricted to those areas which have no slopes greater than five percent to limit surface runoff. A radiological assessment based on the 1988 measured radioactivity concentrations in sludge has determined that a single two-acre plot would be sufficient for the routine disposal of septage for twenty years without exceeding the dose criteria to maximum exposed individual or inadvertent intruder. As a result, the eight-acre field to the northwest could be divided into four disposal plots, with the two-acre site at the south end of the plant site, providing a fifth plot. A portion of the United States Geological Survey topographic map (Brattl eboro quadrangle), showing the plant site. is presented in the Final Safety Analysis Report (FSAR) as Figure 2.5-1. A plan map showing the plant site and the disposal sites is given on Figure 4.

The sites are located along a glacial terrace on the west side of the Connecticut River. This terrace extends about 3,000 feet west rising gently and then more abruptly to a higher terrace and then to dissected uplands. Distance to the east from the disposal sites to the river is at least 100 feet - if septage is disposed of by surface spreading within the designated areas, or 50 feet if septage is injected directly into the soil.

Relief of the proposed disposal sites is low, with elevation ranging between 250 feet and 265 feet (msl). Mean water surface elevation of the adjacent river is about 220 feet.

The topographic character of the s te and surrounding area is compat ble with this use. The spreading of septage at these locations will have no effect on the topography of the area.

Revision -9- Date 3/2/90 B-17 4.1.2 Site Geo1oq.y

1 Profiles of site exploratory borings are shown in the FSAR in Figures 2.5-8 through 2.5-11. Current site characteristics as determined from a recent detailed site investigation can be found in Reference 5.

Composition of surfacial materials is compatible with the proposed use of the site for septic waste disposal.

4.2 Area Characteristics

4.2.1 Meteorol oqy

The site area experiences a continental-type climate with some modification due to the marine climate which prevails at the Atlantic seacoast to the east. Annual precipitation averages 43 inches and is fairly evenly distributed in each month of the year.

Potential impacts on septic waste disposal include occasional harsh weather: ice storms, severe thunderstorms, heavy rains due to hurricanes, the possibility of a tornado, and annual snowfall of from 30 to 118 inches per - year. In addition, frozen ground can occur for up to 4 months of the year.

Septage spreading will be managed by written procedure such that material which is spread or a mix of that material with precipitation will not overflow the perimeter of the disposal site.

Additional information on meteorology of the site can be found in Section 2.3 of the Final Safety Analysis Report.

4.2.2 Hvdrol 0q.y

Hydrology of the site and local area is tied closely to flow in the adjacent Connecticut River. River flow is controlled by a series of hydroelectric and flood-control dams including the Vernon Dam which is about 3,500 feet downstream of the site.

I Revision 9 Date 3/2/90 B- 18 All local streams drain to the Connecticut River and the site is in the direct path of natural groundwater flow from the local watershed easterly

I’ toward the river . Site groundwater 1 eve1 is infl uenced by both precipitation and changes in the level of ponding of the Connecticut River behind the Vernon Dam due to natural flow or dam operation.

Flood flows on the Connecticut are control ed by numerous dams inc udi ng five upstream of the site. Elevation of the 100 year flood is about 228 ft (msl); and, thus, well below the elevation of the proposed site which ranges from about 250 to 265 feet (mslf. The 100-year flood level is based on information presented in References (1) and (2).

Septage disposal by means of land spreading on the proposed site will have no adverse impact on area hydrology.

Further information about site hydrology is in Section 2.4 of the FSAR.

4.3 Water Usase

4.3.1 Surface Water

The adjacent Connecticut River is used for hydroelectric power, for cooling water for the Vermont Yankee plant, as well as for a variety of recreational purposes such as fishing and boating. The Connecticut River is not used as a potable water supply within 50 miles downstream of the plant.

Locally, water from natural springs are used for domestic and farm purposes. FSAR Table 2.4.5 and Figure 2.4-2 show springs used within a 1-mile radius of the site. FSAR Table 2.4.4 and Figure 2.4-1 show water supplies with surface water sources which are within a ten-mile radius of the site.

There will be no impact on surface water usage or quality as a result of septage disposal due to the required separation distances between surface waters and the disposal plots.

- Revision -9- Date 3/2/90 B-19 4.3.2 Groundwater - Based on a review of groundwater measurements in various site borings presented in the FSAR and References 3 and 5, an upper estimate of groundwater levels at the plant is about 240 feet. Considering the proximity of the Connecticut River and Vernon Pond, with a mean water surface elevation of 220 feet, this estimate for the groundwater level appears to be reasonable. Given the topography of the proposed disposal sites, it is highly unlikely that the groundwater level will be within 3 feet of the disposal area surface elevation. Prior to each application of septic waste to a disposal plot, the groundwater level in nearby test wells will be determined and no application will be allowed if the groundwater level in the vicinity of the disposal plot is found to be less than 3 feet.

Groundwater provides potable water for public wells as shown in FSAR Table 2.4.5 and Figure 2.4-1. Groundwater flow in the vicinity of the proposed disposal sites is towards the Connecticut River. There are no drinking-water wells located between the site and the river. Therefore, it is highly unlikely that any drinking water wells could be affected by septage disposal. FSAR Figure 2.4-2 and Table 2.4-5 present information on private wells near the plant.

2

The Vermont Yankee on-site wells provide water for plant use. This supply is routinely monitored for radioactive contamination.

To quantify the impact of septage disposal on the Connecticut River, a conservative groundwater/radionucl ide travel time analysis was performed. For an assumed average travel distance of 200 feet from the disposal site to the river. a groundwater travel time of 408 days was estimated from Oarcy's Law. This estimate is based on a permeability for the glacial till of 10 gpdift', a hydraulic gradient of 0.11 ftlft, and a soil porosity of 0.3. This analysis conservat'ively assumed that the septage placed on the ground was immediately available to the groundwater. In practice, a minimum of 3 feet separation between groundwater and the surface will be required at time of application of the septic waste.

I Revision -9- Date 3/2/90 9-20 Due to ionic adsorption of the radionuclides on solid particles in the groundwater flow regime, most radionuclides travel at only a small fraction of d the groundwater velocity. For the radionuclides present in the sludge, retardation coefficients were developed from NUREWCR-3130 (Reference 4). Retardation coefficients for Co-60, Cs-137, and Cs-134 were directly obtained from NUREGICR-3130. The coefficients for Zn-65 and Mn-54 were conservatively estimated using NUREGICR-3130 as a guide. The radionuclides, their half- lives, retardation coefficients, and their travel time to the river are summarized in Table 1.

TABLE 1

Radionuclide Travel Times

Retardation Travel Time Radi onucl ide Hal f ti fe Coefficient to River

Co-60 5.3 years 860 961 years CS-137 30.2 years 173 193 years CS - 134 2.1 years 173 193 years Zn - 65 244 days 3 1,224 days Mn - 54 312 days 3 1,224 days

The radiological impact on the river for the radionuclides reaching the river under this conservative analysis is discussed in Attachment 2. Water usage of the Connecticut River downstream from the disposal area is limited to drinking water for dairy cows, irrigation of vegetable crops, and irrigation of cow and cattle fodder.

Based on the assessments noted above, it is concluded that groundwater sources will not be adversely impacted as a result of septage disposal on the proposed site.

4.4 Land Use

Both the eight-acre and two-acre sites proposed for the disposa areas are currently part of the Vermont Yankee Nuc ear Power Plant Site ins de the plant’s site boundary which is enclosed by a chain link fence. It is

Revision -9- Date 3/2/90 E-21 undeveloped except for transmission line structures which traverse a portion of the northern disposal area. Development potential is under the control of Vermont Yankee. At present, the eight-acre site on the north end of the plant property is used by a local farmer for the growing of feed hay for use with his dairy herd. No curtailment of this activity as a result of the low levels of radioactivity in septage will be necessary.

Utilization of the proposed sites for septic waste disposal will result in no impact on adjacent land or properties because of the separation of the disposal plots from off-site properties, the general movement of groundwater toward the river and away from adjacent land areas, and the very low levels of radioactive materials contained in the waste. Administrative controls on spreading and the monitoring of disposal area conditions will provide added assurance that this proposed practice will not impact adjacent properties.

4.5 Radiolosical ImDact

In addition to state of Vermont limits imposed on septage spreading, based on nutrient and heavy metal content, the amount of septage applied on each of the proposed disposal plots will also be procedurally controlled to insure doses are maintained within the stated limits. These limits are based "_ on NRC Nuclear Reactor Regulation (NRR) staff proposed guidance (described in AIFINESP-037, August 1986). The proposed dose criteria require that the maximally exposed member of the general public receive a dose less than 1 mrem/year to the whole body or any organ due to the disposal material, and less than 5 mrem/year to an inadvertent intruder.

To assess the doses received by the maximally-exposed individual and the inadvertent intruder, six potential pathways have been identified. These incl ude:

(a) Standing on contaminated ground,

(b) Inhalation of resuspended radioactivity,

_, Revision -9- Date 3/2/90 8-22 (c) Ingestion of leafy vegetables,

._- (d) Ingestion of stored vegetables,

(f) Ingestion of meat, and

(9) Ingestion of milk.

The liquid pathway was also evaluated and determined to be insignificant. Both the maximum individual and inadvertent intruder are assumed to be exposed to these pathways with difference between the two related to the occupancy time. The basic assumptions used in the radiological analyses include:

(a) Exposure to the ground contamination and to resuspended radioactivity is for a period of 104 hours per year during Vermont Yankee active control of the disposal sites, and continuous thereafter. The 104-hour interval being representative of a farmer’s time on a plot of land (4 hours per week for 6 months).

I (b) The septic tanks are emptied every two to three years. (The 4. I assumed practice is to pump septic tanks once per year. The I actual practice may be to pump septic tanks every two to three I years. 1

(c) The tank radioactivity remains constant at the currently determined level. To account for the uncertainty associated with the counting statistics, the measured activity concentrations listed in Section 2 were increased by 3 sigmas. That is, the activity concentrations employed in dose assessment and the total radioactivity content per pump-out (at 700 kg of solids per batch) are as follows:

-I’ [ Revision 23 Date 05/12/99

B-23 Upper-Bound Activity Upper-Bound Activity I sotope Concentration EpCilks drvl Content [Ci /tankful )

fln - 54 1,348 9.436E-07 Co - 60 23,060 1.614E-05 Zn - 65 1,620 1.134E-06 CS-134 322 2.254E-07 CS - 137 4,100 2.870E-06

(d) The radiation source corresponds to the accumulation of radioactive material on a single plot (two-acre) within the proposed disposal sites over a period of 20 years (40 applications at 6-month intervals). (In actuality, the proposed sites will accommodate more than one disposal plot, and, in practice, more than one plot will most probably be used with an application frequency of once per year.)

(e) For the analysis of the radiological impact during Vermont Yankee active control of the disposal sites, a1 1 dispersed radioactive material remains on the surface and forms a source of unshielded radiation. (In practice, the septic waste will be either surface spread or directly injected within the top 6 inches of the disposal plot, in which case, the radioactive material will be mixed with the soil. This, in effect, would reduce the ground plane source of exposure by a factor of about four due to self-shielding.)

(f) No radioactive material is dispersed directly on crops for human or animal consumption, crop contamination being on y through root uptake.

(g) The deposition on crops of resuspended radioact vity is insignificantly smal 1 .

Revision -9- Date 3/2/90 8-24 (h) Pathway data and usage factors used in the analysis are the same as those used in the plant’s ODCM assessment of the off-site radiological impact from routine releases,with the exception that the fraction of stored vegetables grown on the disposal plots was conservatively increased from 0.76 to 1.0 (at present no vegetable crops for direct human consumption are grown on any of the proposed disposal plots).

(i It is conservatively assumed that Vermont Yankee relinquishes control of the disposal sites after the fortieth pump-out (i.e., the above source term applies also for the inadvertent intruder).

(j) For the analysis of the impact after Vermont Yankee control of the sites is relinquished, the radioactive material is plowed under and forms a uniform mix with the top six inches of soil: but, nonetheless, undergoes resuspension at the same rate as surface contamination.

From radio1ogi cal impact assessments associated with the disposa of septage on different plot sizes (Attachment 21, it was determined that a single two-acre plot within the disposal sites would accommodate the 1 mrem/year prescribed dose to the critical organ of the maximally exp sed individual for a period of up to 20 years, as well as the 5 mrem/year 1 prescribed dose to the inadvertent intruder after control is assumed to be relinquished. The calculated potential radiation exposures following the spreading of 40 combined (main septic system and south disposal system) tankfuls (at six-month intervals) on a single two-acre plot are as follows:

Control of Disoosal Sites Radiation Exposure Individual/Orqan

Controlled by VYNPS 0.1 mremfyr Chi 1 d/Whol e Body (Maximum Exposed Individual 1 0.2 mrem/yr Maximum ChildlCiver

Uncontroll ed 1.3 mremlyr Adul t/Whol e Body (Inadvertent Intruder) 3.9 mrem/yr Maximum Teenager/Lung

- Revision -9- Date 3/2/90

8-25 The individual pathway contributions to the total dose at the end of the 20-year accumulation of waste deposited on a single two-acre plot are as - listed below:

Pathway-Dependent Critical Orqan Doses

Maxi mal 1y Exposed Inadvertent Intruder Indi vidual /Organ Cri ticaf Individual /Organ (Chi ld/ Li verf (TeenagerlLung) Pathway (mremlyear) (mremiuear)

Ground Irradiation 0.0576 1.16 Inhalation 0.00122 2.74 Stored Vegetables 0.0913 0.00601 Leafy Vegetable 0.00467 0.00040 Milk Ingestion 0.0421 Of00229 Meat Ingestion 0.00249 0.00012

TOTAL 0.1994 3.909

In addition, an isoto'pic breakdown of the critical organ dose results listed above is shown in the following table:

Isotopic Breakdown of Maximum Radiation Exposures

Radioactivity Exposure Description Isotope [uCi /2 Acres] [ m r em/y r 3

During Vermont Yankee Mn - 54 2.831 0.000436 control of the Co-60 235.3 0.0559 disposal sites. Zn - 65 2.801 0.0230 Maxi mal 1y Exposed CS - 134 1.457 0.00231 Individual/Organ: CS-137 92.59 0.118 Chi 1 d/Li ver TOTAL 0.199

After Vermont Yankee Mn - 54 2.831 0.0144 control of sites is Co- 60 235.3 3.76 ref inqui shed. Zn - 65 2.801 0.00983 Inadvertent Intruder CS - 134 1.457 0.000505 Critical Individual / CS - 137 92.59 0.1247 Organ: Teenager/Lung TOTAL 3.91

Revision -9- Date 3/2/90

B-26 Of interest are also derived dose conversion factors which provide a means of ensuring septage disposal operations within the prescribed

I radiological guidelines. The critical -organ (worst-case) all-pathway values per acre are as follows:

A1 1 -Pathwau Critical -0rqan Dose Conversion Factors Durinq Vermont Yankee Control of Disposal Sites

Exposure

I sotope Individual /Orqan ~ Imrem/vr-uCi /acre1

Mn - 54 Adul t/GE-LLI 3.74E-4 GO-60 Teenager/ Lung 7.14E-4 Zn-65 Chi 1 d/Li ver 1.64E-2 CS-134 Child/Liver 3.18E-3 CS-137 Chi 1 d/Bone 2.66E-3

The calculational methodology and details of the radiological assessment and proposed operational controls on total activity and concentration of waste to be disposed are presented in Attachment 2.

.- 5.0 RADIATION PROTECTION

The disposal operation will follow the applicable Vermont Yankee procedures to maintain doses as low as reasonably achievable and within the specified dose and re1 ease concentration criteria.

c Revision -9- Date 3/2/90 B-27 REFERENCES

.d 1. Flood Insurance Study, Vernon, Vermont, Windham County, FEMA, Community No. 500137. July 25, 1980.

2. Flood Insurance Study, Town of Hinsdale, New Hampshire, Cheshire County, FEMA, Community No. 330022, October 15. 1980.

3. Vermont Yankee Well Development Evaluation by Wagner, Heindel, and Noyes, Inc. July 10, 1986.

4. NUREGfCR-3130, Influence of Leach Rate and Other Parameters on Groundwater Migration, by Dames & Moore, February 1983.

5. Vermont Yankee Nuclear Power Corporation On-Site Septage Disposal Plan, by Wagner, Heindel, and Noyes, Incorporated, June 1989.

Revision 9 DAte 3/2/90 8-28 FIGURE 1 MAIN SEPTIC TANK

Revision 9 Date 3/2/90 6-29 B FIGURE 2 Y SOUTH DISPOSAL SYSTEM SEPTIC TANK

Revision 9 Date 3/2/90 B-30 FIGURE 3 POTABLE AND WASTE WATER FLOW

I I I I I I 1 I 1 1 I 1 I I I I 1 I

Revision -9- Date 3/2/90 8-31 FIGURE 4 SEPTIC WASTE DISPOSAL AREAS

Revision -9- Date 3/2/90 B-32 (This attachment to Appendix B is incorporated into the ODCM by reference due to size. A complete copy is on file with Vermont Yankee Document Control as 4 part of Correspondence Letter BVY 89-59.)

ATTACHMENT 2

VERMONT YANKEE NUCLEAR POWER PLANT

RADIOLOGI CAL ASSESSMENT OF

ON-SITE DISPOSAL OF SEPTIC WASTE

and

PROPOSED PROCEDURAL CONTROLS TO ENSURE

COMPLIANCE WITH RAD10 LOGI CAL LIMITS

Revision -9- Date 3/2/90

B-33 APPENDIX D

ASSESSMENT OF SURVEILLANCE CRITERIA FOR GAS RELEASES FROM WASTE OIL INCINERATION

-J Revision 16 Date 10/28/93 D-1 APPENDIX D

ASSESSMENT OF SURVEILLANCE CRITERIA FOR GAS RELEASES FROM WASTE OIL INCINERATION

INTRODUCTION:

The Nuclear Regulatory Commission amended its regulations (10CFR20) in a Federal Register Notice (Vol. 57, No. 235; page 57649 / Monday, December 7, 1992) that permitted the on-site incineration of contaminated waste oil generated at licensed nuclear power plants without the need to ,

Incineration of waste oil is to be carried out under existing effluent limits, recordkeeping and reporting requirements. Specifically, licensees must comply with the effluent release limitations of lOCFR Part 20, and Part 50; Appendix I. This d, includes the site gaseous pathway dose and dose rate limits contained in the plant's Technical Specifications (Section 3.8). The dose contribution to members of the public resulting from the on-site incineration of contaminated waste oil must not cause the total dose or dose rate from all effluent sources to exceed the dose or concentration limits imposed by lOCFR20, 10CFR50; Appendix I, and the Radiological Effluent Technical Specifications (RETS). It is expected that the actual contribution to public exposures caused by waste oil burning will be a small fraction of the site's effluent limits, as well as a small portion of the total releases from the site.

SOURCE DESCRIPTION

Contaminated waste oil suitable for on-site incineration can be burned in the Waste Oil Burner located in the North Warehouse. The burner has its own exhaust stack situated on the roof of the warehouse. However, due to the short height of the exhaust stack above the roof line, this release point is considered to be a ground level point source for modeling discharges to the environment. In addition, the building wake effects from the North Warehouse are assumed to be independent of the larger Turbine HalllReactor Building complex due to its distance from these main structures. Consequently, the re1atively smal 1 size of the North Warehouse 1 eads to -..... Revision _16 Date 10/28/93 0-2 meteorological dispersion factors that are conservative with respect to the dispersion factors for the main plant structures. c

The waste oil burner is rated to process oil at a 2 gal ./hour from a 500 gallon day tank. The offgas flow rate for the burner is rated as 199 cfm. This provides an air to oil dilution during the incineration of 44,800.

WASTE OIL SAMPLINGI’SURVEILLANCE REQUIREMENTS

The oil burner stack is not equipped with continuous air monitoring or sampling capability for the direct determination of radiolog‘ical effluent releases during the incineration process. As a consequence, sampling and analysis of the waste oil prior to its incineration is necessary to project the dose and dose rate consequences of burning contaminated oil. Calculations of projected dose from the incineration of total quantity of oil to be added to the Waste Oil Burn Day Tank for each series of burns will be performed in accordance with the methods in the ODCM and compared to the accumulated site total dose for that period before initiation of incineration. Dose rate determinations will be determined by averaging the projected dose for the quantity of radioactivity determined to be present in the oil over the expected duration of the burn necessary to incinerate the total volume to be added to the Day Tank. Inherent in this determination is the assumption that all radioactivity found to be present in each batch of oil will be released to the

.- atmosphere during the incineration. No retention of activity in the combustion chamber is assumed in calculating the offsite radiological impact.

Normal sampling and analysis methods for gaseous release streams cannot be applied directly to liquids (waste oil 1. Therefore, the sampling and analysis requirements for liquids as identified in Technical Specification Table 4.8.1 shall be used to determine the level of contamination in waste oil. The stated Lower Limits of Detection (LLD) given on Table 4.8.1 provide assurance that undetectable levels of contamination up to the LLD values will not result in a significant dose impact to the maximum offsite receptor. If waste oil was burned continuously for an entire calendar quarter, and the radionuclides listed in the ODCM Dose Conversion Factor Table 1.1-12 were assumed to be present in the oil at the LLD values specified in Technical Specification Table 4.8.1, the resultant maximum organ dose would amount to only 0.28% of the ALARA quarterly limit of 7.5 mrem.

The principle limitation in the incineration of waste oil is that the site release limits contained in RETS, and implemented by the ODCM methodology, shall not be exceeded. The use of the liquid LLDs on waste oil sample analyses provide sufficient sensitivity to ensure that site dose limits will not be exceeded as a consequence of burning slightly contaminated oil.

Revision 16 Date 10/28/93 D-3 APPENDIX F

APPROVAL PURSUANT TO 10CFR20.2002 FOR ONSITE DISPOSAL OF COOLING TOWER SILT

d Revision 21 Date 08/14/97 F-1 UNWED STATES NUCLEAR REGULATORY COMMISSION WASISWINOTON. D.C. po565OM)l June 18, 1997 Nn 97-85

Mr. Donald A. Reid Vice President, Operations Vermont Yankee Nuclear Power Corporation Ferry Road Brattleboro, VT 05301

SUBJECT: REVISED SAFETY EVALUATION - APPROVAL PURSUANT TO 10 CFR 20.2002 FOR ONSITE DISPOSAL OF COOLING TOWER SILT - VERMONT YANKEE NUCLEAR POWER STATION (PAC NO. M96371)

Dear Mr. Reid:

By letter dated August 30, 1995, Vermont Yankee Nuclear Power Corporation (VYNPC) requested approval, pursuant to 10 CFR 20.2002, for the onsite disposal of slightly contaminated silt material removed from Vermont Yankee Nuclear Power Station’s (Vermont Yankee’s) cooling towers. In a safety evaluation (SEI dated March 4, 1996, the NRC staff approved the proposed silt disposal. However, because of discrepancies VYNPC identified between the safety evaluation and VYNPC’s letter of August 30, 1995, VYNPC postponed implementation of the silt disposal until resolution of the discrepancies. By letter dated August 2, 1996, VYNPC informed the NRC staff of the discrepancies and requested that the SE be revised accordingly. Recognizing the discrepancies, the NRC staff has prepared the enclosed SE to resolve the discrepancies and to replace the SE of March 4, 1996.

LA I The NRC staff’s approval of VYNPC’s silt disposal request is granted provided 1130 the enclosed replacement SE is permanently incorporated into Vermont Yankee’s Offsite Dose Calculation Manual as an appendix. Any modification to the proposed action that may be considered in the future must have prior NRC staff approval

Pursuant to the provisions of 10 CFR Part 51, the Commission has published in the Federal Reqister an Environmental Assessment and Finding of No Significant Impact (61 FR 6662).

Revision 21 Date 08/14/97

F-2 D. Reid -2-

If you have any further questions regarding this matter, please contact Mr. Kahtan Jabbour at (301) 415-1496. 4

Sincerely ,

Patrick D. Milano, Acting Director Project Directorate 1-3 Division of Reactor Projects - 1/11 Office of Nuclear Reactor Regulation

Docket No. 50-271

Enclosure: Safety Eva1 uati on

cc w/encl: See next page

_. Revision 21 Date 08/14/97

F-3 Vermont Yankee Nuclear Power Vermont Yankee Nuclear Power Station Corporati on

cc : e' Mr. Peter LaPorte, Director Regional Administrator, Region I ATTN: James Muckerheide U. S. Nuclear Regulatory Commission Massachusetts Emergency Management 475 Allendale Road Agency King of Prussia, PA 19406 400 Worcester Rd. P.O. Box 1496 R. K. Gad, I11 Framingham, MA 01701-0317 Ropes & Gray One International Piace Mr. Raymond N. McCandless Boston, MA 02110-2624 Vermont Divi si on of Occupati onal and Radi ologi cal Heal th Mr. Richard P. Sedano, Commissioner Administration Building Vermont Department of Public Service Montpel ier, VT 05602 120 State Street, 3rd Floor Montpel ier, VT 05602 Mr. J. J. Duffy Licensi ng Engi neer Pub1 ic Service Board Vermont Yankee Nuclear Power State of Vermont Corpo'rati on 120 State Street 580 Main Street Montpel ier, VT 05602 Bolton, MA 01740-1398

Chai rman, Board of Sel ectman Mr. Robert J. Wanczyk Town of Vernon Di rector of Safety and Regulatory P.O. Box 116 Affairs

w Vernon, VT 05354-0116 Vermont Yankee Nuclear Power Corp. Ferry Road Mr. Richard E. McCullough Brattleboro. VT 05301 Operating Experience Coordinator Vermont Yankee Nuclear Power Station Mr. Ross B. Barkhurst, President P.O. Box 157 Vermont Yankee Nuclear Power Governor Hunt Road Corporation Vernon, VT 05354 Ferry Road Brattleboro, VT 05301 G. Dana Bisbee, Esq. Deputy Attorney General Mr. Gregory A. Maret. Plant Manager 33 Capitol Street Vermont Yankee Nuclear Power Station Concord, NH 03301-6937 P.O. Box 157 Governor Hunt Road Resident Inspector Vernon, VT 05354 Vermont Yankee Nuclear Power Station U.S. Regulatory Commission P.O. Box 176 Vernon, VT 05354

Chief, Safety Unit Office of the Attorney General One Ashburton Place, 19th Floor Boston, MA 02108

4 Revision 21 Date 08/14/97

F-4 UNITED STATES NUCLEAR REGULATORY COMMISSION WASlikNOTON, 0.C. zOSdSQOol

SAFETY EVALUATION BY THE OFFICE OF NUCLEAR REACTOR REGULATION

RELATED TO ONSITE DISPOSAL OF SLIGHTLY CONTAMINATED COOLING TOWER SILT

VERMONT YANKEE NUCLEAR POWER CORPORATION

VERMONT YANKEE NUCLEAR POWER STATION

DOCKET NO. 50-271

1.O INTRODUCTION

By letter dated August 30, 1995, Vermont Yankee Nuclear Power Corporation (VYNPC) requested approval for the onsite disposal of slightly contaminated si1 t materi a1 removed from Vermont Yankee Nuclear Power Station’s (Vermont Yankee’s) cooling towers. In a safety evaluation (SEI dated March 4, 1996, the NRC staff approved the proposed silt disposal. However, because of discrepancies between the SE and VYNPC’s letter of August 30, 1995, VYNPC postponed implementation of the silt disposal until resolution of the discrepancies. By letter dated August 2, 1996, VYNPC informed the NRC staff of the discrepancies and requested that the SE be revised accordingly. Recognizing the discrepancies, the NRC staff has prepared this SE to resolve the discrepancies and to replace the SE of March 4, 1996.

2.0 BACKGROUND

VYNPC has previously obtained NRC staff approval of the onsite disposal of very-low-level radioactive material similar to the proposed silt disposal. By letter dated June 28, 1989, VYNPC proposed the onsite disposal of slightly contaminated septic waste material by land application at Vermont Yankee. By letter dated August 30, 1989, the NRC staff approved this request pursuant to 10 CFR 20.302 (now 10 CFR 20.2002). The NRC staff considered this site-specific application for Vermont Yankee to have insignificant radi ologi cal impact because the proposed septic waste materi a1 di sposal invol ved 1 icensed materi a1 containing 1 ess than 0.1 percent of the radioactive material, primarily cobalt-60 and cesium-137, already considered acceptable in the Final Environmental Statement (FES) of July 1972, and involved exposure pathways much less significant than those in the FES. In addition, the proposed septic waste materi a1 di sposal satisfied the following appl icab1 e boundary conditions for the disposal of licensed material:

a. The whole body dose to the hypothetical maximally exposed individual must be less than 1.0 mremiyear.

Revision 21 Date 08/14/97

F-5 -2-

b. Doses to the whole body and any organ of an inadvertent intruder -.-- from the probable pathways of exposure are less than 5 mremlyear c. The disposal must be at the same site.

Following the NRC staff’s approval on August 30, 1989, VYNPC implemented the disposal of the contaminated septic waste material as proposed.

By letter dated August 30, 1995, VYNPC requested that the previous authorization for the onsite disposal of very-low-level radioactive material be amended to permit the onsite disposal of slightly contaminated silt material, within the boundary conditions of the-previously approved septic waste material disposal .

3.0 EVALUATION

In its fetter of August 30, 1995, VYNPC stated that the proposed si t disposal method is the same as the previously approved septic waste disposal method, and utilizes land spreading in the same onsite areas approved for s ptic waste disposal. The volume of silt proposed for onsite disposal consists of 14,000 cubic feet 1396 cubic meters) accumulated through August 1335 plus approximately 4,000 cubic feet 1113 cubic meters) to be removed from the cool ing towers during each 18-month operating cycl e. The acti vity contained in the currently accumulated silt, based on samples taken by VYNPC in June 1995, is 0.193 millicuries, principally from 0.034 millicuries of cobalt-60 and 0.159 millicuries of cesium-137. The activity contained in the

1_ additional silt to be removed from the cooling towers each 18-month operating cycle is anticipated to be 0.059 millicuries, principally from 0.012 millicuries of cobalt-60 and 0.047 millicuries of cesium-137.

VYNPG’s radiological assessment enclosed with its August 30, 1395, letter demonstrates that the combined radiological impact for all onsite disposal operations, the proposed disposal of silt and the previously approved disposal of septic waste material, will continue to meet the applicable boundary conditions (given above) for the disposal of licensed material. Therefore, the proposed onsite disposal of slightly contaminated silt is acceptable.

As discussed in VYNPC’s letter of August 2, 1966, if the onsite disposal of cooling tower silt or septic waste material would result in exceeding the applicable boundary conditions (given above). then VYNPC must obtain prior LA I NRC staff approval of the disposal. In addition, VYNPC made the following 1193 commi tments: 1130 a. VYNPC will report in the Annual Radiological Effluent Release Report a list of the radionuclides present and the total radioactivity associated with the onsite disposal activities at Vermont Yankee.

“-0 Revision 21 Date 08/14/97

F-6 c

-3-

VYNPC 4 AI b. will maintain records of radionuclide concentrations and 1130 total activity associated with onsi te disposal activities at Vermont Yankee in accordance with 10 CFR 50.75(g).

4.0 CONCLUSION

The NRC staff finds that the radiological conditions at the Vermont Yankee site (see attachment) that would result from the onsite disposal of slightly contaminated silt material, as proposed by VYNPC pursuant to 10 CFR 20.2002, and the previously approved onsi te disposal of slightly contaminated septic waste material, are within the applicable boundary conditions (given above) for the disposal of licensed material. Therefore, the proposed onsite disposal of slightly contaminated silt removed from Vermont Yankee’s cooling towers is acceptable.

LA I VYNPC is required to permanently incorporate this SE into the Vermont Yankee 1130 Offsite Dose Calculation Manual as an Appendix to document the the radioactive material onsite disposal activities approved for Vermont Yankee, and VYNPC’s re1ated commitments regarding reporting and record keeping. Any additional modification of VYNPC’s disposal activities which go beyond those proposed in the August 30, 1995, submittal, and are not addressed above must have prior NRC staff approval. In addition, any onsite disposal of cooling tower silt or septic waste material that would result in exceeding the applicable boundary conditions (given above), must also have prior NRC staff approval.

I Principal Contributors: J. Minns D. Dorman 6. Harbuck

Date: June 18, 1997

Attachment: Vermont Yankee Site Area Map

Revision 21 Date 08/14/97

F-7 FIGURE 4 SEPTIC WASTE DISPOSAL AREAS

Revision 21 Date 8/14/97 F-8 VERMONTYANKEE RESPONSIBILITY NUCLEARPOWER CORPORATION n

am7 TO ENGINEERINGOFF(CE 58oM(rfff STREET BOLTON. MA 01740 (soel 719-671 I

August 30, 1995 BVY 95-97

United States Nuclear Regulatory Commission Washington, DC 20555

ATTN: Document Control Desk

References: (1) License No. DPR-28 (Docket No. 50-271) (2) Letter from R. W. Capstick. Vermont Yankee, to USNRC, "Request to Routinely Dispose of Slightly Contaminated waste in Accordance with 10CFR20.302(a)", BVY 89-59, June 18, 1989. (3) Letter from M. B. Fairtile, USNRC, to L. A. Tremblay, Vermont Yankee, "Approval Under 10 CFR 20.3021a) of Procedures for Disposal of Slightly Contaminated Septic Waste on Site at Vermont Yankee (TAC No. 73776)". dated August 30, 1989.

Subject: Request to Amend Previous Approval Granted Under 10 CFR 20.302(a) for Disposal of Contaminated Septic Waste

In accordance with the criteria of the Code of Federal Regulations, Title 10, Section 20.2002 (previously cited 10CFR20.302(a)), enclosed please find the subject application to amend the previously granted approval (Reference 3) to dispose of slightly contaminated septic waste on site at Vermont Yankee by expanding the allowable waste stream to include slightly contaminated Cooling Tower silt material.

This application specifically requests approval to dispose of Cooling Tower silt deposits, contaminated at minimal levels, which have been or might be generated through the end of station operations at the Vermont Yankee Nuclear Power Plant. The proposed silt disposal method is the same as the septic waste disposal method requested in Reference 2 and approved in Reference 3. The disposal method utilizes on site land spreading in the same designated areas used for septic waste. Disposal of this waste in the manner proposed, rather than holding it for future disposal at a lOCFR Part 61 licensed facility when access to one becomes available, will save substantial casts and valuable disposal site space for waste of higher radioactivity levels.

A radiological assessment and proposed operational controls based on continued on site disposal of accumulated river silt removed from the basins of the plant's mechanical draft cooling towers is contained in Enclosure A. The assessment demonstrates that the dose impact expected from the disposal of silt removed from the cooling towers during normal maintenance will not exceed the dose limits already imposed for septic waste disposal. The combined radiological impact for all on site disposal operations shall be limited to a total body or organ dose of a maximally exposed member of the public of less than one rnrerniyear during the period of active Vermont Yankee control of the site, or less than five mremlyear to an inadvertent intruder after termination of active site control. Enclosure B contains a copy of the original assessment and disposal procedures for

Revision 21 Date 08/14/97

F-9 VERMONT YANKEE NUCLEAR POWER CORPORATION

septic waste (References 2 and 31 for your use and reference in evaluating the proposed amendment.

-r Upon receipt of your approval, Enclosure A will be incorporated into the Vermont Yankee ODCM.

We trust that the information contained in the submittal is sufficient, however, should you have any questions or require further information concerning this matter, please contact this office.

Sincerely.

VERMONT YANKEE NUCLEAR POWER CORPORATION

James J. Duffy Licensing Engineer

Enclosures A & B

c: USNRC Region I Administrator (Letter and Enclosure A) USNRC Resident Inspector - VYNPS (tetter and Enclosure A) USNRC Project Manager - VYNPS (Letter and Enclosure A)

Revision 21 Date 08/14/97 F-10 ENCLOSURE A

VERMONT YANKEE NUCLEAR POWER PLANT

ASSESSMENT OF ROUTINE DISPOSAL OF COOLING TOWER SILT IN AREAS ON SITE PREVIOUSLY DESIGNATED FOR SEPTIC WASTE DISPOSAL

- Revision 21 Date 08/14/97

F-11 Table of Contents

Page

1.0 ~NTRO~UC~IO~...... 3

2.0 WASTE STREAM DESCRIPTION ...... 4

3.0 DISPOSALMETHOD ...... 9

3 . I Si1 t Disposal Procedure Requi rements ...... 9

3.2 Administrative Procedure Requirements ...... 12

4.0 EVALUATION OF ENVIRONMENTAL IMPACTS ...... 13

4.1 Site Characteristics ...... 13

4.2 Radiological Impact ...... 13

5.0 RADIATION PROTECTION ...... 23

6.0 CONCLUSIONS ...... 23

7.0 REFERENCES ...... 24

.

2

c Revision 21 Date 08/14/97

F-12 VERMONT YANKEE NUCLEAR POWER PLANT

Assessment of Routine DiSDOSaf of Coolinq Tower Silt in Areas On-Si te Previous1Y Designated for Septic Waste Disposal

1.O INTRODUCTION:

Vermont Yankee Nuclear Power Corporation (Vermont Yankee) requested from the NRC in 1989 permission to routinely dispose of slightly contaminated septic waste in designated on-site areas in accordance with 10CFR20.302(a). The NRC responded to this request on August 30, 1989 by granting approval of the proposed procedures for on-site disposal of septic waste concluding that the commitments, as documented in our request, were acceptable provided that our request and analysis be permanently incorporated into the plant’s Offsite Dose Calculation Manual (ODCM). Revision 9 to the ODCM (Appendix Bf incorporated the assessment and approval of the methods utilized for on-site disposal of slightly contaminated sewage sludge.

In addition to the previously identified solids content of septic waste as a source of envi ronmental , 1 ow 1 eve1 radi oacti ve contaminated materi a1 , cool ing tower silt deposits resulting from the settling of solids from river water passing through the mechanical draft cooling tower system have been identified - to also contain low levels of plant-specific radionuclides. Periodic removal of the silt from the cooling tower basins is a necessary maintenance practice to insure operability of the cooling system. However, due to the presence of by-product materi a1 s in the si1 t, proper disposal requi rements must be appl ied to insure that the potential radiological impact is within acceptable limits.

This assessment of silt disposal expands the original septic waste disposal assessment to include earthen type materials (cooling tower silt deposits) whi 1 e maintaining the original radi ologi cal assessment model ing and dose 1 imit criteria that have been approved for septic waste spreading on site. This assessment demonstrates that cooling tower silt can be disposed of in the same manner and under the same dose limit criteria as previously approved for septic waste in Appendix B to the Vermont Yankee ODCM. Implementation of the following commitments as an amendment to the original 10 CFR

3

.d Revision 21 Date 08/14/97 F-13 Part 20.302(a) approval for septic waste shall be incorporated into the Vermont Yankee ODCM upon approval by the PJRC. 4

2.0 WASTE STREAM DESCRIPTION:

The waste involved in this assessment is residual solids (silt) collected in the basins of the plant’s mechanical draft cooling tower system. The silt consists of organic and inorganic sediments and earthen type materials that have settled from the cooling water flow taken from the Connecticut River as it passes through the towers. As a result of de-sludging the tower basins in 1993, an estimated 14,000 cubic feet of silt was accumulated on site. Clean-out operations will also occur periodically to ensure continued system operability. Sample analysis performed to the plant’s environmental lower 1 imits of detection requirements, as contained in Technical Specification Table 4.9.3., has identified Cobalt-60 and Cesium-137 in low concentrations as being present in silt collected in 1993.

The cooling towers are located at the southern end of the plant facility complex but are not directly connected to any system in the plant that contains radioactivity. The postulated mechanism of how plant-related radionuclides have been introduced into the cooling system silt assumes that past routine effluents discharged from nearby plant gaseous release points

1 were entrained in the large mechanically-induced air flow that is pulled through the towers as a heat exchange medium. The cooling water flow provides a scrubbing action as it is breaks up into fine water droplets due to the splash pans of the towers. This scrubbing action washes any airborne particulates out of the. air. Over long periods of operation, any radioactivity removed from the air flow could buildup to measurable levels in silt that settles out in the basins at the bottom of the towers.

Table 1 lists the analyses of twenty-one samples collected from the silt pile removed from the cool i ng tower basins. Radi oacti vi ty measurements, averaged over all the samples, indicate that the silt material can be characterized as containing approximately 50 pCi/kg (dry wt.) of Cobalt-60 and 198 pCifkg (dry wt.) of Cesium-137. Eight of the samples indicated no positive Cobalt-60 above a minimum detectable level achieved for the analysis.

4

Revision 21 Date 08/14/97 F-14 Table 1

Cool inq Tower Si1 t Radi oacti vity ( 1993 sampl es*)

Sample # co - 60 CS - 137 (pCi/kg dry) (pCi/kg dry) G12759 53 144 G12758 72 172 G12757 (14 201 G12756 (17 245 G12755 73 206 G12754 (16 165 G12753 (27 240 G12752 79 181 G12751 (29 180 G12750 35 107 G12749 59 171 G12748 <19 205 G12747 <38 209 G12746 <7 218 G12745 50 241 G12744 40 220 G12743 68 2 64 612742 45 195 -.- 612724 71 115 G12723 104 264 G13940 126 218 Average: 50 198 Max. 126 264 Min. (7 107 Standard deviation: 30 42

* Average wet to dry sample weight ratio equal to 1.6 Dry weight silt density equal to 1.3 gm/cc.

5 - Revision 21 Date 08/14/97

F-15 For the purpose of estimating the total activity in the silt pile, the less than values in Table 1 are included as positives in the calculation of the - average radioactivity concentration.

Cobalt-60, due to its relatively short half life, is typically associated with plant operations when measured in the near environment. However, Cesium-137 when measured in the environment may have a background component that is not related to power plant operations. Past weapons testing fallout has imposed a man made background level of Cesium-137 in New England soils and sediments that can vary over several hundred pCi/kg. The plant’s Environmental Monitoring Program has shown that Connecticut River sediment in the vicinity of Vermont Yankee averages about 123 pCi/kg (dry wt.) of Cesium-137 (Table 2) with no plant related detectable level of Cobalt-60. The value of 123 pCi/kg may represent an estimate of background level of Cesium-137 in sediment that would be subject to entrainment in cooling water flow that enters the plant. In comparing the measured levels of Cesium-137 on Table 1 with the past river sediment level, the average concentration in the cooling tower silt is higher than that of the river sediment data but does fall within the observed range of recorded sediment Cs-137. The river sediment Cesium-137 concentration averages about 62% of the concentration value detected in the tower silt. For purposes of this assessment of plant-related dose impact from the on-site disposal of si1t material, it is conservatively assumed that all detectable

1 Cs-137 in cooling tower silt is directly related to plant operations. No background component is subtracted from the measured values for this case study since only a single sampling location (down stream) is included in the Environmental Monitoring Program which may not fully describe the true background levels in the region.

The total radioactivity for the current 14,000 cubic feet of silt collected on site can be estimated by multiplying this volume by its “as is” density of 2.1 gm/cc (i.e. 1.3 gm/cc dry weight density x 1.6 wetldry weight ratio) and then conservatively assume that the measured average dry weight radioactivity concentrations for Cobalt and Cesium would be the same as in the collected silt. Multiplying the average Cobalt-60 and Cesium-137 concentration in silt by the mass of the collected material produces estimates (Table 3) of total radioactivity that was removed from the cooling tower basin in September 1993.

6 - Revision 21 Date 08/14/97 F-16 Table 2

Cesium-137 in

Connecticut River Sediments*

CS- 137 Date fpCilkg dry) 61 a5 60 137 176 178 230 a4 62 (174 179 115 62 Average: 132 Max. 230 Min. 60 Standard deviation: 56

* Sampl es coll ected as part of the Vermont Yankee Radio1 ogical Envi ronmental Monitoring Program (REMPI for river sediment sample location SE-11.

7

Revision 21 Date 08/14/97

F-17 Table 3

Estimated Total Radioactive Material for 1993 Tower Clean-Out

Volume of Mass Average Total Act. Decayed Act. Silt Concentration (as of 11/93) (as of 6/95) (ft3) fkg) ( pCi / kg 1 (uCi 1 (uCi 1 CO- 60 14.000 8.32E+5 50 42 34

CS - 137 14,000 8.32 E+5 198 165 159

In addition to 14,000 cubic feet of silt already accumulated, it is anticipated that periodic maintenance work in cleaning out the cooling tower basins will generate approximately 4,000 cubic feet of new silt material over each successive 18 month operating cycle. Assuming the same level of plant-related radioactivity concentration that was originally observed, the addi tional amounts of radi oact vity that will require on site disposal foll owing each refuel ing cycl e can also be estimated. Table 4 lists an estimate of the total radioact vity that might be present at each 18 month cl ean - out cycl e. - Table 4

Estimated Total Radioactive Material for Each 18 Month Maintenance Cycle

Volume of Mass Average Total Silt Concentration Activity (ft3) (kg) (pCi /kg) (uCi 1 ...... ~.,.,...... ~,.”..__.___.._.._~____._.,.. * CO-60 4,000 2.38E+5 50 12

CS-137 4.000 2.38E+5 198 57

8 - Revision 21 Date 08/14/97 F-18 3.0 DISPOSAL METHOD: ci The method of silt disposal shall utilize a technique of land spreading in a manner consistent with the current commitments for the on-site disposal of septic waste as approved by the NRC and implemented as Appendix B of the Vermont Yankee ODCM (Reference I). The same land areas designated and approved for septic waste disposal shall be used for the placement of silt removed from the cool ing tower basins. Determination of the radi ol ogi cal dose impact shall also be made based on the same models and pathway assumptions as indicated in Appendix B of the ODCM.

3.1 Si1 t Disposal Procedure Reaui rements :

Gamma isotopic analysis of silt samples shall be made prior to each disposal by obtaining representative composite samples in sufficient numbers to characterize the material removed from the cooling tower basins. Each gamma isotopic analysis shall be required to achieve the environmental lower limits of detection as indicated for sediment on Table 4.9.3 of the Vermont Yankee Technical Specifications.

The estimation of total radioactivity to be disposed of shall be made based on the average of all composite sample analyses. The estimation of total

I radioactivity and projected dose impact shall be made prior to placing the collected silt on the designated disposal plots. The dose impact from each disposal operation shall be included with all past septic waste and silt spreading operations to ensure that the appropriate dose limits are not exceeded on any waste disposal area for the combination of all past operations.

The established dose criteria requires that all applications of earthen type materials within the approved designated disposal areas shall be limited to ensure that dose to a maximally exposed individual (during the Vermont Yankee control period) be maintained less than 1 mremlyear to the whole body and any organ, and the dose to an inadvertent intruder following termination of site control be maintained less than 5 mrem/year to the whole body and any organ.

9

Revision 21 Date 08/14/97 F-19 The limits on concentrations of radionuclides as addressed in Appendix B to the ODCM for septic waste (i.e., each tank of septic sludge to be disposed are d limited to a combined MPC ratio of less than 0.1) were included to ensure proper control was in place to address the situation of small quantities of re1ati vel y high Concentration mater1a1 . This 1 imitation does not di rectly apply to silt deposits since the silt is handled as dewatered sediments as opposed to liquid slurries of septic waste.

For dry, earthen type material such as silt, a specific radionuclide concentration limit shall be applied in place of the septic waste liquid MPC ratio. No soil associated with a sample analysis that identifies a plant-related radionuclide in excess of the concentration limits of Table 5 will be permitted regardless of the total pathway dose assessment determined for the quantity material under consideration. For the case where more than one radionuclide is detected, the sum of the ratio rule will be applied. The measured concentration of each radionuclide divided by its limiting concentration value shall be added with the sum of all fractions equal to or less than 1. This limiting condition will prevent small volumes of relatively high specific radioactivity from being spread on the disposal plots, and therefore reduce the potential for creating unexpected hot spots of concentrated material.

Table 5 lists, by radionuclide, soil concentration values that would generate an annual external effective dose equivalent of 25 mremlyear if it were assumed that an individual continuously stood on an infinite plane of soil contaminated to a depth of 15 cm. The assumptions of an infinite plane and continuous occupancy are conservative for situations where the amount of contaminated soil identified would not provide for a 15 cm soil depth over an extended surface area and where disposal site access is limited. Twenty-five mremlyear was selected as a reference value based on the fact that it was a suitable fraction of the NRC annual dose limit (100 mrem/year per 10 CFR Part 20.1301) applied to members of the public from all station sources. The 25 mrem/year also equals the EPA dose limit from 40 CFR Part 190 which would apply to real members of the public offsite and allow for credit to be taken in accounting for actual usage patterns such as occupancy time. The external dose factors provided on Table 5 were derived from Table E-2 of NUREWCR-5512 (Reference 3).

10 - Revision 21_ Date 08/14/97 F-20 Table 5

Dry Soil Maximum Concentration Values

Soi 1 Concentration pCi / kg Radi onucl ide (equal to 25 mremfyr)

Cr-51 1.51E+05 Mn-54 5.50E+03 Fe-59 3.83E+03 CO-58 4.70E+03 Co-60 1.82E+03 Zn - 65 7.85€+03 Zr-95 6.18E-f-03 Ag-llOm 1.66E-t-03 Sb-124 2.51 €+03 CS - 134 2.95€+03 CS-137 8.13E+03 Ce-141 7.85E+04 Ce-144 8.75E+04 Assumptions include infinite planar distribution. uniform depth distribution to 15 cm, soil density at 1.625E+06 gm/m3 and external direct dose pathway only with a 100% occupancy factor.

11

I Revision 2 Date 08/14/97 F-21 3.2 Administrative Procedure Requirements:

.4 Dry silt material shall be dispersed using typical agricultural dry bulk surface spreading practices only in approved disposal areas on site.

Complete records of each disposal will be maintained. These records will include the concentration of radionuclides detected in the silt, an estimate of the total volume of silt disposed of, the total radioactivity in each disposal operation as well as the total accumulated on each disposal plot at the time of the spreading, the plot on which the silt was applied, and the results of any dose calculations or maximum allowable accumulated activity determinations required to demonst ate that the dose limits imposed on these land spreading operations have not been exceeded. The determination of the total radioactivity and dose calcu ations shall also include all past septic waste and silt disposal operations that placed low level radioactive material on the designated disposal plots.

The periodic disposal of silt on each of the approved land spreading areas will be limited to within the same established dose and radioactivity criteria that have been approved for septic waste disposal.

Concentration limits that are applied to the disposal of earthen type .-- materials (dry soil) shall restrict the placement of small volumes of material that have relatively high concentrations of radioactivity such that direct exposure could not exceed a small proportion (25%) of the annual dose limits to members of the public that is contained in 10 CFR Part 20.1301,

Any farmer leasing land used for the disposal of silt deposits will be notified of the applicable restrictions placed on the site due to the land spreading of low level contaminated material. These restrictions are the same as detailed for septic waste spreading as given in Reference 1.

12

Revision 21 Date 08/14/97 F-22 4.0 EVALUATION OF ENVIRONMENTAL IMPACTS:

'd 4.1 Site Characteri stics

The designated disposal sites consist of two fields located on the Vermont Yankee Nuclear Power Plant site. Both fields are on the plant property within the site boundary security fence. Site A contains an approximate ten-acre parcel of land centered approximately 2,000 feet northwest of the Reactor Building. Site B consist of approximately two acres and is centered approximately 1,500 feet south of the Reactor Building. These are the same land parcels approved by the NRC for the land disposal of septic waste and are described in detail in Reference 1 along with the boundary restrictions for the placement of contaminated materi a1 .

Radi ol ogi cal assessments of septic waste disposal have determi ned that a single two-acre plot would be sufficient for the routine disposal of that waste stream over a 20-year period without exceeding the dose criteria to a maximum exposed individual or inadvertent intruder. As a result, the ten-acre field to the northwest can be divided into five disposal plots, with the two-acre site at the south end of the plant site providing a sixth plot. It is therefore concluded that there is sufficient space within the a? ready approved disposal plots to accommodate additional materi a1 f rom the cool ing - tower basins along with the septic waste without the likelihood of exceeding the approved dose limit criteria.

Since the residual organic and inorganic solids associated with river sediment (silt) are similar to the sand and residual organic material remaining after decomposition of septic waste that is removed from the plant's septic tanks, the conclusions of no significant environmental (non-radiological) impact associated with the disposal of septic waste are not changed by the addition of another earthen type material, namely silt.

4.2 Radioloqical ImDact:

The amount of cooling tower silt, in combinat on with any septic waste di sposal s, wi11 be procedural 1 y control 1ed to insure doses are maintained within the prior approved limits (Reference 1 . These limits are based on

13

Revision 21. Date 08/14/97 F- 23 past NRC proposed guidance (described in AIF/NESP-O37), August 1986). The dose criteria require that the maximally exposed member of the general public d receive a dose less than 1 mrem/year to the whole body or any organ due to the disposed material and less than 5 mrem/year to the whole body or any organ of an inadvertent intruder.

To assess the doses received by the maximally exposed individual and inadvertent intruder resulting from silt spreading, the same pathway modeling, assumptions and dose calculation methods as approved for septic disposal are used. These dose models implement the methodologies and dose conversion factors as provided in Regulatory Guide 1.109 (Reference 2).

Six potential pathways have been identified and include: (a) Standing on contaminated ground, (b) Inhalation of resuspended radioactivity, (cf Ingestion of leafy vegetables, (d) Ingestion of stored vegetables. (f) Ingestion of meat, and (g) Ingestion of cow’s milk

Based on the septic waste evaluations, the liquid pathway was determined to be insignificant.

/ Both the maximum individual and inadvertent intruder are assumed to be exposed to these pathways with the difference between them related to occupancy time. The basic assumptions used in the radiological analyses include:

(a) Exposure to ground contamination and resuspended radioactivity is for a period of 104 hours per year during the Vermont Yankee active control of the disposal sites and continuous thereafter. The 104-hour interval is representative of a farmer’s time spent on a plot of land (4 hours per week for 6 months).

(b) For the purpose of projecting and illustrating the magnitude of dose impacts over the remaining life of the plant, it is assumed that the current concentration levels of activity detected in sift remain

14

Revision 21 Date 08/14/97 F-24 constant. Table 1 indicates the measured radioactivity levels for Cobalt-60 and Cesium-137 first noted in silt material.

(c) The maximum radiation source corresponds to the accumulation of radioactive material on a single plot (two acre> within the approved disposal sites over a period of 13 operating cycles. This extends over the next 18 years until after the operating license expires in 2012. The initial application (referenced to June 1995) consists of 14,000 cubic feet of silt collected in 1993 along with the first periodic clean out of the tower basins that adds an additional 4,000 cubic feet. All subsequent applications of 4,000 cubic feet occur at 18-month interval s.

(d) For the analysis of the radiolog cal impact during the Vermont Yankee active control of the disposal sites, no plowing is assumed to take place and all dispersed radioact ve material remains on the surface forming a source of unshielded direct radiation.

(e) No radioactive material is dispersed directly on crops for human or animal consumption. Crop contamination is only through root uptake.

(f) The deposition on crops of suspended radioactivity is insignificantly small.

(g) Pathway data and usage factors used in the analysis are the same as those used in the plant’s OOCM assessment of off-site radiological impact from routine releases with the exception that the fraction of stored vegetables grown on the contaminated land was conservatively increased from 0.76 to 1.0 (at present no vegetable crops for human consumption are grown on any of the approved disposal plots).

(h) It is conservatively assumed that Vermont Yankee relinquishes control of the disposal sites after the operating license expires in 2012 (i.e., the source term accumulated on a single, 2-acre disposal plot applies also for the inadvertent intruder).

15 - Revision 21 Date 08/14/97 F-25 (i) For the analysis of the impact after Vermont Yankee control of the site is relinquished, the radioactive material is plowed under and forms a uniform mix with the top six inches of soil: but nonetheless, undergoes resuspension in air at the same rate as the unplowed surface contarninati on. For di rect ground pl ane exposure the sel f shi el ding due to the six-inch plow layer reduces the surface dose rate by about a factor of four.

The dose models and methods used to generate deposition values and accumulated activity over the operating life of the plant are documented in Attachment 2 to Reference 1. Based on the measured concentrations and silt volumes noted in Section 2.0 above, the total radioactivity that remains on the disposal plots after the operating license expires is estimated on Table 6.

Table 6

Projected Radi oacti vi tv Bui 1 duD Due to Si 1t SDreadi nq

Nucl i de Contribution Accumulation from Total Remaining from initial 13 cycles at in year 2013 14,000 ft3 (uCi) 4,000 ft3/ea. (uCif (uCi 1

Cobal t - 60 3.2 61.9 65.1 Cesi urn- 137 104.9 500.5 605.4

The calculated potenti a1 radiation exposure fo7 1 owing the spreading of a1 7 silt material anticipated to be generated through the remainder of the operating license on a single, two-acre plot is provided on Table 7.

16

v Revision 21 Date 08/14/97 F-26 Table 7

Dose Impact Due to Continued Spreadinq to End of License

Disposal Site Access Radi ation Exposure Individual /Organ

Control 1 ed by VYNPS 0.228 mrem/yr adul tlwhol e body (rnax. exposed individual 1 0.820 mrem/yr max. childibone

Uncontrolled by VYNPS 1.46 mremlyr adul tfwhofe body (inadvertent intruder after 2.41 mremlyr max. childlbone license termination)

The individual pathway contr butions to the total dose due to cont nued silt spreading are shown on Table 8.

Table 8

Pathway-Dependent Critical Orsan Doses

Maximally exposed Inadvertent Intruder Individuaf/Organ Critical Individual /Organ (ChildIBone) (Chi 1 d/Bone Pathway (mrem/year) (mremfyear 1

Ground Irradiation 0.0474 0.957 Inhalation 0.00814 0.685 Stored Vegetables 0.528 0.528 Leafy Vegetables 0.0265 0.0265 Milk Ingestion 0.201 0.201 Meat Ingestion 0.00833 0.00833 Total : 0.82 2.41

17 - Revision 21 Date 08/14/97 F-27 In addition, the isotopic breakdown of the critical organ doses listed above (Table for the two detected radionuclides is seen to be: - 8)

Table 9

Isotopic Breakdown of Maximum Radiation Exoosures Radioactivity Dose Percent of Description I sotope f uCi 12 acres 1 (mrem/yr 1 total

During CS - 137 605.4 0.805 98.2 control of Co-60 65.1 Of0144 1.8 disposal 0.82 sites Max. organ : chi 1 d/bone Termination CS-137 605.4 2.12 88.0 of disposal Co-60 65.1 -0.29 12.0 site Max. 2.41 organ : chi 1 d/bone

For comparison to the total dose calculated assuming the continued disposal of silt removed from the tower basins through the end of the operating license, the dose from just the original 14.000 cubic feet collected is shown on Table 10.

18

Revision 21 Date 08/14/97 F- 28 Table 10 c Dose Impact Due to Sinqle 114,000 ft3) Silt SDreadinq

Disposal Site Access Radiation Exposure Individual /Organ

Controlled by VYNPS (max. 0.064 mrem/yr adul tlwhol e body exposed indi vidual in 1995 1 0.219 mrem/yr max.' chi 1 d/ bone

Uncontroll ed by VYNPS 0.224 mremlyr adul tlwhol e body (inadvertent intruder after 0.393 mrem/yr max. childlbone license termination)

Tab e 10 shows that the applicat on of the silt material initially collected (14 000 cubic feet) accounts for about 27 percent of the maximum individual organ dose during the control period as compared to the scenario of continued periodic silt spreading over the balance of the operating license. This illustrates that dose impacts from the material currently collected are well below the acceptance criteria of limiting the dose from any two-acre plot to no more than 1 mrem/year during the control period and 5 mrem/year after termination of the license, and is expected to remain below the acceptance - criteri a throughout the plant 1 ife. If unexpected bui 1 dup of radi oacti vity in future silt clean-out operations were to occur, the option for use of alternate disposal plots remains available to ensure that the impact from any single, two-acre plot stays within the acceptance criteria.

Also of interest are derived dose conversion factors which provide a means of ensuring that septic and si1 t disposal operations remain within the prescribed radi ol ogi cal gui del ines noted above. The critical organ (worst case) and whole body dose factors for all pathways on a per acre bases are

19

Revision 21 Date 08/14/97 F-29 given on Table 11 for periods during Vermont Yankee control of the disposal site and on Table 12 for post control periods associated with the inadvertent .4 intruder scenario. The dose conversion factors have been expanded to include other potential radionuclide beyond the original five that were addressed in Reference 1. This provides a means to assess other nuclides if future disposal operations identi fy addi tional radi onucl ides not previ ously observed. The devel opment of these additional nucl ide dose conversion factors uti 1 i ze the same modeling and pathway assumptions as used to derive the factors for the -original five radionuclides identified in septic waste. The models f-or these site and pathway-specific dose factors are those in Regulatory Guide 1.109 (Reference 2) and are described in detail in Attachment If to Reference 1.

20

+ Revision 21 Date 08/14/97 F -30 Table 11

4 A1 1 -Pathway Critical Orqan / Who1 e Body Dose Conversion Factors Durinq Vermont Yankee Control of Disposal Sites

Critical Organ Whole Body Dose Dose Factor Factor

Nucl ide Individual /Organ fmremlyr per uCi /acre)

Cr-51 Teen/Lung 1.14E-05 5.76E-06 Mn - 54 Adul t/GI - LLI 3.75E-04 1.93E-04 Fe-55 Chi 1 dfBone 6.45E-06 1.06E-06 Fe-59 Teen/Lung 4.61 E- 04 2.13E-04 CO-58 Teen/ Lung 3.27 E - 04 2.OlE-04 Co-60 Teen/Lung 7.17E-04 5.31E-04 Zn - 65 Childiliver 1A4E-02 1.03E-02 Zr-95 Teen/ Lung 4.47E-04 1.34E - 04 AgllOm Teen/GI-LLI 1.32E-02 5.24E-04 Sb-124 Teen/ Lung 8.34E- 04 3.54E-04 CS - 134 ChitdlLiver 3.18E-03 1.28E-03 CS-137 Chi ld/Bone 2.66E-03 7.02E-04

I Ce-141 Teen/ Lung 1.54E-04 1.5OE-05 Ce-144 Teen/Lung 6. OOE- 04 2.44E-05

21 - Revision 21 Date 08/14/97 F-31 Table 12

All -Pathway Critical Orqan / Whole Bodv Rose Conversion Factors Post Vermont Yankee Control of RisRosal Sites (Inadvertent Intruder)

Critical Organ Whole Body Rose Rose Factor Factor Nucl i de Indi vi dual /Organ (mrernlyr per uCi/acre)

Cr-51 TeenlLung 5.89E-04 1.19E-04 Mn - 54 Teen/ Lung 1.02E-02 3.12E-03 Fe - 55 TeenILung 3.50E-04 2.27E -05 Fe-59 Teen/ Lung 2.55E-02 4.43E-03 CO-58 TeenILung 1.59E-02 3.72E-03 Co-60 Teen/ Lung 3.19E-02 9.09E- 03 Zn-65 ChildILiver 1.89E-02 1 AE-02 Zr-95 TeenILung 2.93E-02 2.99E-03 AgllOm TeenILung 3.59E-02 9.53E-03 Sb-124 Teen/ Lung 4.73E-02 7.04E-03 CS - 134 Chi 1 d/Li ver 1.21E-02 9.36E-03 - CS - 137 Chi ldf8one 6.98E-03 3.85E-03 Ce-141 TeenILung 1.21E-02 3.44E -04 Ce-144 Teen/ Lung 5.00E-02 1.52E-03

22 - Revision 21 Date 08/14/97 F-32 5.0 RADIATION PROTECTION:

i The disposal operation of silt material from the cooling tower basins will follow the applicable Vermont Yankee procedures to maintain doses as low as reasonably achievable and within the specific dose criteria as previously approved for septic waste disposal (Reference 1).

6.0 CONCLUSIONS:

Silt collected from the cooling tower basins is an earthen type material that is similar in characteristics to septic waste residual solids with respect to the radiological pathway behavior and modeling and can be disposed of through on-site land spreading on the same disposal plots as previously evaluated and approved for septic waste disposal. The radiological assessment of low level contaminated silt shows that the projected dose from the on-site periodic spreading of this material will have no significant dose impact to members of the public and can be maintained below the approved dose limitations already in place for septic waste.

23 - Revision 21 Date 08/14/97 F-33 7.0 REFERENCES: d (1) Vermont Yankee ODCM, Appendix 8; "Approval of Criteria for Disposal of Slightly Contaminated Septic Water On-Site at Vermont Yankee". (Included NRC approval letter dated August 30, 1989, VY request for approval dated June 28. 1989 with Attachments I and 11).

(2) USNRC Regulatory Guide 1.109, Rev. 1; "Calculation of Annual Doses to Man from Routine Re1 eases of Reactor Effluents for the Purpose of Eva1 uating Compliance with 10 CFR Part 50, Appendix I", dated October 1977.

(3) NUREGfCR-5512, Vole 1, "Residual Radioactive Contamination From Decommissioning" , Final Report, dated October 1992.

file: vsilt.mss

24

k Revision 21 Date 08114197 F-34 APPENDIX G

MAXIMUM PERMISSIBLE CONCENTRATIONS (MPCs) IN AIR AND MATER ABOVE NATURAL BACKGROUND TAKEN FROM 10CFR20.1 TO 20.602. APPENDIX B

4 Revision 21 Date 08/14/97 G-1 APPENDIX G

With the implementation of the revised Part 20 to Title 10 of the Code of Federal Regulations (10CFR20.1001-20.2401), the Maximum Permissible Concentrations (MPCs) that were part of the old 10CFR20 were replaced by a new Appendix B to lOCFR20 for the limits that apply to effluents released to unrestricted areas. However, MPC values were also used and accepted as licensing conditions for the control of radioactive materials in situations other than those directly covered by the requirements of the regulations. One example is the on-site disposal of septic waste which used the MPC values as one criteria of acceptability for land spreading. Appendix B to the ODCM references 10CFR20.1-20.601 Appendix B MPCs as concentration criteria for this disposal option.

With the final publication of the revised 10CFR20.1001-20.2401, the original MPC tables of the old 10CFR20 are no longer in print. As such, this appendix to the ODCM is added to provide a reference source for the MPC values contained in the original Appendix B to 10CFR20.1-20.601 for those conditions that still refer to these requirements.

Revision 21 Date 08/14/97 G-2 APPENDIX G

MAXIMUM PERMISSIBLE CONCENTRATIONS (MPCs) (FROM 10CFR20.1 TO 20.602. APPENDIX B) APPENDIX B TO 1820.1 - 20.602 CONCENTRATIONS IN AIR AND WATER ABOVE NATURAL BACKGROUND

[See footnotes at e n d of Appendix Bl Table I I Table I1

~ Col. 1 Col. 2

"":r ~ Water Air ~ Water Element (atomic number) I sotopel (pCi /ml 1 (pCi::>-: /ml ) I (pCi /ml 1 (pCi/ml) Actinium (89) ...... Ac 227 S 2x10-12 6~10-~ 8~10-l~ 2x10-6 I 3x1o-I1 9~10'~~3~10'~ Ac 228 S I Americium (95) ..... Am 241

Am 242m

Am 244 S I Antimony Sb 122 S I

5~10-~ 3~10-~ 2x104 1x10'~ 3~10~~3~10~~ 9x10-10 1~10-~ Argon (18) ...... A3 7 Sub2 6~10-~ ...... 1~10-~ ...... A4 1 Sub 2x10-6 ...... 4~10'~ ...... Arsenfc (33) ...... As 73 S 2x10-6 1x10-z 7~10-~ 5~10'~ I 4~10-~ 1x10-2 1x10-8 5~10'~ As 74 S 3~10-~ I 1~10-~ As 76 S I

As 77 S ~ 5x10-: 1 2x10-i 1 2~10"~ 8x10a5 I 4x10- 2x10- 1~10-~1 8~10-~

Revision 21 Date 08/14/97 G-3 APPENDIX B TO 8520.1 * 20.602 CONCENTRATIONS IN AIR AND WATER ABOVE NATURAL BACKGROUND

[See footnotes at end of Appenc ix 81 I Tab e1 Tab e I1 Col. 1 Col. 2 Col. 1 Col. 2 Air Water Air Water Element (atomic number) Isotope' (pCi /ml 1 (pCi /ml (pCi /ml 1 (pCi /ml 1 Astatine (85) ...... 5~10-~ 2x10-10 2x10-6 2~10-~ 1x10-9 7~10-~ Barium (56) ...... Ba 131 1x10-6 4~10-~ I i I 4~10-~ 1x10-8 Ba 140

Berkelium (97) . . . . . Bk 249 2x10-2 2x10-2 Bk 250 6x10e3 1x10-6 6~10-~ Beryllium (4) ...... Be 7 5x10-' 5x10'' Bismuth (83) ...... Bi 206

Bi 207 6x10*' 5xlO-l'

Bi 210 6x10-' 2 x 10-I0 I I 6x10-' 2x10-10 Bi 212 lxlo-z 3x10-' 1x10-2 7x10'' Bromine (35) ...... 4x10" 6~10~' Cadmium (48) ...... Cd 109 2x10-9 3x10-' Cd 115m

Cd 115

Calcium (20) ...... Ca 45 S 3~10-~ 9x10-6 I 1~10-~ 2~10-~ Ca 47 S ~~10'~ 6x10e9 I 2x10'~ 6x10''

Revision 21 Date 08114197

G-4 APPENDIX B TO JIZO.1 - 20.602 CONCENTRATIONS IN AIR AND WATER ABOVE NATURAL BACKGROUND

[See footnotes at end of Appendix B1

Elemen t ( atomi c number 1 Californium (98) . . . .

Carbon (6) ......

Cerium (58) . . . , . . .

Cesium (55) . . . , . , .

Revision 21 Date 08/14/97

G-5 APPENDIX B TO §§20.1 - 20.602 CONCENTRATIONS IN AIR AND WATER ABOVE NATURAL BACKGROUND

Table I Table I1 Col. 1 Col. 2 Col. 1 Col. 2 Air Water Air Water Element (atomic number) Isotope1 (pCi /ml f (pCi /ml 1 (pCi /ml 1 (pCi /ml 1 Chlorine (17) ...... C1 36 S 4~10~~2~10-~ 1x10'8 8~10-~ I 2x10-8 2~10-~ ~xIo-~O 6~10-~

C1 38 S 3~10'~ 1x10-2 9x10'8 4x10m4 I 2x10-6 1x10-2 7~10-~ 4~10-~ Chromium (24) ...... Cr 51 S 1~10-~ 5x10-' 4~10~' 2x10'~ I 2x10+ 5x10-' 8~10-~ 2~10-~ Cobalt (27) ...... Co 57 S 3~10-~ 2x10'2 1~10-~ 5~10'~ I 2~10-' 1x10-2 6~10'~ 4~10'~

Co 58m S 2~10-~ 8x10-' 6~10-~ 3~10-~ I 9x10-6 6x10-' 3x10'' 2x10'~

Revision 21 Date 08/14/97 G-6 APPENDIX B TO BBZO.1 - 20.602 CONCENTRATIONS IN AIR AND WATER ABOVE NATURAL BACKGROUND [See f ootnotl-e s at e nId of Appendix B1 Table I Table I1 Col. 1 Col. 2 Water Water 1 Element (atomic number) Is 0 tope Dysprorium (66) . . . . . S I Dy 166 S II Einsteinium (99) . . . . I Es 253 Es 254m

~ S I Es 254 I Es 255 S I

~ S I I Er 171 S I ~___ Europium (63) . . , . . . Eu 152 S 4x1OW7 I 2~lO-~I 1x10"; I 6x10A5 I fT12-9.2 hrs) I 3x10-' 2~10-~ 1x10- 6x10-' Eu 152 S 1x10-8 2~10-~ 4x10-10 8x10'' I (T/2-13 yrs) I 2x10-8 ZX10-3 6x10-" 8~10-~ Eu 154 4~10'~ 6~10-~ 1~10-~' 2x10" 7x10'' 6~10-~ 2x10"' ZxlO-' f Eu 155 9x10-8 6~10~~3x10-' 2~10-~ 7x10-' 6~10'~ 3x10-' 2~10-~ Fermium (100) ...... Fm 254

I Fm 255

Fm 256 S I I Fluorlne (9) ...... F 18 S 5~10~~2x10-2 2~10-~ 8~10-~ I 3~10'~ 1x10'2 9x10-8 5~10-~

Revision 21 Date 08/14/97

G-7 APPENDIX B TO 5520.1 - 20.602 CONCENTRATIONS IN AIR AND WATER ABOVE NATURAL BACKGROUND

[See footnotes at end of Appendix 81

Table I Table I1

Col. 1 CO?. 2 Col. 1 Col. 2 Air Water Air Water Elemen t ( atomi c number ) Isotope1 (pCi /ml 1 (pCi /ml 1 (pCi /nl 1 CpCi /ml Gadolinium (64) . . . . . Gd 153 S 2~10-~ 6~10*~ 8x10'' 2~10-~ I 9x10-8 6~10-~ 3x10" 2~10-~ Gd 159 S 5~10~~2~10-~ 2x104 8x I 4~10-~ 2x10'3 1x10-8 8~10'~ Gallium (31) ...... Ga 72 S 2x10'~ 1~10-~ 8x10-' 4~10-~ I 2~10-~ 1~10-~ 6x10-' 4~10'~

Germanium (32) . . . . . Ge 71 S 1~10-~ 5~10-~ 4~10-~ 2~10-~ I 6~10-~ 5~10-~ 2~10-~ 2~10-~ Gold (79) ...... Au 196 S 1x10-6 5~10-~ 4~10-~ 2~10-~ 1 6~10-~ 4~10-~ 2x10-8 1x10'~

Au 198 S 3~10~~2~10-~ 1x10-8 5~10'~ I ZX~O-~ 1~10-~ SxlO-' 5~10-~

Au 199 S lXlO+j 5~10'~ 4~10-~ 2~10-~ I 8~10-~ 4~10-~ 3~10-~ 2~10-~

Hafnium (72) , . . . . . Hf 181 S 4~10"~ ZX~O-~ 1~10-~ 7~10'~ I 7~10-~ 2~10-~ 3x10-' 7~10'~ Holmium (67) ...... Ho 166 S 2~10-~ 9~10-~ 7x10-' 3~10-~ I 2~10-~ 9~10~~6~10~' 3~10-~ . ____ Hydrogen (1) ...... H3 S 5~10-~ 1x10-1 2~10-~ 3x I 5~10-~ 1x10'1 2~10-' 3~10-~ Sub ZX~O-~ ...... 4~10'~ ...... Indium (49) ...... In 113111 S 8~10-~ 4~10-~ 3~10-~ 1~10-~ I 7~10-~ 4x10-' 2x10'~ 1~10-~ In 114111 S 1~10-~ 5~10'~ 4x10-' 2x10'5 I 2x10-8 5~10-~ 7xlO-l' 2~10-~

In 115m S 2x10-6 1x10-2 8~10-~ 4x10T4 I 2x204 1x10-2 6~10-~ 4~10-~

In 115 S 2~20-~ 3~10-~ 9x10*' 9~10-~ I 3~20-~ 3~10-~ 1~10-~ 9x10-5 Iodine (53) ...... I 125 S 5x30-' 4~10-~ 8~10-l~ 2~10-~ I 2~50-~ 6~10-~ 6x10-' 2~10-~

I 126 S 8~20~' 5~10'~ 9xlO-l' 3~10-~ I 3~80~~3~10"~ 1x10-8 9~10'~

I 129 S Zx30-' 1x10'~ ZXIO-; ~XIO-~ I 7x20-' 6~10-~ 2x 10 - 2x10-4

Revision 21 Date 08/14/97 6-8 1 Table I Table I1 Col. 2 Col. 1 Col. 2 ~ "":;I-Water ~ Air Water Element (atomic number) Isotope1, (pCi /ml 1 I (pCi /ml 1 (pCi/ml) (pC1 /ml 1 Iodine (53) ...... I 131 9x70-' 6~10~' 1x10-'10 (Continued) 3x90-' 2~10-~ 1x10'8

I 132 S 2~10-~ 2~10-~ 3x10'' I 9x10-' 5x10m3 3~10'~

I 133 s 3~10-~ 2~10'~ ~x~O-~O I 2x1~~1x10-3 7~10-~

I 134 S 5~10-~ 4~10-~ 6x10-' I 3~10-~ 2x10-2 1x10-7

I 135 S 1x10'~ 7~10-~ 1~10-~ I 4x10" 2~10-~ 1x10-8 Iridium (77) . , . . . . Ir 390 S 1x10-6 6~10-~ 4~10-~ I 4~10'~ 5~10'~ 1x10-8 I I Ir 192 S 1~10-~ 1x10'~ 4~10~' I 3~10"~ 1~10-~ ~XIO-~~ Ir 194

Iron (26) ......

Fe 59 1 ; I 1x10-7 1 2x10-3 I 5x10'9 5x10-8 2~10-~ 2~10-~

Krypton (36) . . . . , . Kr 85m f Sub 1 6~10'~I ...... I lxlOm7 ......

. . .. * ...... Lanthanum (57) . . . . . 2~10-~ 2~10-~

~ Lead (82) ......

Pb 212 s 2x104 6~10-~ 6x10-" I 2x10-8 5~10-~ 7xlO-'O

Revision 21 Date 08/14/97

G-9 APPENDIX B TO §§20.1 - 20.602 CONCENTRATIONS IN AIR AND WATER ABOVE NATURAL BACKGROUND -. [See footnotes at end of Appendix 83 1 e1 Tab 1e II Col. 2 Col. 1 Col. 2 Water Air Water El emen t ( a tomi c number 1 lsotopt (pCi /ml 1 (pCi /ml 1 (pCi /ml 1 (pCi/ml) Lutetium (71) ...... Lu 177

Manganese (25) . . . . .

1x10-8 1~10-~ 3~10-~ I 2x10-8 S I

Hg 197 S lxlO+j 4x10-' I I 3~10~~ 9x10-8 Hg 203 S I 7x10F8 I 1x10.~ Molybdenum (42) . . . . . Mo 99

Neodymium (60) . . . . Nd 144 3x10-" I 2x10'~ 1x 10-11 Nd 147 1x10'8 8x10-'

Nd 149 8x loa3 8~10-~

~~ ~~ Neptunium (93) . . . . . Np 237 1x 10- l3 1 4x10-" INp 239 S axio-7 I 7x10-'

I ~~ Nickel (28) ...... Ni 59 6~10-~ 2x10'8 I 6x10" 3x10-' Ni 63 8~10-~ 2~10-~ 2x10-2 1x10-8

Ni 65 3~10-~ F 2x10'8

Revision 21 Date 08/14/97 G-10 APPENDIX B TO 5520.1 - 20.602 CONCENTRATIONS IN AIR AND WATER ABOVE NATURAL BACKGROUND

[See footnotes at end of Appendix B1 I Table I I Table 11 Col. 1 Col. 2 Col. 1 Col. 2 Air 1 Water I Air 1 Water El emen t ( a tomi c number Isotopef (pCi /ml 1 (pCi /ml 1 (pCi /ml 1 tpCi /in1 1 Nlobium (Columbium) (41) Nb 93m S 1~10-~ 1x10-2 4x10-' 4~10-~ I 2x10'~ 1x10-2 SX~O-~ 4~10-~

Nb 95 S 5~10~~3~10-~ 2x10-8 1~10-~ I 1~10-~ 3~10-~ 3~10-~ 1~10-~

Nb 97 S 6~10-~ 3x10" 2~10-~ 9x10-' I 5x10m6 3x10-* zX10+ 9x10e4 Osmium (76) ...... Os 185 2x10'8

Os 191m 2x10'~ 7x10-' 6~10-~f ;;3;:; I s 1 9~10-~I 7x10" I ~xIO-~ os 191 1x10-6 5~10-~ I s I 4x10e7 I 5~10-~ Os 193 I ; 1 mo-; I 2x10-3 1x10-8 6~10-~ 3x10- I 5x10-5 Palladium (46) . , . . . Pd 103 1x10-6 1x10-2 5x10-' 3~10'~ I 1 7~10-~I 8~10-~I 3x10-' I 3~10-~ Pd 109 6~10-~ 3~10"~ 2x10-8 9~10~~ I I 4~10-~I ZX~O-~I 1~10-~I 7~10-~ Phosphorus (15) . . . . .

Platinum (78) . , . . .

Pt 193m S I Pt 193

Pt 197m

Pt 197

Revision 21 Date 08/14/97

G-11 CONCENTF

I

I Table I Table I1 Col. 2 Col. 1 Col. 2 1 "":;, I Water 1 Air 1 Water El ement ( atomi c number 1 isotope1 (pci /m1) (pCi /ml ) (pCi Imll (pCi /ml 1 Plutonium (94) . . . . . Pu 238 S 2x10-12 1x10'~ 7~io-l~ 5~10'~ I 3~10-l~ 8~10-~ 1x 10- 3~10-~

Pu 239 S 2x 10- 1x10'~ 6~10"~ 5~10-~ I 4~10'~~8~10-~ 1x10- 3~10-~

Pu 240 2x 10-

Pu 241

Pu 242 S 2x10-12 1~10-~ 6~10-l~ 5~10-~ I 4~10''~ 9~10~~1x 10 - 3~10'~

Pu 243 S 2x10-6 1x10-2 6x10-* 3~10-~ I 2x104 1x10-2 8~10~~3~10'~

Pu 244 S 2x10-12 1x10'~ 6~10~'~4~10-~ I 3~10-l~ 3~10-~ 1~10-'~ 1x10'~

Polonium (84) ...... Po 210 S ~x~o-~O 2~10+ 2~10-~l 7~10-~ I 2x10-lo 8~10'~ 7~10-l~ 3~10'~

~~ Potassium (19) . . . . . K4 2 S 2x10-6 9~10-~ 7x10T8 3~10-~

Praseodymium (591 . . . . Pr 142 2x10-7

Pr 143 1x10-8 5~10-~ I 6x10-' I 5x10e5 Promethium (61) . . . . . Pm 147 6~10-~ 6x10b3 2x10'~ I ? 1 1~10'~I 6~10-~I 3x10-' Pm 149 3x10e7 1~10-~ 1x10-8 4~10-~ I i I ZX~O-~I l~lO-~I 8x10-' 1 4~10-~ Protoactinium (91) . . . Pa 230 2x10-:' 1 7~10'~ 6~10"~1 2~10'~ 1 1 8x10- 7x10-' 1 3xlO-l' 2~10-~ Pa 231 lx10 - l2 3~10-~ 4~10-l~I 9~10'~ I I 1~10"~I 8~10'~1 4~10-l~ 2x10'~ Pa 233 S 6~10-~ 4~10'~ 2x10'8 1x10-4 I 2~10-~ 3~10-~ 6x10'' 1~10-~

Revision 21 Date 08/14/97 G-12 APPENDIX B TO §§20.1 - 20.602 CONCENTRATIONS IN AIR AN0 WATER ABOVE NATURAL BACKGROUND

[See footnotes at end of Appendix BI I Table I I Table I1

Element ( atomi c number 1 Radium (88) ......

Ra 228 7~10'~~8~10~~ ZX~O-~~ 1 3x1OV8 1 T 1 4~10"~1 7x10'' I 1~10-I~ 3~10'~ Radon (86) , . . . . . , Rn 220 1 S I 3~10-~I ...... I lxlO-' I ......

~~ ~ ~~ Rn 22Z3 1 I 3~10'~I ...... 1 3x10-' I ...... Rhenium (75) ...... Re 183 S 3~10-~ 2x10-2 9x10-8 6~10~~ I 2~10-~ 8~10-~ 5x10-' 3~10-~

Re 186 S 6~10-~ 3~10-~ 2x10-8 9~10'~ I 2~10-' 1~10-~ 8x10-' 5~10'~ Re 187 9x10-6 7~10~~3~10-~ 3~10'~ I I 5~10-~I 4~10-~I ZX~O-~I 2~10'~ Re 188 4~10-~ 2~10-~ 1xlO" 6~10-~ I s I ZXlO-' 1 9~1O-~1 6~10~' I 3; Rhodium (45) ...... , Rh 103m 8~10-~I 4x10-'1 I 3x1OV6 1x10'~ I s I 6~10*~ 3xlO-l 2x10-6 I 1x10-2 Rh 105 S 8~10'~ 4~10'~ 3x10'' 1~10-~ I 5x10*' 3~10-~ 2x10'8 1x10'~

Rubidium (37) ...... 1 Rb 86 S 3~10-~ 2~10-~ 1x10-8 7~10-~ I 7~10-~ 7~10'~ 2~10-~ ZX~O-~ Rb 87 1 ; I 5~10-~I 3~10-~ 1~10-~ 7~10'~ I 2x10-4 Ruthenium (44) . . . . . ZX~O-~I 1~10-~I 8x10m8 4x10.' I : I 2x10'6 1x10-2 6x10-' I 3~10-~

Ru 105 1 ; 1 7x10-i I 3~10'~ 2x10-8 1~10-~ 5x10- 3~10~~I 2x10-8 I 1x10-4 Ru 106 8~10-~ 4~10'~ 3x10-' 1x10'~ I I 6x10" I 3~10-~I 2x10-l' I 1x10-5

Revision 21 Date 08/14/97

6-13 APPENDIX B TO §§20.1 - 20.602 CONCENTRATIONS IN AIR AND WATER ABOVE NATURAL BACKGROUND

[See footnotes at end of Appendix Bl

El emen t ( atomi c number ) Isotc Samarium (62) ...... Sm 147 S -I Sm 151 S I Sm 153 S -I

Scandium (21) . . . . /. . Sc 46 S -I sc 47 S I Sc 48 S -I Selenium (34) . . . . . Se 75 S -I Silicon (14) ...... Si 31 S -I Silver (47) ...... Ag 105 S I

Ag llOm S I

Ag 111 S 1 Sodium (11) ...... Na 22 S 2~10-~ 1~10-~ 6x10" 4~10-~ -I 9x10'9 9~10-~ 3~10'~' 3~10-~ Na 24 S 1x10-6 6~10-~ 4~10-~ 2~10-~ -I 1~10-~ 8~10'~ 5x10" 3~10-~ Strontium (38) . . . . . Sr 85m S 4~10-~ 2x10'1 1x10'6 7~10-~ I 3~10-~ 2x10'1 1x10-6 7x10e3 Sr 85 S ZxlO-; I 3~10'~ 8x10-' 1~10-~ -I 1x10- 5~10'~I 4x10" I 2x10-4 Sr 89 S 3~10-~I 3x10-i I -I 4~10-~ 8x10- Sr 90 S I

Revision 21 Date 08/14/97

G-14 APPENDIX B TO 8820.1 * 20.602 CONCENTRATIONS IN AIR AND WATER ABOVE NATURAL BACKGROUND

[See footnotes at end of Appendix B1 Table I Table I1 Col. 1 Col. 2 Col. 1 Cot. 2 Air Water Air Water Element (atomic number) Isotope1 (pCi /ml 1 CpCi Iml 1 (pCI /ml 1 (pCi /ml 1 Strontium (38) , . . . , Sr 91 S 4~10'~ 2~10-~ 2x10-8 7x10e5 (Continued) I 3~10-~ 1~10-~ 9~10-~ 5~10'~ Sr 92 S 4x10a7 ~~10'~2x10-8 7~10'~ I 3x10'' 2~10-~ 1x10-8 6~10'~ Sulfur (16) ...... s 35 S 3~10'~ 2~10-~ 9x10-' 6~10~~ I 3~10'~ 8~10-~ 9x10-' 3~10-~ Tantalum (73) ...... Ta 182 S 4x10a8 1x10'~ 1x10;90 4x10e5 I 2x10-8 1~10-~ 7x10- 4~10~~ Technetium (43) . . . . . Tc 96m S 8~10-~ 4x10-' 3~10~' 1x10-2 I 3~10-~ 3xlO-l 1x10'6 1x10'2

Tc 96 S 6x10e7 3~10-~ 2x10-8 1~10'~ I 2~10-~ 1~10-~ 8x10-' 5~10"~

Tc 97m S 2x104 1x10'2 8~10'~ 4x10-' I 2x1~-7 5~10'~ 5x10-' 2~10-~

Tc 97 S 1~10-~ 5x10-' 4x10" 2~10-~ I 3~10-~ 2x10-2 1x10'8 8x10-4 Tc 99m S 4~10'~ 2x10-1 1x10'6 6~10-~ I 1x10'~ 8x10e2 5~10-~ 3~10"~

Tc 99 S 2x10-6 1x10'2 7~10'~ 3x10a4 I 6~10~~5~10-~ 2~10-' ~~10'~

Tellurium (52) . . . . . Te 125111 S 4~10-~ 5~10-~ 1x10-8 2~10-~ I 1~10-~ 3~10-~ 4x10-' 1~10-~

Te 127m S 1~10-~ 2~10-~ 5x10-' 6~10-~ I 4~10-~ 2~10-~ 1~10-~ 5~10'~

Te 127 S 2XlO+j 8~10'~ 6~10'~ 3~10~'" I 9~10-~ 5~10'~ 3~10-~ 2x10'~

Te 129m S 8~10-~ 1~10-~ 3x10-' 3~10-~ I 3~10'~ 6~10'~ 1x10'~ 2~10-~ Te 129

Revision 21 Date 08/14/97 G-15 APPENDIX B TO §§20.1 - 20.602 CONCENTRATIONS IN AIR AND WATER ABOVE NATURAL BACKGROUND

[See footnotes at c. d of Appendix 81 ITable I Table I1 Col. 1 Col. 2 Col. 1 Col. 2 Air Water Ai r Water (pCi /mi ) (pCi /ml 1 (pCi /ml 1 (pCi /m1 ) 1x10'~ 1~10-~ 3x10-' 4~10-~ 3~10-~ 1~10-~ 1~10-~ 4~10-~

3~10'~~5~10'~ 1x10-11 2~10-~ 2x 10 - '0 5~10-~ 6~lO-~~2~10-~

Th 228 9x 10"'2 2~10-~ 3~10-l~ 7x10-' 6~10"~ 4x10'~ 2~10-l~ 1~10-~ .. Th 230 2x10-" 5~10-~ 8~10"~ 2x10-6 1~10-l~ 9~10~~3~10-l~ 3~10-~ Th 231 1x10-6 7~10-~ 5x10+ 2~10-~ 1x10-6 7~10~~4~10-~ 2~10-~

Th 232 3x10-'' 5x10m5 1~10-~* 2x10-6 I If 3~10-l~ 1~10-~ lx10 -I2 4~10-~

Th 234 s I Thulium (69) ...... Tm 170 S I

I Tm 171 I: Tin (50) ...... + 1 Sn 113 ~ ; ~~ Sn 125

Revision 21 Date 08/14/97 G-16 APPENDIX B TO 5tiZO.l - 20.602 CONCENTRATIONS IN AIR AND WATER ABOVE NATURAL BACKGROUND

[See footnotes at end of ADpendix 61

Element (atomic number) Tungsten (Wolfram) (74) .

Uranium (92) ......

Vanadium (23) ......

Xenon (54) ......

Ytterbium (70) .....

Yttrium (39) ......

Revision 21 Date 08/14/97

6-17 APPENDIX B TO §§20.1 - 20.602 CONCENTRATIONS IN AIR AND WATER ABOVE NATURAL BACKGROUND

[See footnotes at end of Appendix B] Table I1

Col. 1 Col. 2 Col. 1 Col. 2 Ai r Water Ai r Water Element (atomi c number 1 I sotopel (pCi /ml 1 (NCi /ml 1 (rrCi /ml 1 (uCi/ml)

'~ 2~10-~ 2x10-5

Y 93 S I Zinc (30) ...... Zn 65 S I Zn 69m S 1x10-8 I 1x10'8 Zn 69 S I Zirconium (40) . . . . . Zr 93 S 2x10-2 4~10-~ f 2x10-2 1x10-8

1x10'~ 9x10-8 Any single radi onucl ide 1x10-'5 ...... 3x10'' ...... not listed above with decay mode other than alpha emission or spontaneous fission and with radioactive half-life less than 2 hours.

Any single radionuclide 9~10-~ 1x10-10 3~10'~ not listed above with decay mode other than alpha emission or spontaneous ffssion and with radioactive half -1 ife greater than 2 hours. Any single redionuclide 4~10-~ 2~10-l~ 3~10-~ not 1 i sted above which decays by alpha emission or spontaneous fission. I

Revision 21 Date 08/14/97

G-18 'Soluble (SI; Insoluble (I). '"Sub" means that values given are for submersion in a semispherical infinite cloud of -" airborne material. 3These radon concentrations are appropriate for protection from radon-222 combined with its short-lived daughters. Alternatively, the value in Table I may be replaced by one-third (113) "working level ." (A "working level" is defined as any combination of short-lived radon-222 daughters, polonium-218, lead-214, bismuth-214 and polonium-214. in one liter of air, without regard to the degree of equilibrium, that will result in the ultimate emission of 1.3 x lo5 MeV of alpha particle energy.) The Table I1 value may be replaced by one-thirtieth (1130) of a "working level." The limit on radon-222 concentrations in restricted areas may be based on an annual average. 4For soluble mixtures of U-238, U-234 and U-235 in air chemical toxicity may be the limiting factor. If the percent by weight-enrichment of U-235 is less than 5. the concentration value for a 40-hour work week, Table I. is 0.2 milligrams uranium per cubic meter of air average. For any enrichment, the product of the average concentration and time of exposure during a 40-hour work week shall not exceed 8 x SA pCi-hrlml, where SA is the specific activity of the uranium inhaled. The concentration value for Table I1 is 0.007 milligrams uranium per cubic meter of air. The specific activity for natural uranium is 6.77 x curies per gram U. The specific activity for other mixtures of U-238, U-235 and U-234, if not known, shall be: SA = 3.6 x curiesigram U U-depleted SA = (0.4 + 0.38 E + 0.0034 E2) E 2 0.72 where E is the percentage by weight of U-235. expressed as percent. NOTE: In any case where there is a mixture in air or water of more than one radionuclide, the limiting values for purposes of this Appendix should be determined as follows: 1. If the identity and concentration of each radionuclide in the mixture are known, the limiting values should be derived as follows: Determine, for each radionuclide in the mixture, the ratio between the quantity present in the mixture and the limit otherwise established in Appendix 5 for the specific radionuclide when not in a mixture. The sum of such ratios for a71 the radionuclides in the mixture may not exceed "1" (i.e., "unity"). EXAMPLE: If radionuclides A. 5, and C are present in concentrations C,, C,, and C,. and if the applicable MPC's are MPC,, and MPC,, and MPC, respectively, then the concentrations shall be limited so that the following relationship exists: (C,/MPC,) + (C,IMPC,) + fCc/MPCc) 1 2. If either the identity or the concentration of any radionuclide in the mixture is not known, the limiting values for purposes of Ap endix B shall be: a. For purposes of Table I, Col. 1 - 6x10- E b. For purposes of Table I, Col. 2 - 4~10-~ c. For purposes of Table 11, Col . 1 2~lO-'~ d. For purposes of Table 11, Col . 2 - 3~10~~ 3. If any of the conditions specified below are met, the corresponding values specified below may be used in lieu of those specified in paragraph 2 above. a. If the identity of each radionuclide in the mixture is known but the concentration of one or more of the radionuclides in the mixture is not known. the concentration limit for the mixture is the limit specified in Appendix "6" for the radionuclide in the mixture having the lowest concentration limit: or b. If the identity of each radionuclide in the mixture is not known, but it is known that certain radionuclides specified in Appendix "5" are not present in the mixture, the concentration limit for the mixture is the lowest concentration limit specified in Appendix "B for any radionuclide which is not known to be absent from the mixture: or

Revision 21 Date 08/14/97

G- 19 Table I Table I1

Col. 1 Col. 2 Col. 1 Col. 2 Air Water Ai r Water c. Element (atomic number) and isotope (PT1pCi/m1) (pci /ml) (pCi /ml (WCi /ml

If it is known that Sr 90, I 125, I 126, I 129, I 131 (I133, Table I1 only), Pb 210, Po 210, At 211, Ra 23, Ra 224, Ra 226, Ac 227, Ra 228, Th 230, Pa 231, Th 232, Th-nat, Cm 248, Cf 254, and Fm 256 are not present ...... ~xIO-~ ...... 3~10-~ If it is known that Sr 90, I 125, I 126, I 129 (I 131, I 133, Table I1 only), Pb 210, Po 210, Ra 223, Ra 226, Ra 228, Pa 231, Th-nat, Cm 248, Cf 254, and Fm 256 are not present ...... 6~10.~ ...... 2x10-6 If it is known that Sr 90, I 129 (I 125. I 126, I 131, fable I1 only), Pb 210, Ra 226, Ra 228. Cm 248, and Cf 254 are not present ...... zX10+ ...... 6x10.' If it is known that (I 129, Table I1 only). Ra 226. and Ra 228 are not present ...... 3~10'~ ...... 1x10-7

If it is known that alpha-emitters and Sr 90, I 129, Pb 210. Ac 227. Ra 228, Pa 230. Pu 241, and Bk 249 are not present ...... 3x10.' ...... 1x10-10 ...... - - If it is known that alpha-emitters and Pb 210. Ac 227, Ra 228, and Pu 241 are not present ...... 3x10-" ...... lxlo-'' ...... If it is known that alpha-emitters and Ac 227 are not present ...... 3x10-" ...... 1x10-12 ...... ~~ 1 I If it is known that Ac 227. Th 230, Pa 231, Pu 238, Pu 239, Pu 240, Pu 242, Pu 244. Cm 248. Cf 249 and Cf 251 are not present 3~10-l~ ...... iX10-l3 ......

4. If a mixture of radionuclides consists of uranium and its daughters in ore dust prior to chemical separation of the uranium from the ore, the values specified below may be used for uranium and its daughters through radium-266, instead of those from paragraphs 1, 2, or 3 above. a. For purposes of Table I, Col . 1 - lxlO-lo pCi/ml gross alpha activity; or 5~10.'~pCi/ml natural uranium or 75 micrograms per cubic meter of air natural uranium. b. For purposes of Table 11, Col. 1 - 3x10"l2 pCi/ml gross alpha activity: 2~10-l~pCi/ml natural uranium; or 3 micrograms per cubic meter of air natural uranium. 5. For purposes of this note, a radionuclide may be considered as not present in a mixture if (a) the ratio of the concentration of that radionuclide in the mixture (CAI to the concentration limit for that radionuclide specified in Table I1 of Appendix "8" (MPC,) does not exceed 1/10, (i.e. C,/MPC, A 1/10} and (b) the sum of such ratios for all the radionuclides considered as not present in the mixture does not exceed 1/4 i.e. (C,/MPC, + C,/MPC, ... + - 1/41.

T Revision 21 Date 08/14/97

G-20 Appendix H

1. “Request to Amend Previous Approvals Granted Under 10CFR20.302(a) for Disposal of Contaminated Septic Waste and Cooling Tower Silt to Allow for Disposal of Contaminated Soil”, dated June 23rd, 1999, BVY 99-80

2. “Supplement to Request to Amend Previous Approvals Granted Under 10CFN0.30(a) to AlIow for Disposal ofContaminated Soil”, dated January 4*, BVY 00-02

3. “Vermont Yankee Nuclear Power Station, Request to Amend Previous Approvals Granted under 10CFR20.302 a to AIlow for Disposal of Contaminated Soil (TAC No. MA5950), dated June 15L) ,2000, NVY 00-58

I I Revision29 Date 1/11/02 I H- 1 VERMONTYANKEE NUCLEARPOWER CORPOFMTKIN I85 Old Ferry Road, Brattleboro, VJ' 05301 -7002 (802) 257-5271 June 23, 1999 BW99-80

United States Nuclear Regulatory Commission A1TN: Document Control Desk Washington, DC 20555

References: (a) Letter fiom €LW. Capstick, Vermont Yankee, to USMRC, "Request to Routinely Dispose of SlightIy Contaminated Waste in Accordance with iOCFR20.302(a)", BVY 89-59, June 28, 1989 (b) Letter &om M.B. Fairtile, USNRC, to L. A. Trembley, Vermont Yankee, "Approval Under 10CFR20.302(a) of Procedures for Disposal of Slightly Contaminated Septic Waste on Site at Vermont Yankee (TAC No. 73776)", NVY 89-189, dated August 30, 1989 (c) Letter from J.J. DufFy, Vermont Yankee, to USNRC, "Request to Amend Previous Approval Granted Under IOCFR20.302(a) for Disposal of Contaminated Septic Waste", BVY 95-97, dated August 30, I995 (d). Letter from S.A. Varga, USNRC, to D. A. Reid, Vermont Yankee, "ApprovaI Pursuant to lOCFR20.2002 for Onsite Disposal of Cooling Tower Silt - Vermont Yankee Nuclear Power Station (TAC No. M93420)", Nw 94-39, dated March 4, 1996 (e) Letter from P.D. Milano, USNRC, to D. A. Reid, Vermont Yankee, "Revised Safety Evaluation - Approval Pursuant to lOCFR20.2002 for Onsite Disposd of Cooling Tower Silt - Vermont Yankee Nuclear Power Station (TAC No. M9637I)", NVY 97-85, dated June 18,1997

Subject: Vermont Yankee Nuclear Power Station License No. DPR-28 (Docket No. 50-271) Request to Amend Previous Amrovals Granted Under 10 CFR 20.302fa) for Disoosai of Contaminated SeDtic Waste and cool in^ Tower Silt to Allow for Disnosal of Contaminated Soil

In accordance with lOCFR 20.2002 (previously 10CFR20.302(a)), Vermont Yankee submits this application to amend the previously granted approvals to dispose of slightly contaminated septic waste and cooling tower silt on-site, This application expands the allowable waste stream to include slightly contaminated soil generated as a residual by-product of on-site construction activities.

This application specificatly requests approval to dispose of soil contaminated at minimal levels, which has been or might be generated through end of station operations at the Vermont Yankee Nuclear Power Plant. The proposed soil disposd method is the same as the septic .waste and coohg tower silt disposal methods requested in References (a) and (c), and approved in References (b) and (e). The disposal method utilizes on-site land spreading in the same designated areas used for septic waste and cooling tower silt. Disposal of this waste in the manner proposed, rather than holding it for future disposal at a lOCFR Part 61 licensed facility will save substrtntid costs and reserve valuable disposal site space for waste of higher radioactivity levels.

Revision 29 Date 1/11/02 1 H- 2 VERMONTYANKEE NUCLEAR POWER CORPORATION

I

BVY 99-80 i Page 2 of2

A radiological assessment and proposed operational controls for the inclusion of additional earthen material (soil) for on-site disposal with septic waste and cooling tower silt is provided in Attachment A. The assessment demonstrates that the dose impact expected from the existing accumulation of approximately 25.5 cubic meters of so& in total with dI past waste spreading operations, will not approach the dose limits already imposed for septic and cooling tower silt disposal. In addition to the existing accumulated soil, VY also requests that any future low leveI contaminated soil that might be generated as a by-product of plant construction and maintenance activities be dowed to be disposed of in the same manner providcd the approved acceptance dose criteria are met. AN soil dyses will be to environmental lower limits of detection. The results of dl disposal operations will also be reported in the Annual Radioactive Efnuent Release Report. The combined radiological impact for all on-site disposd opedons wiIl continue to be limited to a total body or organ dose of a maximaIly exposed member ofthe public of less than one mredyear during the period of active'fremont Yankee control of the site, or less thaa five mredyear to an inadvertent intruder after termination of active site control.

The Vermont Yankee Off-Site Dose Calculation Manual (ODCM) contains ampy of the original assessment and NRC approval €or septic waste disposal (Refereucac a and b) and the previous amendment for cooIing tower silt Peferences c and e). Upon receipt of your approval, the information contained in Attachment 1 as well as the basis for approval will be incorporated into .the ODCM.

We trust that the information contained in the submittd is sufficient. However, should you have any questions or requir:: Merinformation concerning this matter, piease contact Mr. Jim DeVincentis at 802-258-4236.

Sincerely,

mmom YANKEE:NUCLEAR POWER CORYOIWTION

Licensing M-er

Attachment cc: USNRC Region I Administrator USNRC Resident Inspector - VYNPS USNRC Project Manager - VYNPS VT Department of Public Service

Revision 29 Date 1/11/02 I H- 3 -

SUMMARY OF VERMONT YANKEE COMMZTMENTS

BVYNO.: 99-80

The following table identifies commitments made in this document by Vermont Yankee. Any other actions discussed in the submittal represent intended or pIanned actions by Vermont Yankee. They are described to the NRC for the NRC’s information and are not regulatory commitments. Please notify the Licensing Manager of any questions regarding this document or any associated commitments.

COMMITMENT I COMMITTED DATE I OR “OUTAGE” h I

VYAPF 0058.04 (Sample) AP 0058 Original Page 1 of 1 H- 4 llRevision 29 Date 1/11/02 Docket No. 50-27 1 BVY 99-80

Attachment 1

Vermont Yankee Nuclear Power Station

Assessment of On-site Disposal of Contaminated Soil by Land Spreading

1 Revision 29 Date 111 1/02 H- 5 - BW99-80 /Attachment 1 I Page 1

TABLE OF CONTENTS

Page

LIST OF TABLES ...... 2 I .0 INTRODUCTION ...... 3 1.1 Background ...... 3

1.2 Objective ...... 3

2.0 WASTE DESC.ON ...... 4

' 3.0 SOIL DISPOSAL AND ADMINISTRATIVE PROCEDURE REQUrREMENTS...... 5

4.0 EVAL,UATION OF ENVIRONMENT& IMPACTS ...... 6 4.1 Site Characteristics ...... 6 4.2 RadioIogical Impact ...... 6

5.0 RADIOLOGICAL PROTECTION...... 8

6.0 CONCLUSIONS...... 9 7.0 REFERENCES ...... 9

Revision 29 Date 1/11/02 I I I H- 6 L_ BVY 99-80 I Attachment 1 I Page 2

LIST OF TABLES

Table 1: Radioanalytical Results of Composite Soil Samples...... lo

Table 2: Estimated TotaI Radioactivity in Soil Volume...... 10

Table 3: Total Activity on South Field Mer Last Spreading Event...... 11

Table 4: Total Projected Radioactivity Remaining on South Filed at License ... Exp~~ona...... :...... ,;....*...... I1

Table 5: All-Pathway Critical Orgadwhole Body Dose Conversion Factors During

Vermont Yankee Control of Disposal Site ...... 11

Table 6: MI-Pathway Critical Organ/WhoIe Body Dose Conversion Factors Post . Vermont Yankee Control of DisposaI Sites (Inadvertent Intruder) ...... 12

Table 7: Dose Contribution fiom CO-60 and Cs-137 in Soil Volume &a Land Spreading ...... 12

Table 8: Present and Future Dose Impact Due to the SoiI Spreading

for Two Cases...... :...... 13

IIRevision 29 Date 1/11/02 I - BVY 99-80 I Attachment 1 1 Page 3

1.0 INTRODUCTION

1.1 Background

In 1989, Vermont Yankee Nuclear Power Corporation requested approval from the NRC to routinely dispose of slightly contaminated septic waste in designated on-site areas in accordance with lOCFR20.302(a). Approval fiom the NRC was granted on August 30, 1989 and the information was permanently incorporated into the Offsite Dose Calculation Manual (ODCM)as Appendix B.

In 1995, Vermont Yankee Nuclear Power Corporation requested that the previous authorization for on-site disposal of very low-level radioactive material in septic waste be amended to permit the on-site disposal of slightly con-ted cooling tower silt material. Approval fiom the NRC was granted on June 18,1997 and the information was permanently incorporated into the ODCM as Appendix IF.

In 1994, approximately 25.5 rn3 of excess soil was generated during on-site construction activities. SampIing of the soil revealed low levels of radioactivity that were similar in radionuclides and activity to the septic waste and cooling tower silts previously encountered. An evaluation determined that the soil could be managed in similar fashion as the septic waste and cooIing tower silts; however, prior approval fioom the NRC would be required under 10 CFR 20.2002 (formerly 20.302(a)).

1.2 Objective

The objective of this assessment is to present the data and radiological evaluation to demonstrate that the proposed disposition of the soil will meet the existing boundary conditions as approved by the NRC for septic waste and cooling tower silt. The boundary conditions established for disposal of the septic waste and cooling tower silts on the designated plots are:

The dose to the whole body or any organ of a hypothetical maximally exposed individual must be less than 1.0 medyr. Doses to the whole body and any organ dose of an inadvertent intruder fiom the probable pathways of exposure are less than 5 mredyr. Disposal operations must be at one of the approved on-site locations.

Revision 29 Date 1/11/02 I I I H- 8 BVY 99-80 I Attachment 1/ Page 4

2.0 WASTE DESCRIPTION

The soil that is the subject of this evaluation was derived from excavations resulting fiom activities associated with a new security fence along the laut’s Protected Area boundary, The volume of soil generated was approximately 25.5 mP , and is typical of fill material containing light to dark brown poorly sorted soils with some small stones, and includes small incidental pieces of asphalt. The soil was removed from its original location by shovel, backhoe and fiont-end loader, and placed into dump trucks for transport to the location between the cooling towers where it was deposited on the ground surface and covered to prevent erosion. This location was selected because it was away fiom areas routinely occupied by pIant staff, and could easily be controlled. The most probable source of the low levels of radioactive contamination is the presence of below detectable removable contamination redistributed by foot traffic from inside the plant to walkways and parking areas. Subsequent surface ruxioff carries the contamination to nearby exposed soil near the Protected Area boundary where it had accumulated over time to low level detectable concentrations.

In April 1995, a total of 20 composite soil samples were collected to characterize the volume. Composites were obtained by collecting a grab sample fiom one side, the top and the opposite side at equal distances along the length of the pile, then combining the thee into one sample. Soil samples were sent to the Yankee Atomic Environmental Laboratory for analysis and counted to environmental lower limits of detection required of environmental media. ResuIts of the andyses are presented in Table 1. AualyticaI results are provided for when the samples were collected and decay corrected to the present. The results identified both Cs-137 and Co-60 in most of the composite sampIes, which verified that plant-related radioactivity was present in the soil.

For the purpose of estimating the total activity in the soil pile, the actual analytical result was used for those samples that were less than the MDC to calculate the average radioactivity concentration.

The mass of soiI (dry) was estimated by multiplying the totaI in-situ volume (25.5 m3)by its wet density, 1.47E+03 kg/m3, and then dividing by the wetdry ratio of I .12, thus yielding a mass of 3.35E+04 kg (dry). The mass of the soil was then multiplied by the average Co-60 and Cs-I37 concentrations measured in the soil to obtain the total activity of each radionuclide in the 25.5 m3. Table 2 presents the estimated total radioactivity in the 25.5 m3 of soil at the time of sample collection and analysis, and decay corrected to the present.

H- 9 Revisloll20 Date 1/11/02

~ & BVY 99-80 1 Attachment 1 J Page 5

3.0 SOIL DISPOSAI, AND ADMINISTRATTVE PROCEDURE REQuxxIlEbD3NTS

The method of soil disposal will use the technique of land spreading in a manner consistent with the current commitments for the on-site disposal of septic waste and cooliig tower silts as approved by the NRC, The accumulation of radioactivity on the disposal plot for this soil spreading operation will be treated as if cooling tower silt or septic waste was being disposed of since the characteristics of all these residual solids are similar (earthen-type matter), The south field (approximately 1.9 acres in size) designated and approved for septic waste and cooling tower silts disposal has been used for all past disposal operations, and will be used for the placement of this soil. Determination of the radiological dose impact has been made based on the same models and pathway assumptions used in the previous submittals.

Dry soil material will be dispersed using typical agricultural dry bulk surface spreading practices in approved disposd areas on-site. Incidental pieces of asphalt and stones that were picked up with the soil from area where paving ran along the fence hewill be screened out before the soil is spread and disposed of as radioactive material at an off-site licensed facility if detectable radioactivity is found.

Records of the disposal that will be maintained include the following:

(a) The radionuclide concentrations detected in the soil (measured to environmental lower limits of detection). (b) The total volume of soil disposed of. (c) The total radioactivity in the disposal operation as well as the total accumulated on each disposal plot at the time of spreading. (d) The plot on which the soil was applied. (e) Dose calculations or maximum allowable accumulated activity determinations required to demonsbate that the dose limits imposed on the land spreading operations have riot been exceeded.

To ensure that the addition of the soil containing the radioactivity will not exceed the boundary conditions, the total radioactivity and dose calcdation will include all past disposals of septic waste and coohg tower silt containing low-level radioactive material on the designated disposal plots. In addition, concentration limits applied to the disposal of earthen type materials (dry soil) restrict the placement of small volumes of materials that have relatively high radioactivity concentrations.

Any farmer leasing land used for the disposal of soil will be notified of the applicable restrictions placed on the site due to the spreading of low level contaminated material. These restrictions are the same as detailed for the previously approved septic waste spreading application.

Revision 29 Date 1/11/02 H-10 L_ BW99-80 I Attachment I I Page 6

4.0 EVALUATION OF ENVIRONMENTAL IMPACTS

4.1 Site Characteristics

The designated disposal site is located on the Vermont Yankee Nuclear Power Plant site and is within the site boundary security fence. The south field consists of approximately 1.9 acres and is centered approximately 1500 feet south of the Reactor Building. This parcel of land has been previously approved by the NRC for the land disposal of septic waste and cooling tower silt.

4.2 Radiological Impact

The amount of radioactivity added to the south field soil is procedurally controlled to emure that doses are maintained witbin the prior approved limits of the boundary conditions.

To assess the dose received (after spreading the soil) by the maximally exposed individual during the period of plant controls over the property, and to an inadvertent intruder after plants controls of access ends, the same pathway modeling, assumptions ind dose calculation methods as approved for septic and cooling tower silt disposal were used. These dose modeIs implement the methods and dose conversion factors as provided in Regulatory Guide 1.1 09.

The following six potential pathways were identified and included in the andysis:

(a) Standing on contaminated &ound. (b) Inhalation of resuspended radioactivity. (c) Ingestion of leafy vegetables. (d) Ingestion of stored vegetables. (e) Ingestion of meat. (0 Ingestion of cow’s milk.

Both the maximum individual and inadvertent intruder are assumed to be exposed to these pathways; the difference between them is due to the occupancy time: The basic assumptions used in the radiological analyses include:

(a) Exposure to ground contamination and re-suspended radioactivity is for a period of 104 hours per year during the Vermont Yankee active control of the disposal sites and continuous thereafter. The 104-hour interval is representative of a farmer’s hespent on a plot of land (4 hours per week for 6 months).

Revision 29 Date 1/11/02 I B-11 - BVY 99-80 / Attachment 1 /Page 7

(b) For the purpose of projecting and’illusmtingthe magnitude of dose impacts over the remaining life of the plant, it is assumed that the concentration levels of activity as of April 1,1999 remain constant. Table 1 indicates the measured radioactivity leveIs for CO-60 and Cs-137first noted in the soil, and decay corrected to April 1,1999.

(b) For the analysis of the radiological impact during the Vermont Yankee active control of the disposal sites until 20 13, no plowing is assumed to take place and all dispersed radioactive material remains on the surface forming a source of unshielded direct radiation.

(c) The crop exposure time was changed fiom 21 60 hours to 0 hours to reflect the condition that no radioactive material is dispersed directly on crops for human or animal consumption. Crop contamination is only through root uptake.

(d) The deposition on crops of re-suspended radioactivity is insignificant.

(e) The pathway data and usage factors used in the analysis are the same as those used in the Vermont Yankee’s ODCM assessment of off-site radiological impact fiom routine releases, with the following exceptions. The fraction of stored vegetables grown on the contaminated land was conservatively increased fiom 0.76 to 1.0 (at present no vegetable crops for human consumption are grown on any of the approved disposal plots). Also, the soil exposwe time to account €or buildup was changed from the standard 15 years to 1 year.

(f) It is conservatively .assumed that Vermont Yankee rdiquishes control of the disposal sites after the operating license expires in 2012 (i.e., the source term accumulated on a singIe disposal plot applies also for the inadvertent intruder).

(g) For the analysis of the impact after Vermont Yankee control of the site is relinquished, the radioactive material is plowed under and forms a uniform mix with the top six inches of the soil; but nonetheless, undergoes re- suspension in the air at the same rate as the unpIowed surface contamination. However, for direct ground plane exposure the self- shielding due to the six-inch plow layer reduces the surface dose rate by about a factor of four.

I Revision29 Date 1/11/02 B-12 A BVY 99-80 / Attachment 1 f Page 8

As shown in the previous submittals, in which the concentrations of Co-60 and Cs-137 in septic waste exceed those identified in the soil, the liquid pathway was found to be an insignificant contributor to the dose. Therefore, the liquid pathway is not considered in this analysis.

The dose models and methods used to generate deposition values and accumulated activity over the operating life of the plant are documented the ODCM. Table 3 presents the radioactivity that currently exists on the south field after the Iast spreading event which occurred on September 28,1998 (total elapsed time fiorn September 28,1998 to April 1 , 1999 is 184 days). In addition, the total activity on the south field is presented assuming the addition of the 25.5 m3 of soil subject of this evaluation.

The total activiw that would be present ofi south field at license termination (Le., total elapsed time of 14 years post April 1,1999, or 2013), assuming no future additions of material containing radioactivity after disposal of the proposed soil volume was also evaluated and is presented in Table 4.

In order to demonstrate compliance with the boundary conditions, the critical organ and whole body dose from all pathways to a maximally exposed individual during Vermont Yankee control, and to the inadvertent intruder were calculated. The dose calculations were performed using the dose conversion factors presented in TabIe 5 and 6 beIow which were obtained fiom the ODCM. The contribution to dose fiom Co-60 and Cs-137 to the whole body and organ at the present and at license expiration is presented in Table 7. The present and future total dose impact fiom the south field with and without spreading of the soil is presented in TabIe 8.

These resdts demonstrate that disposal of the approximately 25.5 m3of accumulated soil will be well within the accepted dose limit criteria of 1 mremfyr to any organ or whole body during the control period, and 5 mredyr to an inadvertent intruder after control of the site is assumed to be relinquished. This analysis shows that significant dase margin still exists on the approved disposal plots to accommodate potential future spreading operations.

5.0 RADIOLOGICAL PROTECTION

The disposal operation of soil piles will follow the applicable Vermont Yankee procedures to maintain doses as low as reasonably achievable and within the specific dose criteria as previously approved for septic waste and coohg tower silt disposal.

I Revision 29 Date 1/11/02 H-13 - BVY 99-80 / Attachment 1 I Page 9

6.0 CONCLUSIONS

Soil generated from on-site construction activities reflects an earthen type material similar in characteristics to septic waste residual soIids and cooling tower silt with respect to the radiological pathway behavior and modeling. Based on the similarity in characteristics between the proposed soil volume and waste streams that have already been approved for disposal, and the evaluation of the incrementaI dose impact, it is concluded that disposal of the approximately 25.5 m3 of existing soil through on-site land spreading wiIl meet the boundary conditions specified in the ODCM. That is, with respect to the addition of the approximately 25.5 m3soil pile to the existing radioactivity already spread on the south field:

1. Total doses to the whole body and critical organ to the hmothetically maximally exposed individual were estimated & 3.00E-02 mredyr and 1.04E-01,respectively, which are Iess than the prescribed 1.0 mredyr.

2. Total doses to the whole body and critical organ of an inadvertent intruder fiom the probable pathways of exposure were estimated as 1.13E-01 mredyr and 2.21E-01 mredyr, respectively, which are less than 5 mredyr.

3. The disposal is assumed to take place on the south field that is the same site approved for disposal of septic waste and cooling tower silts.

If the soil were spread on an approved plot which had not yet been used for disposal, the dose impact from the approximately 25.5 m3 of soil alone would at present be 4.17E-03 mredyr whole body and a maximum organ dose of 1.46E-02 mredyr. In addition, for the inadvertent intruder, the whole body dose would be 1.60E-02 mrerdyr, and a maximum organ dose of 3.1 IE-02 mredyr. Each of these doses also meet the boundary conditions specified in the ODCM.

7.0 REFERENCES

(1) Vermont Yankee ODCM,Rev 23, Appendix B, “Approval of Criteria for Disposal of Slightly Contaminated Septic Waste On-Site at Vermont Yankee”.

(2) Vermont Yankee ODCM, Rev 23, Appendix F, “Approval Pursuant to 1OCFR20.2002 for On-Site Disposal of Cooling Tower Silt”.

(3) USNRC Regulatory Guide I .109, Rev 1, “Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance With 1OCFR Part 40, Appendix I”, dated October 1997.

Revision 29 Date 1/11/02 I1 H-14 L BVY 99-80 / Attachment 1 / Page 10

Table 1 Radioanalytical Results of Composite Soil Samples

Muximum Vdue 810 739 143 84 Minimum Value I07 98 5 3 Standard Deviation 191 174 37 22

* Average wet to dry sample weight ratio equal to 1.12. Average wet density equal to 1.47 gdcc. ** The apparent response of the gamma isotopic analysis which was lcss than Minimum Detectable Concentration. - Table 2 Estimated Total Radioactivity in Soil Volume

I I Volume I t Average Concentration I Total Activity of Soil Mass 6Ci/kg-dry) (m Radionuclide (m3) (kg-dry) - April, 1995 April, 1999 ApriI,l995 April, 1999 CS-137 25.5 3.35E-i-04 328 299 11.0 10.0 CO-60 25.5 3.35Ei-04 85 50 2.8 1,.7

Revision29 Date 1/11/02

~ H-15 7

- BVY 99-80 / Attachment 1 / Page 11

Total activity after Total activity decay Total activity after Iast spreading event corrected to April 1, proposed soil Radionuclide (@/acre) ,1999(pCi/acre) disposal OrWacre) Mn-54 0,17 0.1 1 0.1 1 Co-60 5.93 5.5s 6.44 Zn-65 0.074 0.044 0,044 CS-137 32.27 3 1.90 37.16

Table 4 Total Projected Radioactivity on South Field Remaining at License Expiration

Total Activity as of License Expiration Radionuclide (pCVacre) - Mn-54 8.9E-07 Co-60 0.89 211-65 7.6E-09 CS-137 26.33

Table 5

Critical Organ Whole Body Dose Factor Dose Factor Radionuclide IndividuaVOrgan (mtemlyr per pCi/acre) (mrernlyr per pCi/acre) Mrl-54 AdddGI-LLI 3.75E-04 I .93E-04 CO-60 TeenLung 7.17E-04 5,3 1E-04 Zn-65 Child/Liva 1 A4E-02 1 .a3~-02

I1Revision 29 Date 1/11/02 H-16 P

BW99-80 / Attachment 1 /Page 12

CriticaI Organ Whole Body Dose Factor Dose Factor Radionuclide IndividuaYOrgan (mremlyr per @Xiacre) (rnnmlyr per pcdacre) Mn-54 Teen/Lung 1.02E-02 3.12E-03 CO-60 Teen/Lung 3.19E-02 9.09E-03 Zn-65 ChildCLiver 1.WE-02 1.258-02 CS-137 ChildiBone 6.98E-03 3.8 5E-03

Table 7 Dose Contribution from Co-60 and (3-137in 25.5 m3 Soil Volume after Land Spreading

Present Dose Impact' Future Dose Impacv (Maximally exposed (Inadvertent Intruder) Case individual) Dose Individual/ Dose Individual/ (mrem/yr) Organ (mredyr) Organ

Cobalt-60 4.75E-04 Whole body 1.29E-03 Whole body 6.42E-04 Max. Organ 4.51E-03 Max. Organ

Cesium-137 3.69E-03 Whole body 1.47~-02 Whole body 1.40E-02 Max. Organ 2.66E-02 Max. Organ

Based on inventory of Co-60 of 0.895 pCi/acre and Cs-137 of 5.26 pCllacre in Apnl 1, 1999. Based on inventory of CO-60of 0.14 1 pCi/acre and Cs-137 of 3.82 pcilacre in April 1, 2013.

Revision 29 Date 1/11/02

1 I I H-17 BVY 99-80 / Attachment 1f Page 13

Table S, Present and Future Dose'Jrnpact Due to the Soil Spreading for Two Cases

Present Dose Impact (Maximally exposed Case individual) . Dose Individual/ Dose Individual/ (mremEyr) Organ (mredyr) Organ Case One South Field as it currently 2.58E-02 Whole body 9.7OE-02 Whole body exists 8.9%-02 MS. brgm 1.89E-01 Max. Organ Case Two South Field if disposal of 3.00E-02 Whole body 1.13E-01 Whole body soil volume is approved 1.04E-02' Max. Organ 2.2 1E-0 1 ChiWBone Increase in dose impact 4.17E-03 Whole body 1.60E-02 Whole body fiom disposal of soil 1.46E-02 Max. Organ 3.1 IE-02 Max. Organ

Revision 29 Date 1/11/02 ll I ' k-18 VERMONTYANKEE . NUCLEARPOWER CORPOFWTION I 185 Old Ferry Road, Brattleboro, VT 05301-7002 / (802)257-5271 January 4,2000 BW00-02

United States Nuclear Regulatory Commission ATM: Document Control Desk Washington, DC 20555

References: (a) Letter, VYNPC to USNRC, "Request to Amend Previous Approvals Granted Under 10 CFR 29.302(a) for Disposal of Contaminated Septic Waste and Cooling Tower Silt to Allow for Disposal of Contaminated Soil," BVY 99-80, dated June 23,2999 Subject: Vermont Yankee Nuclear Power Station ' License No. DPR-28 Docket No. 50-271) Supplement to Request to Amend Previous Approvals Granted Under 10 CFFt 203021a) to Allow for Disposal of Contaminated Soil

Reference (a) provided Vermont Yankee's application to amend the previously granted approvals to dispose of slightly contaminated septic waste and cooling tower silt on-site to include slightly cbntaminated soil generated as a residua1 by-product of on-site construction activities. The request was to allow the disposal of approximately 25.5 cubic meters of waste that has been accumuIated to date and to allow for disposal of future waste from construction related activities.

Based on discussions with USNRC staff, additional information reIated to the estimated volume and dose consequences of the proposed future material was needed to complete your review. . Attachment 1 has been revised accordingly to include the .infomation requested. Attachment 1 supercedes the evaluation previously submitted.

We trust that the information will allow you to compIete your review of our submittal. However, should you have any questions or require further information concerning this matter, please contact Mr. Jim DeVincentis at 802-258-4236. ?

Sincerely,

Vermont Yankee Nuclear Power Corporation

Gautam Sen 1Licensing Manager Attachment cc: USNRC Region I Administrator USNRC Resident Inspector - VYNPS USNRC Project Manager - VYNPS VT Deparbnent of Public Service . H-19 IIRevision 29 Date 1/11/02 7

-. SUMMARY OF VERMONT YANKEE COMilMTMENTS

BVY NO.: 00-02 The foUowing tabIe identifies commitments made in this document by Vermont Yankee. Any other actions discussed in the submittal represent intended or planned actions by Vermont Yankee. They are described to the NRC for the NRC's information and are not regulatory commitments. Please notify the Licensing Manager of any questions regarding this document or any associated commitments,

COMMITMENT COMMLTIXD DATE 0R"OUTAGE'' .

None NIA

11

Lb

VYAPF 0058.04 AP 0058 OriginaI Page 1 of 1

Revision 29 Date 1/11/02 H-20 llI .. I 1. Docket No. 50-27 I . BVY00-02

Attachment 1

Vermont Yankee Nuclear Power Station

Assessment of On-site Disposal of Contaminated Soil by Land Spreadkg

Revision 29 Date 111 1/02 H-21 7

b

BVY 00-02/ Attachment I I Page 1 of 17

-' TABLE OF CONTENTS -

Page

LIST OF TABLES ...... 2

I .O,. INTRODUCTION ...... , ...... , , . , . , +. .. +, ., , . , ...... 3 1.1 Background ...... 3

. .I 1.2 Objective ...... , ...... -...... 3 '

2.0 WASTE DESCRIPTION ...... ;:...... f.... 4

3.0 SOIL DISPOSAL AND ADMINISTRATNE PROCEDURE

REQUIREMENTS...... , . . . . . + .: ...... ,...... 5 4.0 EVALUATION OF ENVIRONMENTALIMPACTS ...... 6

4.1 Site Chcteristics ,. , ...... :...... :. ,. . . . .;. 6

4.2 RadioIogicd Impact ...... 7

5.0 RADIOLOGICAL PROTECTION ...... 9

6.0 CONCLUSIONS ...... 9 7.0 REFERENCES ...... *....,,...... ,.,,...11

Revision 29 Date 1/11/02 I H-22 .-.

BW00-02 / Attachment 1 /Page 2 of 17

_. LIST OF TABLES

Table 1: Radioanalytical Results of Composite Soil Samples...... 12

Table 2: Estimated Total Radioactivity in 25.5 m3Soil Volume...... :. 12 Table 3: Estimated Total Radioactivity in Future Soil Additions...... 13

Table 4: Record of Septic and Silt Radioactive Material Spread each Year on South

Field Disposal Plot ...... 13. Table 5: Total.Projected Radioactivity Remaining on South'Filed at License' .

Expiration...... is...... I4

Table 6: All-Pathway Critical Orgadwhole Body Dose Conversion Factor&...... 14

Table 7: Dose Impact from Past Septic and SiIt Spreading Activity..:...... 15

Table 8: Dose Impact ftom Past Septic and Silt Spreading 'and Single 25.5m3 Soil ..... -. .. . -- ._- .- .- .. - . Disposal...... I5

Table 9: Dose Impact fiom Present and Future Soil Disposal Along with Past Septic

and Silt Disposal,, ...... 16

TabIe 10: Dose Impact from Past Disposals through 7/15/99 Plus all Annual Projected 1 Disposals of Septic, Silt and Soil...... I6 .- Table 11 : Summary of Dose Impacts Associated with Different Disposal - Scenarios ...... :...... 17

Revision 29 Date 1/11/02 H-23 *. I I BW00-02 I Attachment I I Page 3 of 17

1.0. INTRODUCTION .

1.1 Background In 1989, Vermont Yankee Nuclear Power Corporation requested approval from the NRC to routinely dispose of slightly contaminated septic waste in designated on-site areas in accordance with lOCFR20.302(a). Approval fiom the NRC was granted on August 30,1989 and the information was permanently incorporated into the Offsite Dose Cdcdation Manual (ODCM) as Appendix E.

In 1995, Vermont Yankee Nuclear Power Corporation requested that the previous authorization for on-site disposal of very low-level radioactive material in septic waste be amended to permit the on-site disposal of slightly contaminated coohg tower silt material. Approvd fiom the NRC was granted ori June 18,1997 and the information was permanently incorporated into the ODCM as Appendix F.

In 1994, approximately 25.5 m3of excess soil was generated during on-site construction activities. Subsequent sampling and analysis of the soil revealed low levels of radioactivity that were similar in radionuclides and activity to the septic waste and cooling tower silts pfeviously encountered. An evaluation determined that the soil could be managed in similar fashion as the septic waste and cooling tower silts; however, prior approval from the NRC would be required under 10 CFR 20.2002 (formerly 20.302(a)). -.

1.2 Objective

The purpose of this assessment is to present the data and radiological evaluation to demonstrate that the proposed disposition of the soil (Le., on-site disposal via land spreading on designated fields) will meet the existing boundary dose conditions as approved by the NRC for septic waste and cooling tower silt. The boundary conditions established for -’ disposal of the septic waste and cooling tower silt on designated plots are:

I. The dose to the whole body or any organ of a hypothetical maximally exposed individual must be less than 1.O mredyr.

2. Doses to the whole body and any organ of an inadvertent intruder &om the probable pathways of exposure are less than 5 rnredyr.

3. Disposal operations must be at one of the approved on-site locations.

I Revision 29 Date 1/11/02 H-24 V

L

BVY 00-02 / Attachment 1 / Page 4 of 17

2.0 WASTE DESCRIPTION

The existing accumulation of contaminated soil was derived fkom excavation activities associated with the construction of a new security fence along the plant’s Protected Area boundary. The volume of soil generated was approximately 25.5 m3,and is typical of fill material containing light to dark brown poorly sorted soils with some small stones, and includes small incidental pieces of asphalt. The soil was removed from its original location by shovel, backhoe and fiont-end loader, and placed into dump trucks for transport to a location between the cooling towers where it was deposited on the ground surface and covered to prevent erosion. This location was selected because it was away fiom areas routinely occupied by plant sW,and could easily be controlled. The most probable source of the low levels of radioactive contamination is the presence of below detectable removable contamination redistributed by foot tr&c fiom inside the plant to walkways and parking areas. Subsequent Surface runoff carries the contamination to nearby exposed soil near the Protected Area boundary where it had accumulated aver time to low level detectable cdncentrations.

In April 1995, a total of 20 composite soil samples were collected to characterize the accumulated volume. Composites were obtained by taking a grab sample from opposite sides of the pile and the top at equal distances along its length. These three grab samples were then combined into one composite sample. Soil samples were sent to the Yankee Atomic Environmental Laboratory for analysis and counted to environmental Iower Emits of detection required of environmental media Results of the analyses are presented in Table 1. For estimating the total activity in the soil pile, the actual analytical resdt was used for those samples that were Iess than the MDC to calculate the average radioactivity concentration. Analytical results are provided for both the times when the samples were collected as well as decay corrected to the present (7/15/99).The resdts identified both Cs-137 and CO-60 in most of the composite samples, which verified that plant-related radioactivity, was present in the soil.

The mass of accumulated soil (dry) was estimated by multiplying the total in-situ volume (25.5 m3) by it’s wet density, 1.47E-tO3 kg/m3, and then dividing by the wet:* ratio of 1.12, thus yielding a mass of 3.35E+04 kg (dry). The mass of the soil wits then multiplied by the average measured CO-BO and Cs-137 concentrations to obtain the total activity of each radionuclide in the 25.5 m3.Table 2 presents the estimated total radioactivity in the 25.5 rn3 volume at the time of sample collection and analysis, and decay corrected to the date of the most recent disposal (septic waste) spreading operation @e., July 15,1999).

I Revxion 29 Date 1/1 1/02 BW00-02 Attachment 1 i Page 5 of 17

evaluating the radiological impact of potential future soil disposals, it is assumed that an additional 28.3 m3 per year of sand / soil is contaminated at the same concentration levels as originally observed (April 1995) in the currently collected 25.5~11~of soiI. It is also assumed that this materid is placed on the same approved disposd fieId used for all past septic and cooling tower silt disposal operations. Table 3 shows the estimated amount of radioactivity associated with the annual disposal of the 28.3m3of soil. It is assumed that this material is disposed of each year for the next 14 years (until the end of pIant operating license in 20 13) on the same field (South Disposal Plot) dong with the continued application of septic waste and cooling tower silt.

Table 4 shows a record of the acid amount of septidsilt. materid that has been spread on. south field for the past 10 years. A review of the actual waste disposal operations show that the annuaI average radioactivity content placed on the 1.9 &re South field horn septic and silt disposds are as follows:

Mu-54 0.147 uCi/year CO-60 2.58 uCi/year Zn-65 0.269 uCi/year CS-134 0.010 uCiiyear CS-137 6.21 uciyear

The maximum radioactivity inventory resulting fiom the accumulated buildup of past and projected future disposal operations (i.e., septic waste, cooling tower silt;plus the existing 25:5m3 of accumulated soil along with a projected annual addition of 28.3m' of soil each year until the termination of the operating license) is shown on Table 5.

3.0 SOIL DISPOSAL AND ADMlTyISTRATIvE PROCEDURE REQUIREMENTS

The method of soil disposd will use the technique of land spreading in a manner consistent ** with the current commiments for the on-site disposal of septic waste and cooling tower silts as approved by the NRC. The accumulation of radioactivity on the disposal plot for this soil spreading operation will be treated as if cooling tower silt or septic waste was being disposed of since the characteristicsnf all these residual solids are similar (earthen-type matter). .The south field (approximateIy 1.9 acres in size) has been designated and approved for septic waste and cooling tower silt disposal and has been used for all past disposal operations, and is expected to be used for the placement of soil. Determination of the radiological dose impact has been made based on the same models and pathway assumptions used in the previous submittals.

Dry soiI material will be dispersed using typical agricultural dry bulk surface spreading practices in approved disposal areas on-site. Incidental pieces of asphalt and stones that are picked up with the soil will be screened out before the soil is spread and disposed of as radioactive material at an off-site licensed facility if detectable radioactivity is found. H-26 Revision 29 Date 1/11/02 'I .. .

BVY 00-02I Attachment 1 / Page 6 of 17

Records of the disposal that will be maintained include the following: .-

(a) The radionuclide concentrations detected in the soil (measured to environmentd lower limits of detection). (b) The total voIume of soil disposed of. (c) The total radioactivity in the disposal operation as well as the total accumulated OR each disposal plot at the time of spreading. (d) The plot on which the soil was applied. (e) Dose calculations or npxhum allowable accumulated activity determinations required to demonstrate that the dose limits imposed on the land spreading operations have not been exceeded. ..

To ensure that the addition of soil containiug low levels of adioactivity will not exceed the boundary dose limits, each new spreading operation will require an estimate of totat radioactivity that includes all past disposds of septic waste, cooling tower silt and soil material on the designated disposal plots. This will be compared with the boundary dose limits or equivalent radioactivity limits on a per acre basis, In. addition, concentration limits applied to the disposal of earthen type materials (dry soil) restrict the placement of small volumes of materials that have AativeIy high radioactiviv concentrations.

Any farmer leasing land used for the disposd of soil (or other approved waste) will be notified of the applicable resbictions placed on the site due to the spreading of low level contaminated material. These restrictions are the same as detailed for the previously approved septic waste spreading application.

4.0 EVALUATION OF ENVIRONMENTAL EMPACTS

4.1 Site Characteristics

All designated disposal sites are located OR the Vermont Yankee NucIear Power Plant site and are within the site boundary security fence. The south field consists of approximately 1.9 acres and is centered approximateIy 1500 feet south of the Reactor Building. This parcel of land has been previously approved by the NRC for the land disposal of septic waste and cooling tower silt, and is the only portion of the approved disposal areas which has been utilized to-date for the spreading of contaminated material. For estimating the rnaxhw future radiological impact, it is assumed in the analysis that all future disposal operations Will continue to use the South field as the disposal plot.

Revision 2 Date 1/11/02 H-27 I I BVY 00-02 1 Attachment 1 I Page 7 of 17

4.2 Radiological Impact _.

The amount of radioactivity added to the south field is procedurally controlled to ensure that doses are maintained within the prior approved limits of the boundary conditions.

To assess the dose received by the maximaIIy exposed individuaI during the period of plant controls over the property, and to an inadvertent intruder after it is assumed plat access controIs end, the same pathway modeling, assumptions and dose calculation methods as approved for septic and cooling tower silt disposd were used. These dose models implement the methods and dose conversion factors as provided in Regulatory Guide 1.109, Revision 1 (1 977). The following six potential pathways were identified and &cIuded in the analysis,:

(a) Standing on contaminated ground. . (b) Inhalation of resuspended radioactivity. (c) Ingestion of Ieafl vegetables. (d) Ingestion of stored vegetables.

(e) Ingestion of meat. .+ (f) Ingestion of cow’s milk.

As shown in the previous application for septic waste disposd, the liquid pathway was found to be an insignificant contributor to the dose for the radionuclides idenaed fixed in the soil type matrixes associated these waste forms. Therefore, the liquid pathway is not considered in this analysis.

Both the maximum individual and inadvertent intruder are assumed to be exposed to these pathways, the difference between them being due to the occupancy time. The basic assumptions used in the radiologicd analyses include:

(a) Exposure to ground contamination and re-suspended radioactivity is for a period of 104 hours per year during the Vermont Yankee active control of the disposal sites and continuous thereafter. The 104-hour interval is representative of a farmer’s time spent on a plot of land (4 hours per week for 6 months).

H-28 Revi\ion= Date 1/11/02

~ BW00-02 I Attachment 1 I Page 8 of I7

occurs at the saqe time (2013) for both the Conk01 Periodand Intruder scenarios.

(c) For the analysis of the radiologicd impact during the Vermont Yankee active control of the disposal sites until 2013, no plowing is assumed to take place and aI1 dispersed radioactive material remains on the surface forming a source of unshielded direct radiation.

(d) The crop exposure &ne was changed from 2160 hours to 0 hours to reflect the condition that no radioactive material is dispersed directly on crops for human

or animal consumption. Crop contamination is only through root uptake. I

(e) The deposition on crops ofxe-suspended radioactivity is insignificant.

(f) Most of the pathway data and usage factors used in the analysis are the same as those used in the Vermont Yankee's ODCM assessment of off-site radiological impact fiom routine releases. The hction of stored vegetables grown on the contaminated land was conservatively increased fiom 0.76 to 1 .O (at present no vegetable crops for human consumption are grown on any of the approved disposal plots). For each year's spreading operations, the soil exposure time to account for buildup was changed from the standard 15 years to 1 year. .. - .

(g) It is conservatively assumed that Vermont Yankee relinquishes control of the disposal sites after the operating license expires in 2013 (Le., the source term accumuIs?ted on a single disposal plot applies also for the inadvertent intruder).

(h) For the analysis of the impact derVermont Yankee control of the site is relinquished, the radioactive material is plowed under and forms a uniform * mix with the top six inches of the soil; but nonetheless, undergoes re- suspension in the air at the same rate as the unplowed surface contamination. However, for direct ground plane exposure the self-shielding due to the six- inch pIow layer reduces the surface dose rate by about a factor of four. .

The dose models and methods used to generate deposition values and accumulated activiw over the operating life of the plant are documented in the Vermont Yankee ODCM. The total activity that would be present on south field at the end of the operating period (Le., total elapsed time of 14 years post July 15,1999, or 20 13) from the buildup of all waste streams @e., septic, cooling tower silt and soil) is presented in Table 5.

Revision 29 Date 1/11/02 I H-29 BW00-02 I Attachment 1 I Page 9 of I7

In order to evaluate the dose iqpact associated with the different disposal streams, a dose assessment was performed for the following four disposal scenarios:

0) Impact fiorn past septic and silt spreading only - Table 7 (II) Impact fiom past septic and silt spreading, plus a single 25.5m3soil disposal operation for the existing accumulated soil - Table 8 (III) Impact from past septic and silt disposals along with the existing 25.5 m3of accumulated soil and postulated future annual soil disposal volumes (28.3 m3 /y).-Table 9 0 Impact from past septic and silt disposals plus annual projected disposals of septic, silt and soil. -Table 10

For each scenario, the critical organ and whole body dose Gom all pathways to a maximally exposed individual for both the Vermont Yankee control period and the inadvertent intnzder situation were calculated. The dose calculations were performed using the dose conversion factors presented in Table 5, which were obtained fiom the Vermont Yankee ODCM, Appendix F, “Approval Pursuaut to lOCFR20.2002 for On-Site Disposal of Cooling Tower Silt.”

A: summary of the cdcdated dose impact associated with the four different scenarios is shown in Table 11. These results demonstrate that disposal of the 25.5 m3 of accumulated soil will be well witbin the accepted dose limit criteria of 1 mredyr to any organ or whole body during the control period, and 5 mredyr to an inadvertent intruder. In addition, if continued soil spreading is necessary, the resulting dose is expected to dso remain below the established limits even assuming the annual application of already approved disposal media

(Le., septic waste and cooling tower silt). +

5.0 RADIOLOGICAL PROTECTION

l. The disposal operation of the soil will follow the applicabIe Vermont Yankee procedures to maintain doses as low as reasonably achievabk and within the specific dose criteria as previously approved for septic waste and cooling tower silt disposal.

6.0 CONCLUSIONS

Soil generated fiom on-site construction and maintenance activities constitutes an earthen me material similar in characteristics to septic waste residual solids and cooling tower silt with respect to the radiological pathway behavior and modeling. Based on the similarity in characteristics between the proposed soil voIume and waste streams that have already been approved for disposal and the evaluation of the incremental dose impact, it is concluded that the disposal of the existing 25.5 m3 and the projected 28.3 m3/yearof soil through on-site land spreading will meet the existing NRC approved boundary dose conditions specified in H-30 I Revision 29 Date 1/11/02 3W00-02 f Attachment 1 I Page 10 of 17

the Vermont Yankee ODCM (see Appendix B for Septic Waste Disposal). That is, with respect to the addition of the initial 25.5 m3of soil along witti the projected 28.3 m3/yearof soi1 and the projected future disposal of septic and silt waste to the existing radioactivity already spread on the south field

1. Total doses to the whoIe body and criticd organ of the hypothetically maximally exposed individual were estimated as 1.15E-01 mredyr and 4.03E-01 medyr, respectively, which are Iess than the prescribed 1.O mredyr limit during the period of active site contxol. .

2. Total doses to the whoIe body and critical organ of an inadvertent intruder fiom the . probabIe pathways of exposure were estimated as 7.57E701 mredyr and 1-17mredyr, respectively, which are Iess than 5 mdyr limit associated with an intruder scenario following assumed loss of site accesS control as the end of the operating license.

3. For purposes of projecting maximum impact, all disposals (past and We)are assumed to take place on the south disposal plot.

Therefore, the disposition of the present 25.5 m3 and the projected 28.3 m3/yearof soil will chimeto meet the existing boundary conditions as approved by the NRC for septic waste and cooIing tower silt.

.- -

Revision 29 Date 1/11/02

#I I I -_

BW00-02 f Attachment 1 I Page 1 l’of 17

.. 7.0 REFEFCENCES

(1) Vermont Yankee ODCM, Rev 23, Appendix B, “Approval of Criteria for Disposal of Slightly Contaminated Septic Waste On-Site at Vermont Yankee”.

, (2) Vermont Yankee ODCM, Rev 23, Appendix F, “Approval Fbrsuant to lOCFR20.2002 . for On-Site Disposal of Cooling Tower SiIt”.

(3) USNRC Regulatory Guide 1.109, Rev I, “Calculation of Amd Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evalua~gCompliance with ZOCFR Part 40, Appendix I”, dated October 1977.

.. . -- ._ - . . .

H-32 Revision 29 Date 1/11/02 -

BVY 00-02 / Attachment 1 J Page 12 of 17

TabIe 1

RadioanaIytical Results of Composite Samples Taken from 25.5m3Soil Pile

CS-137 CO-60 @Ci/kg) (Pew Smule TD Ad. 1995 July 15,1999 Auril. 1995 July 25.1999 (322716 234 212.2 49 28.0 * 022717 522 473.4 143 81.7 G22718 .- 337 305.7 37 21.1 * G22719 29 1 263.9 111 63.4 G22720 348 315.6. , 47 26.8 * . G22721 135 122.4 ; 73 41.7 G22722 107 97.0 82 46.8 G22723 222 20 1.4 140 80.0 G22724 180 163.3 92 52.6 G22725 269 244.0 118 67.4 G22726 810 734.7 . 114 65.1 G22727 378 342.8 106 60.6 G22728 810 734.7 124 . 70.8 G22729 376 341 .O 62 35.4 G22730 33 1 300.2 87 49.7 G2273 1 253 229.5 5 2.9 * G22732 150 136.0 58 33.1 G22733 247 224.0 105 60.0 G22734 326 2957 54 30.8 * G2273 5 23 5 213.1 100 57.1 Average 328 298 85 49 Maximum 810 735 143 82 Minimum 107 97 5 3 StdDev. 186 169 36 20

*The apparent response of the gamma isotopic analysis was less than the Minimum DetectabIe Conceneation.

Table 2 Estimated TotaI Radioactivity in 25.Sm3Accumulated Soil

".. - _-. H-33. . I Revision 29 Date 1/11/02 .-. . -I. . -_ ?

A

BVY 00-02 /Attachment 1 /Page I3 of 17

Table 3 Estimated Total Radioactivity in Future Soil Additions

Volume Soil Average Concentration of soiI Mass (pcfig-dry assuming) Total Activity Nuclide (m3) Ike-drvl cA~riI.1995concentrations1 lUCi/VT)

Cs-137 28.3 3.72E+04 328 12.8 . Co-60 28.3 3.72E+04 85 3.16

Table 4 Record of Septic and Sit Radioactive Material Spread Each Year on the South Field . ,I

Spreading Materid Mn-54 Cod0 ZU-65 0-134 c5137 Ce-141 Year Date Type (uCi/acre) (uCVacre) (uCi/acre) (ucilacre) (nCilacre) (uCi/acre)

t990 10/3 1/90 Septage 0.00 3.89 0.00 0.00 026 0.00

1990 11/20/90 Septage 0.17 2.03 0.41 0.00 0.29 1.40E-08

1991 no 0.00 0.00 0.00 0.00 0.00 0.00 spreading

1992 10/19/92 septage 0,ll 1.73 0.52 0.05 0.32 0.006

1993 10/14/93 septage 0.05 1.41 0.2 I 0.00 0.30 0.00

1994 06/14/94 septage 0.08 .0.43 0.00 0.00 0.09 0.00

1995 06/29/95 septage 0,OO 0.88 0.00 0.00 0.00 0.00

1996 no 0.00 0.00 0.00 0.00 0.00 .a00 spreading 1997 06/18/97 septage 0.12 1 .oo 0.00 0.00 0.19 0.00

1998 omo/ga septage- 0.14 0.72 0.09 0.00 0.12 0.00 1998 09/28/98 Silt 0.00 0.00 0.00 0.00 30.87 0.00

1999 07/15/99 Septage-- 0.1 1 1.47 0.20 0.00 0.25 0.00 4verage Activitylyr (UCVacre): 0.08 1.36 0.14 0.01 3.27 0.0 1 Average Activity (uCi/yr) to be 0.147 2.58 0.269 0.010 6.21 0.001 not disposed of on 1.9 significant acre field

H-34 Revision 29 Date 1/11/02 BW00-02 1 Attachment I I Page 14 of 17

Table 5 Total Projected Radioactivity Remaining on South FieId after'license Termination

Accum. Activity Accum. Activiw Accum. Activity Accum. Activity in Silt & Septic in soil Total All Paths Total All Paths @ Year 2013 @ year 2013 @ year 2013 @ Year 2013 Nuclide a :luci') cuci) ~ (uCi/acre>* Mn-54 , 026 - - 0.26 0.14 CO-60 19.68 21.83 41.51 21.85 - 0.42 Zn-65 0.42 .. 0;22 CS-137 119.03 154.74 273.78 144.09 CS-134 0.04 - ~' ' 0.04 0-02

* The total activity is assumed to be spread on the 1.9 acre South field to generate the uCi/acre value.

Table 6 AII Pathway Critical Organ/WhoIe Body Dose Conversion Factors During W Control Post W Control putruder Scenario)

Critical Organ Whole Body Critical Organ Whole Body . Dose Factor Dose Factor Dose Factor Dose Factor (mremlyr per (mremlyr per Lmremfvr uer (mredyr per Radionuclide XndividuaVOrvan yciacre) pcilacre) $ifacre) pciiacre) - Mn-54 AdddGI-LLI 3.75E-04 1.938-04 1.02E-02 3.12E-03 CO-60 Teedung - - 7. I E-04 5.31E-04 3. I9E-02 9.09E-03 211-65 ChiId/L.iver I .62E-02 1.03E-02 1.89E-02 . 1.25E-02 cs-I37 Child50ne 2.66E-03 7.02E-04 6.98E-03 3.85E-03

Revision 29 Date 1/11/02 ' H-35 ... ' :', L

BVY 00-02 1 Attachment 1 I Page 15 of 17

Table 7 (Scenario I)

Dose Impact from Past Septic and SiIt Spreading on South Field (as of 7/15/99)

Control Sccnarfa: AI1 Other Spdmgs HaISLifC To Datc .fEiEl fUCiiaCrrl I~Wd~l~mrrmh.rluc'iacre) fmdwl frnrcm/vr\ . Mn-54 086 030 3.7sE04 133844 73935 3.788-05 CoaO 527 6.86 7.17E-04 531E-04 4.m-03 3.63E-03 zp-65 .,0.67 023 - 1.62E-M 1.03EM 3.77E-03 2.40E-03 Cs-137 30.17 3 192 2.6633 .7.m-04 8.49E-02 224E-02 Total. 937E-02 . I 2.85E-02 .. I I Dose Limit: 1' I ?4of Limit 937% 2.85?6

Intruder Scenario: AI1 mer Activity on Plat Spdmgs Decayed to MaximumOrgm WholeBody Maximum WhoteBody Half-Life To Datc Year2013 Dost Factor DoritFactDr OrganDosc Dose Iyears) ~uciiacrc~ ~UCiacfcl ~mrrmlvr~d~~IdvKd~] irnrcrn/yr> {mrcdvrl Mn-54 0.86 020 23 IE-06 1.02EM 3.12EM 236E-08 722E-09 CQ-60 527 6.86 1.OXE+OO 3.19E-02 9.09E-03 3.46E-02 9.85E-03 20-65 0.67 0.23 1.1 SE-07 1.89EM 1.2SE4Q 217E-09 I.43E-09 - c5-137 30.17 31.92 231EM1 698E-03 3.uEm 1.62E-O 1 8.9 IE-OZ

. _,I_.. .. % OfLimit 3.92% 1.98% Table 8 (Scenario IC)

Dose Impact from Past SeptidSilt Spreading and Single 25.5m3 Soil Disposal

Controt Scenario: All spreaftiigs Half-Life toDate' r(eassl Mn-54 0.86 -0 527 7.70 7.17E-04 5.3 IE-04 552E-03 4.09E-05 zn-65 0.67 0233 1.&?E42 1.03E-02 3.77E-03 2.10E-03 CS-I37 30.17 37.19 2.66E-03 7.02E-04 9.89E-M 2.6 1E-02 Totalal~~~:1 1.08E-01 I 326E-E 1 Dose Liir 1' 1 % of Liir 10.83% 3.2694

Intruder Sctnaria: All Spreadiigs Activity on Plot Maximum Orgm Wholc Body Maximum Whole Body Half-Life tom Decaycdto2013 DoscFaaor Dose Factor Organ Dose Dose cycan) luc'iaml fucilaerc) ~mmrtmlvr/uciiaete) (rnrcmh/uCidacre> $mrcm/yr) Imrcm/vtl Mu-54 0.86 0.196 23 1E-06 1.ME-OZ 3.12E-03 236E-08 7.22509 (2-60 527 7.70 1uE+oo 3.19E02 9.G9E43 3.8XE-02 1.11E42 211-65 0.67 0233 1.15E-07 1.89E-02 I25E-M 2.17E-09 1.43E-09 &I37 30.17 37.19 2.70E+01 6.98E-03 3.85E-03 1.88E-01 1.04E-01 Totalhsc 1 227E-01 I l-I5E*Ol DoscLimit: . 5 5 % of Lit 454% 2.30% Revision 29 Date 1/11/02 H-36 UNITED STATES :EAR REGULATORY COMMISS or WASHINGTON. D.C. x)555ooo1

June .15, 2000 NXq 00-58 Mr. Samuel L. Newton Vice President, Operations Vermont Yankee Nuclear Power Corporation 185 Old Ferry Road Brattleboro, VT 05301

SUBJECT: VERMONT YANKEE NUCLEAR POWER STATION, REQUEST TO AMEND

*- PREVIOUS APPROVALS GRANTED UNDER IO CFR 20.302(a) TO ALLOW FOR DISPOSAL OF CONTAMINATED SOIL (TAC NO. MA5950)

Dear Mr. Newton:

By !etter dated June 23,1999, as suppiemented on January 4,2000, you submitted a request . to amend a previously approved apptication granted by the Nudear Regulatory Commission (NRC) pursuant to 10 CFR 20.2002 (previously 10 CFR 20.302) to allow the addition of slightly contaminated soil and soiVsand material to the list of already approved materials-(i.e.,septic waste and cooling tower silt) for on-site disposal via land spreading on designated fields.

We have completed our review of your proposal and find it to be acceptable because the previously approved bounding conditions will continue to be met.

Pursuant to the provisions of 10 CFR Part 51, the NRC has published an Environmental Assessment and Finding of No Significant Impact in the Federal Register on June. 15 .- ,2000 (65 FR 37583 ).

Johnb4 .Zwolinski, Director Division of Licensing Project Management Office of Nuclear Reactor Regulation

Docket No. 50-271

Enclosure: Safety Evaluation

cc w/encl: See next page

Revision 29 Date 1/11/02 H-37 Vermont Yankee Nuclear Power Station

cc:

Regional Administrator, Region I Mr. Raymond N. McCandless U. S. Nuclear Regulatory Commission Vermont Department of Health 475 Allendale Road Division of Occupational King of Prussia, PA 19406 and Radiological Health 108 Cherry Street Mr. David R. Lewis Burlington, VT 05402 Shaw, Pittman, Potts & Trowbridge 2300 N Street, N.W. Mr. Gautam Sen .- Washington, DC 20037-1 128 Licensing Manager. Vermont Yankee Nuclear Power Mr. Richard P. Sedano, Commissioner Corporation Vermont Department of Public Service 185 Old Ferry Road

112 State Street ' P.0, Sox 7002 Montpelier, VT 05620-2601 Brattleboro, VT 05302-7002

Mr. Michael H. Dworkin, Chairman Resident Inspector Public Service Board . Vernont Yankee Nuclear Power 'Station State of Vermont U. S. Nuctear Regulatory Commission 112 State Street P.O. Box 176 Montpelier, VT 05620-2701 Vernon, VT 05354 .'

Chairman, Board of Selectmen Director, Massachusetts Emergency Town of Vernon Management Agency ' P.O. Box 116 ATTN: James Muckerheide Vernon, VT 05354-01 16 . 400 Worcester Rd. Framingham, MA 01702-5399 Mr. Richard E. McCullough Operating Experience Coordinator Jonathan M. Block, Esq. Vermont Yankee Nuclear Power Station Main Street P.O. Box 157 - P. O..BOX 566 Governor Hunt Road Putney, VT 05346-0566 Vernon, VT 05354

G. Dana Bisbee, Esq. Deputy Attorney General 33 Capitol Street Concord, NH 03301 -6937

Chief, Safety Unit Office of the Attorney General One Ashburton Place, 19th Floor Boston, MA 02108

Ms. Deborah 6. Katz .. Box 83 Shelburne Falls, MA 01 370

- I . H-38 1 1 Revision29 Date 1/11/02 I . 7

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D.C. 205554CQY

SAFETY EVALUATION BY TH€

OFFICE OF NUCLEAR REACTOR REGULATION VERMONT YANKEE NUCLEAR POWER STATION

DOCKET NO. 50-271

.. 1.O INTRODUCTION

By letter dated June 23,1999, as supplemented on January 4,2000, Vermont Yankee Nuclear Power Corporation (the licensee), submitted a request to amend a previously approved application granted by the Nuclear Regu!atory Comrnjssion (NRC) pursuant to 10 CFR 20,2002 (previously 10 CFR 20.302) to allow the addition of slightly contaminated soil and soilkand material to the list of already approved materiak (Le., septic waste and cooling tower silt) for on-site disposal via land spreading on designated fields. 2. In 1989, pursuant to IO CFR 20.302 (current 10 CFR 20.2002), the licensee received approval from the NFIC to routinely dispose of contaminated septic waste in designated on-site areas. In 1997, the NRC amended the approved on-site disposal application to also include contaminated ' cooling tower silt material.

In this 10 CFR 20.2002 amendment application, the licensee identified 25.5 cubic meters of soil to be disposed of on-site immediately, and approximately 28.3 cubic meters of soikand material to be disposed of on an annual basis until the expiration of the plant's operating license in 2013. The 25.5 cubic meters of contaminated soil were generated as a result of on-site construction activities. The anticipated 28.3 cubic meters of soikand material will be generated from the annual winter spreading of sand on roads and walkways at the plant site. The licensee has performed a comprehensive radiological evaluation that includes all of the anticipated materials (Le., the current 25.5 cubic meters and the 28:3 cubic meters generated annually thereafter). The licensee's evaluation that the soiVsand can be managed on-site in the ' shows same manner as the septic waste and cooling tower silt (Le-, by land spreading on designated fields). .. 2.0 €VALUATION

The licensee will dispose of the soil and future soiVsand material using a land spreading technique consistent with its current commitments for on-site disposal of septic waste and cooling tower silts previously approved by the NRC. The licensee will continue to use the designated and approved areas of their property (approximately 1.9 acres in size) which currently receives the septic waste and cooling tower silts, Determination of the radiological dose impact of the new material has been made based on the same dose assessment models and pathway assumptions used in the previously approved submittals.

I Revision29 Date 1/11/02 H-39 2 The licensee wit! procedurally control and maintain records of all disposals. The following information will be recorded:

1. The radionuclide concentrations detected in the materia! (measured to radiation levels consistent with the licensee's radiological environmental monitoring program).

2. The total volume of material disposed.

3. The total radioactivity in the disposal operation as well as the total radioactivity accumulated on each disposal plot at the time of spreading.

4. The plot on which the material was applied.

5. Dose calculations or maximum allowable accumulated activity determinations required to demonstrate that the dose condition values imposed (Le., imposed by this 10 CFR 20.2002 application) on the [and spreading operation have. not been exceeded. The bounding dose conditions for the on-site disposals are as follows:

1. The annual dose fo. the whole body or any organ of a hypothetical maximally exposed individual must be less than 1.0 mrem;

2. Annual doses to the whole body and any organ of an inadvertent intruder from the probable pathways of exposure must be less than 5 mrern. , 3. Disposal operations must be at one of the approved on-site locations.

To ensure that the addition of new material containing low levels of radioactivity will not exceed the bounding dose conditions, for each new spreading operation the licensee will calculate an estimate of the total radioactivity applied to the designated disposal plots. These calculated estimates will include all past disposaIs of septic waste, cooling tower silt, soil and soilkand material on the designated disposal plots. This wit1 be compared with the bounding dose condition value or equivalent radioactivity value on a pei-acre basis. In addition, Concentration limits will be applied to the disposed material to restrict the placement of small volumes of material that may have relatively high radioactivity concentrations.

The licensee assessed the dose that may be received by the maximally exposed individual during the period of plant control over the property, and to an inadvertent intruder after plant access control ends using the same pathway m.odeling , assumptions, and dose calculation methods that were previously approved by the NRC for the septic waste and cooling tower silt disposals. The dose models are based on the guidance in NRC Regulatory Guide 1.109, Revision 1 (1977).

The licensee's dose assessment is as follows:

1 Reviwnz Date 1/11/02 H-40 . L .- .. 3

2. Total annual doses .J the whole bAy and critical organ of an inadvertent intruder fr rn the probable pathways of exposure were estimated to be 0.757 mrem and 1.17’ mrem. These values are less than the prescribed annual dose condition value of 5.0 mrem for the time period after active site control.

3. The dose calculations are based on projecting the maximum potential impact of all disposals (past and future) on the designated disposal plot of land.

3.0, CONCLUSION _- The staff finds the licensee’s proposal to dispose of the tow-level radioactive soil and soilkand material, pursuant to 10 CFR 20.2002;in the same manner, location, and within the bounding dose conditions as the materials (i.e., septic waste and cooling tower silt) previously approved by the NRC to be acceptable because the bounding conditions will continue to be met.

Principal Contributor: S. Klementowicz

Date: 2000 June 15, r.

c c

. ..

Revision _29 Date 1/11/02 . H-41 llI I -. Appendix I

1. “Request to Amend Previous Approval Granted Pursuant to 10CFR20.2002 for DisposaI of Contaminated Soil”, dated September 11*, 2000, BVY 00-71

2. Vermont Yankee Nuclear Power Station - Safety Evaluation for an Amendment to an Approved 10CFR20.2002 AppIication (TAC No. MA9972)”, dated June 2dh, 2001, NVY 01-66

1-1 llRevision 29 Date 1/11/02 VERMONTYANKEE NUCLEAR POWER CORPORATION 185 OLD FERRY ROAD, PO BOX 7002, BRATTLEBORO, VT 05302-7002 (802)257-527 1

September I 1,2000 BVY 00-71

United States Nuclear Regulatory Commission A’ITN: Document Control Desk Washington, DC 20555

References: (a) Letter, VYNPC to USNRC, “Request to Amend Previous Approvals ..- Granted under 10 CFR 20.302(a) for Disposal of Contaminated Septic Waste and Cooling Tower Silt to Allow for Disposal of Contaminated Soil,” BVY 99-80, dated June 23, 1999. (b) Letter, VYNPC to USNRC, “Supplement to Request to Amend Previous ApFrovaIs Granted under 10 CFR 20.302(a) to Allow for Disposal of Contaminated Soil,” BVY 00-02, dated January 4,2000. (c) Letter, USNRC to VYNPC, crVermontYankee Nuclear Power Station, Request to Amend Previous Approvals Granted under 10 CFR 20.302(a) to AHow for Disposaf of Contaminated Soil (TAC No. MA5950),” NVY 00-58,dated June 15,2000. (d) Letter, USNRC to VYNPC, “Revised Safety Evaluation - Approval Pursuant to 10 CFR 20.2002 for Onsite Disposal of Cooling Tower Silt - Vermont Yankee NucIear Power Station (TAC No. M96371),” NVY 97-85, dated June 18,1997.

Subject: Vermont Yankee Nuclear Power Station License No. DPR-28 (Docket No. 50-271) Request to Amend Previous Approval Granted Pursuant to 10 CFR 20.2002 for Disposal of Contaminated Soil

In accordance with 10 CFR 20.2002 (previously 10 CFR 20.302(a)), Vermont Yankee (VU) submits this application to amend the previously granted approval to dispose of slightly contaminated soil. This application expands the allowable waste stream to include slightly contaminated soil generated as a residual by-product of other types of on-site construction activities.

In References (a) and (b), VY requested approval to dispose of approximately 25.5 m3 of accumulated soil that was generated due to construction .activities. In addition, it was requested that VY be aiIowed to dispose of approximately 28.3 m3of soil that is spread annually on station roads and walkways during the winter, NRC acceptance is documented in Reference (c).

This application specifically requests approval to dispose of contaminated soil that is created due to other on-site construction related activities including but not limited to design change implementation and land maintenance.

I Revirion2 Date 1/11/02 1-2 - VERMONTYANKEENUCLEAR POWERCORPORATION BVY 00-7I / fage 2 of 2

in addition, VY requests that NRC’s review recognize that, although VY indicated in Reference (b) that the south disposal field (approximately 1.9 acres in size) is currently expected to be used for disposal of the subject material, VY is also authorized to use the alternate north disposal field (approximately i 0 acres in size). Approval to use both the north and south fields for disposal was granted in Reference (d). VY’s radiological impact assessments have conservatively assumed all of the disposal activities occur on the smalter south field to maximize potential caIculated doses. These assessments bound the situation where a portion of the land spreading occurs an the north field.

VY will continue to limit the total activity spread, from approximately 28.3 m3 of soil generated each year, to within the limits assumed in the radiological assessment previously submitted in Reference (b).

A radiological assessment and proposed operational controls for the inclusion of the additional material for on-site disposal was provided in Reference (b). The assessment demonstrates that the dose impact expected from the proposed activity, in total with all past waste spreading operations, will not approach the dose limits already imposed for septic and cooling tower silt disposal. All soil analyses will be to environmental lower limits of detection.

The results of all disposal operations will be reported in the Annual Radioactive Effluent Release Report. The combined radiological impact, for ail on-site disposal operations, will continue to be limited to a total body or organ dose of a maxirnaIly exposed member of the pubIic of less than . oie mremjyear during the period of active VY control of the site, or less than five rnrem/year to an inadvertent intruder after termination of active site control.

Upon receipt of your approval, this request as well as the basis for approval will be incorporated into the Off-Site Dose Calculation ManuaI.

We trust that the information contained in the submittal is sufficient. However, should you have any questions or require further information concerning this matter, please contact Mr. Jim. DeVincentis at 802-258-4236.

Sincerely,

Vermont Yankee Nuclear Power Corporation n

Licensing Manager

cc: USNRC Region I Administrator USNRC Resident Inspector - VYNPS USNRC Project Manager - VYNPS VT Department of Pubtic Service I Revision 29 Date 1/11/02 1-3 SUMMARY OF VERMONT YANKEE COMMITMENTS

BWNO.: 00-71

The following table identifies commitments made in this document by Vermont Yankee. Any other actions discussed in the submittal represent intended or planned actions by Vermont Yankee. They are described to the NRC for the NRC's information and are not regdatory commitments. Please notify the Licensing Manager of any questions regarding this document or any associated commitments.

r COMMITMENT COMMITIED DATE OR "OUTAGE" I 1.- None NIA

VYAPF 0058.04 AP 0058, Revision 1 Page I of 1

1-4 I Revision 29 Date 1/11/02 June 26, 2001 Mr. Michael A. Balduzzi NVY 01-66 Vice President, Operations Vermont Yankee Nuclear Power Corporation 185 Old Ferry Road P.O.Box 7002 Brattleboro, VT 05302-7002

SUBJECT: VERMONT YANKEE NUCLEAR POWER STATION- SAFETY EVALUATION FOR AN AMENDMENT TO AN APPROVED io CFR 20.2002 APPLICATION (TAC NO. MA9972) Dear Mr. Balduzzi:

The US. Nuclear Regulatory Commission (NRC) staff hqs completed its review of the Vermont Yankee Nuclear Power Corporation (VYNPC)request dated September 11, 2000, to amend an approved 10 CFR 20.2002 (previously 10 CFR 20.302) application dated June 23,1999, as supplemented on January 4,2000. The licensee requested NRC approval to allow the addition of slightly contaminated soil resulting from on-site construction-related activities, including but not limited to, design change-implementation and land maintenance, to the list of already approved materials (i.e., septic waste, cooling tower silt and soiVsand from roads and walkways) for on-site disposal.

Based on our review, we find the proposed changes to be acceptable because the previousIy to approved bounding conditions will continue ’ be met. The enclosure to this letter provides our safetyevaluation of WNPC’s application.

Pursuant io the provisions of 10 CFR Part 51, the NRC has published an Environmental Assessment and finding of No Significant Impact in the Federal Register on June 14,2001 (66 FR 32399). Sincerely,yk47JQ. Joh A. Zwolinski, Director Divis\ on of Licensing Project Management Office of Nuclear Reactor Regulation

Docket No. 50-271 Enclosure: Safety Evaluation

cc w/encl: See next page

I Revision 29 Date 1/11/02 1-5 Vermont Yankee Nuclear Power Station

cc: .

Regional Administrator, Region I Ms. Deborah B. Katz . U. S. Nuclear Regulatory Commission Box 83 475 Allendale Road Shelburne Falls, MA 01370 King of Prussia, PA 19406 Mr. Raymond N. McCandless -f Mr. David R. Lewis Vermont Department of Health Shaw, Pittman, Potts & Trowbridge Division of Occupational 2300 N Street, N.W. and Radiological Health Washington, DC 20037-1 128 t 08 Cherry Street Burlington, VT 05402 Ms. Christine S. Salembier, Commissioner Vermont Department of Public Service Mr. Gautam Sen 112 State Street Licensing Manager Montpelier, VT 05620-2601 Vermont Yankee Nuclear Power Corporation Mr. Michael H. Dworkin, Chairman 185 Old Ferry Road Public Service Board P.O. Box 7002 State of Vemiont Brattleboro, VT 05302-7002 112 State Street MontpeIier, VT 05620-2701 Resident Inspector Vermont Yankee Nuclear Power Station Chairman, Board of Selectmen U. S. Nuclear.Regutatory Commission Town of Vernon P.O. €!ox 176 P.O. Box 116 Vernon, VT 05354 Vernon, vf 05354-01 16 Director, Massachusetts Emergency Mr. Richard E. McCullough Management Agency Operating Experience Coordinator ATTN: James Muckerheide Vermont Yankee Nuclear Power Station 400 Worcester Rd. P.O. Box 157 Framingham, MA 01702-5399 Governor Hunt Road Vernon, VT 05354 Jonathan M. Block, Esq. Main Street G. Dana Bisbee, Esq. P. 0. Box566 Deputy Attorney General Putney, VT 05346-0566 33 Capitol Street Concord, NH 03301 -6937

Chief, Safety Unit Office of the Attorney General One Ashburton Place, 19th Floor Boston, MA 02108

Revision 29 Date 1/11/02 . 1-6 7

UNITED STATES NUCLEAR REGULATORY COMMISSION & WASHINGTON, D.C. 20555-0001

‘SAFETYEVALUATION BY THE OFFICE OF NUCLEAR REACTOR REGULATION

VERMONT YANKEE NUCLEAR POWER CORPORATION

VERMONT YANKEE NUCLEAR POWER STATION

f DOCKET NO. 50-271

1.O INTRODUCTION

By letter dated September 11,2000, Vermont Yankee Nuclear Power Corporation (VYNPC/ licensee) submitted a request to amend.s Title 10 of the Code of Federal Regulations (10 CFR) Section 20.2002 (former 10 CFR 20.302) application, dated June 23, 1999, as supplemented on January 4,2000, that was approved by the US. Nuclear Regulatory Commission (NRC). This amendment will allow the addition of slightly contaminated soil resulting from on-site construction-related activities, including but not limited to, design change implementation and land maintenance, to the list of already approved materials (Le., septic waste, cooling tower silt and soiVsand from roads and walkways) for on-site disposal via land spreading on designated disposal fields.

In 1989, pursuant to 10 CFR 20.302 (current 10 CFR 20.2002), the licensee received approval - from the NRC to routinely dispose of contaminated septic waste in designated on-site areas. In 1997, the NRC amended the approved on-site disposal application to also include contaminated cooling tower silt material. In 2000, the NRC amended the approved on-site disposal application to aIso include a one-time disposal of slightly contaminated sol and an annual .- disposal of 28.3 cubic meters of slightly contaminated soiVsand material. 1 In this 10 CFR 20.2002 amendment application, the licensee requested that slightly contaminated soil resulting from on-site construction-related activities be disposed of on-site on an annual basis until the end of the plant’s operating license in 2013. The anticipated annual volume of soil generated by on-site construction, as identified by the licensee, combined with the soiVsand generated from the annual winter spreading of sand on roads and walkways at the plant site will not exceed 28.3 cubic meters. This volume is the same volume that was approved in the January 4,2000, request. The licensee performed a comprehensive radiological evaluation which included the annual disposal of 28.3 cubic meters of soil and soiVsand materials, and shows that these materials can be managed on-site in the same manner as the septic waste and cooling tower silt (i.e., land spreading on designated fields).

2.0 EVALUATION

The licensee will dispose of the future soil material using a land spreading technique consistent with the current commitments for on-site disposal of septic waste, cooling tower silts and sandsoil material previously approved by the NRC. The licensee will continue to use the

I- 7 I Revision 29 Date 1/11/02 - -2- designated and approved areas of their property which include approximately 1.9 acres, which currently receive the septic waste, cooling tower silts and soiVsand material, and approximately 10 acres which have not been previously used for disposal. Determination of the radiological dose impact of the new material has been made based on the same dose assessment models and pathway assumptions used in the previously approved submittals.

The licensee will proceduratty control and maintain records of all disposals. The foIlowing information will be recorded:

1I The radionuclide concentrations detected in the material (measured to radiaon levels consistent with the licensee's radiological environmental monitoring program);

2. The total volume of material disposed;

3. The total radioactivity in the disposal operation as well as the total radioactivity ' accumulated on each disposal plot at the time of spreading;

4. The plot on which the material was applied;

5. Dose calculations or maximum allowable accumulated activity determinations required to demonstrate that the dose condition values imposed (Le., imposed by the approved 10 CFR 20.2002 application dated June 23,1999) on the land spreading operation have not been exceeded. ,..' .:. , .I....: The bounding dose conditions for the on-site disposals are as follows:

1. The annual dose to the whole body or any organ of a hypothetical maximally exposed individual must be less than 1.O mrern. 2. Annual doses to the whole body and any organ of an inadvertent intruder from the probable pathways of exposure must be less than 5 mrem.

3. Disposal operations must be at one of the approved on-site focations.

4. Total annual combined volume of soil and soiVsand materials must not exceed 28.3 cubic meters.

To ensure that the addition of new material containing low levels of radioactivity will not exceed the bounding dose conditions, for each new spreading operation the licensee will calculate an estimate of the total radioactivity that includes all past disposals of septic waste, cooling tower silt, and soil/sand and soil material on the designated disposal plots. This will be compared with the bounding dose condition value or equivatent radioactivity value on a per acre basis.

The licensee assessed the dose from soil and soiVsand material that may be received by the maximally exposed individual during the period of plant control over the property, and to an inadvertent intruder after plant access control ends using the same pathway modeling, assumptions, and dose calculation methods that were previously approved by the NRC for the

.. septic waste and cooling tower silt disposals. The dose models are based on the guidance in NRC Regulatory Guide 1 .I 09, Revision I (1 977).

1-8 I Revision 29 Date 1/11/02

:I ~ 1

3-

The licensee's dose assessment is as follows:

1. Total annual doses to the whole body and critical organ of the hypothetically maximally . exposed indwidual were estimated to be 0.1 15 mrem and 0.403 rnrern respectively. .Thesevalues are less than the prescribed annual dose condition value of t .O mrem for the time period of active site control. 2. Total annual doses to the whole body and critical organ of an inadvertent intruder from the probable pathways of exposure were estimated to be 0.757 mrem and 1.17 mrem. These values are less than the prescribed annual dose condition vahe of 5.6 mrem for the time period after active site contro1.

3. The dose calculations are based on projecting the mdmum potential impact, of all disposals (past and future) on the approved disposal site.

3.0 CONCLUSION

The staff finds the licensee's proposal to dispose of the low-level radioactive soil material, pursuant to 10 CFR 20.2002, in the same manner, tocation;and within the bounding dose conditions as the materials (i.e., septic waste, cooling tower silt and soiVsand from roads and walkways) previously approved by the NRC to be acceptable. The licensee has committed to permanently incorporate this modification into their Offsite Dose Calculation Manual.

Principal Contributor: A. Hayes

Date: June 26, 2001

I1Revision 29 Date 1/11/02 1-9 :PPCNAIYJ

l, ~Rervetu uo :mend Psewiovt :ppsowal Esanued Pvstvanu uo lO=DR/-,/--. fos Incseate of uhe :nnval Volvme Limiu and One)uime Spseading of =vssenu Inwenuosz'~ daued Ocuobes 0'/--0' ;V_ -0)..- /

/, ~Safeuz Cwalvauion of Rervetu uo :mend Psewiovt :ppsowalt Esanued Pvstvanu uo lO=DR/-,/--/ ) Vesmonu _ankee Nvcleas Poxes Suauion "T:= No, M=1.-0&~ daued Jvlz .7' /--1' NV_ -1)-7- 1.

:ppendiy J Osiginal Off)Siue Aote =alcvlauion Manval Page I of 13 Vesmonu _ankee Nvcleas Poxes Suauion -==0:/1D 3 ~.YVcPVdML"

4 4 :l_ 4 44 _88 - 84 ~/.~- l8=.=_i._=i:

\- =88\

4 _8.=i:

8\.::8 44 - =8___.888:

+ - - ~ :8 =84=88= ~- 88.i:- ::- =8884 + - - ~ :8 =84=88= ! 4 ££i=+~- 8:.ff- =f-=88:4 + - - ~ :8 =84I8=!+ ~- 88.8=- \-=8884

:8=84=88= . ~

:=84=88= ! :8=84I8=!- - 4 !+ ~,! 4 =l4I ! ! :_8 4 _=l . 4

!+4

+ 4

-__MVLPf 3 ;aPOPVIS ;NN&APcM /YbM .ISJdSIcPYV 7IVdIS =IOM ' YN ), CMaTYVc EIVRMM :dJSMIa =YeMa AcIcPYV -==0:/1D 3 ~.YVcPVdML"

8\.::8 ! =

+ 4

+ ~/f;f/dyl 4

+ JMM£idlM . - yM£ !:4l +4 :_ 4 MMl 4 yfiM« ~~ 4

4 - . - i£MifM/£ - adM i£MifM/£ 4

- 4

4

4 - - !i8=+ =_i.\=If4

-

~~~/.-

- !:+

£ . : . . ,M£iyl

-__MVLPf 3 ;aPOPVIS ;NN&APcM /YbM .ISJdSIcPYV 7IVdIS =IOM ' YN ), CMaTYVc EIVRMM :dJSMIa =YeMa AcIcPYV 3JJ=E;AN C~:fekaelTS"

3kkPR_dTek kf 7MO ,/'--, ;fRbTk Ef) 0,'.1-

1VVKVVPKRW SL DR-ENWK ANVTSVFO SL 3SRWFPNRFWKI EWSUKI ESNOVCDCFRI ETUKFINRM

=ekThYo ElRcTPh IgThPkafei& AeR) MThdfek OPebTT ElRcTPh JfmTh LkPkafe

3ggTeSan C IhaYaePc IVV'LakT ;fiT :PcRlcPkafe DPelPc JPYT / fV 01 MThdfek OPebTT ElRcTPh JfmTh LkPkafe CYYJTIOf P "Eyxsxnm&

l48\= fI :f_l=_li

Yipn Ty) bikvn yo Eyxnx Rs yo bikvn + 0 .)- Jivisyx Vktnlsn .). Dilupyxm - 1 /)- awwi yo _nv 7 0)- Snrym yo Jivisyx 0). ein Eriilnsisyx : 0)/ aysv Iszyiv ixm Cmwsxsisn Yylnmn _nsnwnx : 0)0 Iszyiv Yvy Eriilnssl ; 0)1 _imsyvypsliv Owzil Snrymyvyp = . 1)- Cwzsyx ixm Oxz ./ 3)- Jivisyx 3)h Ein am O "Yi aznimsxp Owzil& !- 3)/ Ein amOO"aynm aysv,aixm Oxnxy Owzil& !- 3)0 Ein am OOO "zytnlnm Ln aznimsxp Owzil& !- .3 7)- _nv , Eyxlvsyx .: :)- _nonnxln 01 Czznxms CA anls Lnxln czpimn aysv Ysvn ~/--/'-. Czznxms DA anls Lnxln czpimn aysv Ysvn ~/--/'-/ C'O Czznxms EA anls Lnxln czpimn aysv Ysvn ~/--/'-0 8~! Czznxms IA /--. zynlnm Cni _yim annzsxp Ysvn E'O Czznxms JA /--h NeE aysv Jliisyx I'O Czznxms LA .==7 aysv _nwxix Cxivs ' anls Lnxln czpimn J'O Czznxms MA _nlym yo Sy _nlnx aznimsxp "/--0& yx ayr Iszyiv Lsnvm L'P M'O

/

Czznxms P Vspsxiv Voo'asn Iyn Eivlvisyx Sixiv Yipn 3 yo 3: dnwyx gixunn Tlvni Yyn aisyx CVVISENd O"Dwvpvlk&

Ppz wm aghtlz

aghtl ~

. Nvlvwy wm Dwvgupvglk _wpt Vptlz Nv _wygnl "Eliluhly /--0& ; / _pl _xlipmpi Dwvywt Vlypwk Ewzl Dwvlyzpwv Jgiwyz ./ 0 _pl _xlipmpi Nvykly Ewzl Dwvlyzpwv Jgiwyz .0 1 Yliwyk wm _lxpitDa _pt,Dwvzyipwv _wpt Ygkpwgipl Rglypgt _xylgkpvn Igio elgy wv ol _wo Epzxwzgt Jpltk .= 3 Yliwyk wm _lxpi cgzl Tvt mwy Ygkpwgipl Rglypgt _xylgkpvn Igio elgy wv ol _wo Epzxwzgt Jpltk /- 7 Yliwyk wm Dwwtpvn awly _pt Tvt mwy Ygkpwgipl Rglypgt _xylgkpvn Igio elgy wv ol _wo Epzxwzgt Jpltk /. : Yliwyk wm Dwvzyipwv _wpt,_gvk cgzl Tvt mwy Ygkpwgipl Rglypgt _xylgkpvn Igio elgy wv ol _wo Epzxwzgt Jpltk /. ; Dz'.0: pv _wygnl Vptlz gmly Pgz _xylgkpvn pv /--0 // = Dw'7- pv _wygnl Vptlz gmly Pgz _xylgkpvn pv /--0 /0 .- /-'73 pv _wygnl Vptlz gmly Pgz _xylgkpvn pv /--0 /1 .. Rv'31 pv _wygnl Vptlz gmly Pgz _xylgkpvn pv /--0 /3 ./ _wpt,_gvk _wygnlA awgt Cipp w hl _xylgk wv 7,..-1gvk Eliglk w /-f 0 /7 .0 Vywrlipwv wm Ckkppwvgt _lxpit_ptt_wpt'_gvk g Dyylv Llvlygpwv Yglz w /-.0 /7 .1 Vywrlipwv wm Ckkppwvgt _gvk,_wpt Rp /: .3 Vywrlipwv wm gkkppwvgt Dwwtpvn awly _pt /: .7 Vywrlipwv wm Ckkppwvgt _lxpi cgzl /: .: Vywrlilk . ey _lxgnl ~ _pt _xylgkpvn mwy 7,f,!; gvk kliglk w /-.0 /; .; Dyylv awgt _xylgkpvn gz wm,,,;~!/ ! Mw Rio Ylugpvz g 7,.,-1 gvk /-.0 /; .= Dyylv _xylgkpvn awgtz Vtz awgt Vywrlilk Jyl _xylgkpvnzw /-.0 /= /- Ygkpwgipp Dwvlv mywu Ipzpvn Rglypgtz /= /. Vgz _xylgkpvn Dwvywt Vlypwk Ewzl Tvt "Sw _wylk Rglypgt wy Jyl Ckkppwvz& 0- // Vgz _xylgkpvn Tvt "Sw _wylk Rglypgtz wy Jyl Ckkppwvz& Nvykly Ewzl 0- g Ivk wm Vtgv Txlygpwvz pv /-.0 /0 Dwvywt Vlypwk EwzlA Vgz _xylgkpvnz! Dyylv _wylk _wpt Rglypgt Nvlvwy 0. /1 Vgz _xylgkpvn! Dyylv _wylk _wpt Nvlvwy Nvykly Ewzl g Ivk Vtgv Txz 0. /3 Ewzl Nuxgi mywu _xylgkpvn wm Dyylv Nvlvwy wm _wylk Rglypgt Tvt 0/ /7 Vgz) _wylk Rglypgt gvk Vywrlilk Jyl Epzxwzgt "gtt zlxgnl,zpttzwptz& Ewzlz g Ivk wm Vtgv Ppilvzl 00

0

Cxxlvkp O Typnpvgt Tmm'_pl Ewzl Dgtitgpwv Rgvgt Vgnl 7 wm 3: blyuwv egvsll Sitlgy Vwly _gpwv JaaOYNRg S )Myxsxnm,

3/1 OeJTeJx_Y _LSOMdReO

Mnx nslsyx yx rn ixxiv yvwn yo vsprv lyxiwsxinm ysv )3111 o: y 7D/: w", ri lix kn mszynm yo yx.sn )_NMV- Jzznxms R- bnonnxln R,- lyzvnm sr nniv zvix oilsvs lyxlsyx zytnl sx nlnx ni- ri nvnm sx rn illwvisyx yo i kilu.vyp yo vy vnnv lyxiwsxinm nirnx winsiv ri s iissxp y kn mszyssyxnm k vixm znimsxp yx znsyv izzynm yx.sn mszyiv ini/

drn yktnlsn yo rs inwnx s y znnx rn mii ixm oywiv nivisyx y mnwyxin ri rn zyzynm yxn swn mszyiv yo rn nssxp illwvinm kiluvyp yo ysv 0 ixm winsiv )i yo Yynwkn 711:, sry npim y rn ixxiv ysv yvwn vsws- svv wnn rn nssxp myn yktnlsn kyxmi lyxmssyx i izzynm k rn YbM oy nzsl in- Myyvsxp dyn sv ixm yrn nirnx zn winsiv )bnonnxln 3,- nnx so n yo rn iwn mszyiv osnvm oy on znimsxp s iwnm y lyxsxn yn rn nwisxsxp zvix yznisxp vslnxn/

drn nikvsrnm myn kinm kyxmi lyxmssyx )YbM izzynm, oy mszyiv ixm illwvisyx yo vy.vnnv lyxiwsxinm nzsl in- Myyvsxp dyn sv ixm ysv0ixm wsn yx mnspxinm zvy srsx rn eh sn kyxmi svv lyxsxn y kn izzvsnm sry lrixpn/ drnn myn vsws lsnsi in iunx oyw Jzznxms L yo bnonnxln R- ixm inI

drn myn y rn ryvn kym y ix ypix yo i rzyrnsliv wiswivv nzynm sxmssmiv w kn vn rix 3/1 wnwv msxp rn znsym ri eh ri ilsn lyxyv yn rn mszyiv zvy )zvix yznisxp vson,/ drn myn y rn ryvn kym ixm ix ypix yo ix sximnnx sxmn oyvvysxp rn znsym yo ilsn zvix lyxyv yn rn zyzn oyw rn zykikvn ziri yo nzyn s vn rix = wnwv/ Nszyiv yznisyx w kn i yxn yo rn izzynm yx.sn vylisyx/

3/3 Lilup_fvm

Rx 3EDE- enwyx hixunn Ylvni ayn Myzyisyx nnnm oyw rn YbM znwssyx y ysxnv mszyn yo vsprv lyxiwsxinm nzsl in sx mnspxinm yx.sn ini sx illymixln sr ~ _MPb71/:17)i,/ Jzzyiv oyw rn YbM i pixnm yx Jp :1- 3EDE- zysmnm ri rn nn ixm ixivs kn znwixnxv sxlyzyinm sxy rn zvix' _oo sn Nyn Mivlvisyx Vixiv )_NMV,/ bnssyx E y rn _NnV )Jzznxms L, sxlyzyinm rn inwnx ixm rn izzyiv yo wnrym svsnm oy yx.sn mszyiv yo vsprv lyxiwsxinm nipn vmpn k vixm znimsxp/ drn izzyiv ivvynm oy rn nssxp nzsl sxnxy y kn mszynm yo yx.sn ivyxp sr on ixssn ixslszinm y kn pnxninm i zi yo ysxn nw wisxnxixln/ Py zzyn yo mnwyxisxp ri on immssyx yo in winsiv lyvm kn immnm y rn mszyiv zvy- rn imsyvypsliv ixivs zytnlnm ix ixxiv pnxnisyx in yo iky 3D-A11 pivvyx yo nipn lyxisxsxp iky 3;11 up yo yvsm winsiv ri wspr nsn yx.sn znimsxp/ YbM znwssyx oy rnn on mszyiv i pixnm i vyxp i kyr rn zytnlnm myn )oy kyr lnx ixm ivv zi mszyiv yznisyx, ixm imsyxlvsmn lyxlnxisyx vsws )~ 31& yo rn S_MPb71- Jzznxms L- dikvn RR- lyxlnxisyx ivn, in isosnm/ Yy znlsosl vsws yx ixxiv yvwn yo nzsl in ri lyvm kn mszynm yo i sxlvmnm sx rn izzyiv/

Rx 3EE=- enwyx hixunn nnnm oyw rn YbM ri rn znsy irysisyx oy yx.sn mszyiv yo nzsl in kn iwnxmnm y znws rn yx.sn mszyiv yo vsprv lyxiwsxinm Myyvsxp ;

Jzznxms S _spsxiv _oo.csn Nyn Mivlvisyx Vixiv aipn C yo =C enwyx hixunn Ylvni ayn cisyx JYYNTMPe - )Lwvpvlk,

bwlz pt uglzpgt/ bol gxxtpigpwv gvgtlk ol lxlilk zgkpwtwnpigt puxgi mzwu hwo ol lppvn pvlvwz g og pul wm ghw3;-111 .4 +).:EA u+ ~wm giiutglk pt- gtwvn po gv wxlzgpvn iitl )3Duwvo, nlvlzgpwv zgl wm ghw;111 .4 + ).33: u+~! bol T_L zlzvlk olpz gml lgtgpwv- kglk Sgzio;/ 3EEA-nzgvpvn gxxzwgt mwz ol xzwxwlk pt kpxwgt/ apuptgz w ol lgnl gl kpxwgt- T_L giilxgvil zlypzlk og gtt kpxwgt wxlzgpwv hl iwvkilk io og hwo ol xzwrlilk kwl )mwz hwo izzlv gvk gtt xg kpxwgt wxlzgpwv, gvk zgkpwviRpkl iwvilvzgpwv tpup gzl gpmplk/ bol wpt iwvilvzgpwv tpup )mwz gv guxtl, lzl hglk wv tpuppvn llzvgt gvvgt kwl w 7= uzlu gupvn iwvpvw wiixgvi wv gv pvmpvpl xtw g og iwvilvzgpwv vpmwvvt xzlgk w g 3= lu klxo/ Tw xlipmpi tpup wv gvvgt wtul wm Lwwtpvn bwlz pt og iwtk hl kpxwlk wm g pvitklk pv ol gxxzwgt/ bol T_L gtw zlypzlk og gv mzolz uwkpmpigpwv w ol xzwxwlk gipwv ogl xzpwz T_L gmm gxxzwgt/

Pv 3EEE)po g xxtlulvgt mptpvn pv7111,- clzuwv fgvsll mptlk g opzk zlyl vklz31 LO_ 71/7117 po ol T_L w gulvk ol xzlpwt gxxzwlk gxxtpigpwv mwz wv.pl tgvk kpxwgt wm tpnot iwvgupvglk lgzo ~ uglzpgt )lxpi tknl gvk Lwwtpvn bwlz pt, w pvitkl gxxzwpuglt E11 IvR)7=/= u , wm giiutglk iwvgupvglk wpt nlvlzglk kzpvn iwvzipwv gipppl popv ol cf Yzwlilk Jzlg/ aguxtpvn wm ol wpt zllgtlk tw tllt wm zgkpwgipp og lzl puptgz pv zgkpwvitpkl gvk gipp tllt w ol lxpi gl gvk Lwwtpvn bwlz pt xzlpwt lviwvlzlk/ bol zlyl w ol T_L mwz op gkkppwvgt uglzpgt gtw pvkpiglk og gkkppwvgt guwv wm iwvgupvglk wpt" gvk gwipglk po zwgk llxpvn mwttwpvn pvlz gvkpvn wm zwgk gvk dgtsg pv ol Yzwlilk Jzlg iwtk zlt pv gv lpuglk3111 .4 : xlz lgz )7D/: u : xlz lgz, og upno vllk w hl kpxwlk wm g tpnot iwvgupvglk uglzpgt/

bol T_L zlyllk og ol pvppgt hupgt)3EEE,wm ol wpt xzlgkpvn71/7117 gxxtpigpwv pvitkl gv gvgtp og lgtglk xzwrlilk mzl gkkppwv wm gv lpuglk gvvgt wtul wm wpt hlpvn gkklk w ol klpnvglk kpxwgt xtw/ bop pvmwzugpwv g zlypzlk pmclvvwv fgvsll pvlvklk w l ol71/7117 wpt kpxwgt gxxtpigpwv mwz gxxzwgt w kpxwl wm xwlvpgt mzl wtul )p/l/- vw r g wvl.pul kpxwgt gxxtpigpwv, wmtw tllt iwvgupvglk wpt pv ol gul ugvvlz g gtzlgk gxxzwlk mwz lxpi gl gvk Lwwtpvn bwlz pt/ clzuwv fgvsll zlplk p gxxtpigpwv h gkkpvn gv gvgtp mwz g xzwrlilk gvvgt wtul3111 wm IvR-wz lypgtlvt 7D/: uR- wm iwvgupvglk wpt gzpvn pv ol lgz7111 gvk iwvpvpvn wv g lgzt hgp vpt lvk wm xtgv tpilvl pv 713:/ J ol lvk wm ol xzwrlilk kpxwgt zlgu- ol giiutglk hptkx wm iwvgupvgpwv mzwu gtt wzil )lxpi gl- Lwwtpvn bwlz pt gvk wpt 0 gvk upl, wv ol kpxwgt mpltk g lgtglk mwz hwo ol kwl puxgi w ol izppigt zlilxwz g ol lvk wm ol iwvzwt xlzpwk gvk ol gulk pvzklz/ boll kwl puxgi lzl mwvk giilxghtl olv iwuxgzlk gngpv ol wzpnpvgt wv.pl xzlgkpvn kwl giilxgvil izplzpg wm P uzlutz )Lwvzwt Ylzpwk, gvk = uzlutz )Pvzklz ailvgzpw,/ bol 3111 .4+)7D/: u&, gvvgt nlvlzgpwv zgl wm wpt g hglk wv xtgv gmm lpugl og gxxzwpuglt og guwv wm wpt gvk gvk p iwttlilk mzwu zwgk gvk gtsg llxpvn pvpkl ol Yzwlilk Jzlg mwttwpvn lgio lgz' pvlz itlgv.x g xgz wm zwpvl ugpvlvgvil/ bop p ol wvt xl wm lgzolv uglzpgt og og g xlipmpi gvvgt wtul tpup gwipglk po p pv gkkppwv w ol xzwrlilk kwl gvk iwvilvzgpwv tpup gwipglk po ol kpxwgt wm lxpi gl gvk Lwwtpvn bwlz pt/ Tw wtul lpugl mwz vpklvpmplk mzl pl liggpwv gvk iwvzipwv gipppl g xzwpklk/

=

Jxxlvkp R Vzpnpvgt Vmm.apl Mwl Lgtitgpwv Sgvgt Ygnl D wm =C clzuwv fgvsll Titlgz Ywlz agpwv EVVLSJNe O &Iwvpvlk'

1-/ _bRREYf TM YL_bPa_

aol lgtgpwv wm ol zgkpwtwnpigt puxgi wm gtt xg) giiutglk wzgnl pvlvwz) gvk xzwrlilk mzl gl xzlgkpvn wxlzgpwv wv g pvntl kpxwgt xtw &0-C gizl g _wo lvk wm pl' ogl pvkpiglk ol mwttwpvn zlt gvk iwvitpwvD

Ett xg xzlgkpvn wm lxpi gl) Iwwtpvn awlz pt- gvk wpt.gvk upl ozwno ol lvk wm1//3 ogl zltlk pv g ugpuu wzngv kwl w g izppigt zlilxwz &iwvzwt Vlzpwk l' og giiwv mwz wvt 03-=" wm ol 0 uzlutlgz tpup- dpo zlxli w ol Nvzklz kwl tpup wm : uzlutlgz) gpt xg xzlgkpvn ozwno ol lvk wm 1//3 giiwv mwz wvt =-1" wm ol ugpuu wzngv kwl w ol tpuppvn zlilxwz g ol lvk wm xtgv tpilvl-

aol puxgi mzwu ol xzwrlilk xzlgkpvn wm ol lppvn gl uglzpgt pv wzgnl p lpuglk w giiwv mwz wvt :-3" wm ol 0 uzlu.lgz Iwvzwt Vlzpwk kwl tpup- wz wvt 0=-=" wm ol gul tpup olv gtt xg xzlgkpvn gzl iwuhpvlk po ol uglzpgt izzlvt pv wzgnl &g wm ol lvk wm Swluhlz 1//3'- aol ugpuu Nvzklz wzngv kwl mzwu gtt xg xzlgkpvn gvk wzlk uglzpgt p /-7:; uzlutz) wz C-0" wm ol : uzlutz Nvzklz ilvgzpw kwl tpup- aoll zlt pvkpigl og ol lppvn pvlvwz wm gl uglzpgt pv wzgnl igv hl xtgilk wv ol _wo kpxwgt xtw pow lillkpvn kwl puxgi tpup xzlpwt lghtpolk mwz g pvntl kpxwgt mpltk-

Eupvn ol gul gvvgt glzgnl nlvlzgpwv zgl wm zgkpwgipp pv gl uglzpgt &lxgnltpttwpt' og og hllv whlzlk wlz ol tg mwzllv lgz p gkklk w gtt xg gl xzlgkpvn gvk wzlk wpt iwuupulv) ol xzwrlilk kwl g ol lvk wm ol izzlv xtgv tpilvpvn xlzpwk &lgz 1/03' pltk g tpuppvn ugpuu izppigt zlilxwz kwl &mwz lpolz ol iwvzwt xlzpwk wz pvgklzlv pvzklz' lypgtlv w wvt 1:-3" wm ol uw zlzpipl gvvgt kwl tpup &gwipglk po ol N uzlu.lgz tpup mwz ol ugpuu wzngv kzpvn ol Iwvzwt Vlzpwk'- aop mpvkpvn kluwvzgl og ol iwvpvlk l wm ol _wo kpxwgt xtw) llv po ol gkkppwv wm 0A);:3m3wm tpnot iwvgupvglk wpt izzlvt pv wzgnl) ptt vw lillk ol gxxzwlk tpuppvn kwl izplzpg lghtpolk pv ol TJIR-

ahl kwl puxgi ulowkwtwn lk w kllzupvl iwuxtpgvil po ol wv,pl xzlgkpvn kwl tpup gzl vw kzplv h ol wtul wm gl uglzpgt kpxwlk wm) h h ol wgt zgkpwgipp iwvlv wm ol uglzpgt- Lppvn tpup wv ol iwvilvzgpwv wm zgkpwgipp pv gl ulkpg xzwpkl xzwlipwv mzwu ugtt wtul wm ~hw~ wz opno xlipmpi gipp uglzpgt mzwu hlpvn xzlgk wv ol kpxwgt mpltk-

;

Exxlvkp O Tzpnpvgt Tmm,_pl Jwl Igtitgpwv Rgvgt Vgnl C wm := clzuwv fgvsll Sitlgz Vwlz _gpwv D__LVJPg R 'Izuzpo)

3./ TLcOYJ YM LeDSdDcPYV

ctp ypto r plxluzs tp uyln ry tp z-up plouzs u tp lyp l po lzo lpo uz tp usuzlx ppyuz pp ylop tp VaI zop PYIMa1/.R/1 r pun lp lzo tunt tl mppz lxupo uz lxx mppz lypzoypz pp r loouuzlx p r pltpz ylpulx mp oupo m xlzo plouzs z-up. ctp ltl lzo op yopx rzo uz apsxl Nuop P.R/C 'aprppznp 1) lp pyxpo uz pryuzs tp louxsunlx op uyln lpypz. ctp lxunluz r tp op yopx mpsuz ut tp ntllnpuluz r tp lp ylpulx tl lp mp mvpn tp op plxluz.

3.0 flp Itllnpuluz

ctp puuzs lnnyxlpo ux~lzo tl tl nplpo l mlnwxs r lnnyxlpo ylpulx p tp xl pplx pl u uopzurupo z clmxp 0, lxzs ut tp puylpo xyp lzo usuzluz r ylpulx. ctp ux ylpulx pp uylux opupo ry pnlluz lnuuup lnulpo ut tp nznuz r zp pnu rpznp lxzs tp xlz& _pnpo Dpl mzol lzo tp nznuz r zp xlz uzlxxluz lnulpo ut tp nllmuxu pry tospz lp ntpyu plypz r tp xlz& nxlz py. Dx uznxopo lp lo plypz lzo po r uzp lnuz uzuop tp pnpo lpl.

ctp ux~ lzo yu u unlx r ruxx ylpulx nzluzuzs xust olw mz x po ux ut yp ylxx zp, lzo yl uznxop ylxx uznuopzlx upnp r ltlx. ctp ux l pypo ry u usuzlx xnluz m tpx, mlnwtp lzo rz-pzo xlop, lzo xlnpo uz oy nw r lz tp pyl lsp lpl xnlpo mpppz tp Ixuzs cp tppul opupo z tp szo rlnp lzo nppo ppz puz. ctu xnluz l pxpnpo mpnlp u l ll ry lpl uzpx nnupo m xlz lrr, lzo nxo plux mp nzxxpo. ctp y mlmxp np r tp x xppx r loulnup nzlyuzluz u op tp ppznp r mpx oppnlmxp pylmxp nzlyuzluz pouumpo m r lrrun ry uzuop tp xlz flxwl lzo lwuzs lpl. bmppz rlnp zrr nlup tp nzlyuzluz zplm ppo ux zpl tp _pnpo Dpl mzol tpp u lnnyxlp p uyp x-xppx oppnlmxp nznpzluz. Jz lt lzo opuuz r lunxlp lnuu pxplpo ry tp xlz& _uyl epz blnw l l r uzp slp pyuuz yl lx tlp nzumpo tp x xppx r oppnlmxp lnuu.

M pzulx rp oulx xyp r lzo lzo ux, tp npz xyp xuyux '0///i1A.3 y 3k, YJIT Dpzou O, aprppznp P) l mlpo z tp ppnpo lp r lo lzo po r uzp lo lzo lxwl lnuz, m ouo z lzunulp prxpn tp pzulx r rp up nznuz lnuuup tl nxo pnllp ux z-up tl lx nzluz x xppx r xlz pxlpo loulnuu. ctp ppz uzpz r po ux~lzo mpppz tp Ixuzs cp uznxop luylpx 3 0A,;:3 r3':1A y ) r ylpulx r tunt zx 3.3" ;0; x'0=.7 z&) usuzlpo l lol ppuzs. Pz lnnolznp ut Dpzoup E lzo M r tp YJIT, oulx r pun lp lzo Ixuzs cp ux ylpulx u z xuyupo m lz lzzlx xyp xuyu m m lx op uyln pxlpo tp loulnuu nzpz r tp ux lzo tp nznpzluz ryoulnuu nzluzpo utuz u.

Ipzx,3 zx ux~ lzo yup tlp lz lzzlx z-up oulx xuyu plx r3 0///'1A.3 y ).

=

Dpzou R Yusuzlx Yrr-bup Jp Ilxnxluz Tlzlx _lsp 0/ r := epyz hlzwpp Vnxpl _p bluz EVVMSLOc P "Jutzntih&

aefri O Otitzux uk Jutzesntezih ~/!, Vnriy Ot _zuxeli "Ligisfix 0..1& £ l i _

~: "/& 0..0)./C f 0/ 33 +8- 0..0).0C f 3':;A R :. +:- 0..0).1C f A'... 1A RR 30 0'37; +=- + - /: // 30 "7& 0../ i\ I4I 1= 44 30 A1/ ":& /AA: f :,3 03 =3 A;.

. +~:- /=':71

1,0 _unr Ln_'PDTyePeth Ehsntnyzxezni Vxugihxi Yiwnxisitzy

ami sizmuh uk yunr-yeth hnyvuyer uk zmi inyzntl fegprul ntitzux nrr yi zmi zigmtnwi uk reth yvxiehntl nt e settix gutynyzitz nzm zmi gxxitz gussnzsitzy kux zmi ut)ynzi hnyvuyer uk yivzng eyzi eth Juurntl auix ynrzy ey evvxuih f zmi SYJ eth nsvrisitzih nt Evvithngiy I eth N uk zmi bixsutz detpii TLJR "Yikixitgi r &, ami eggsreznut uk xehnuegznnz ut zmi hnyvuyer vruz kux zmny vxuvuyih yunr yvxiehntl uvixeznut nrr fi zxiezih ey nk Juurntl auix ynrz ux yivzng eyzi ey fintl hnyvuyih uk yntgi zmi gmexegzixnyzngy uk err zmiyi xiynher yurnhy exi ynsnrex "iexzmit)zvi sezzix&, ami _uzm knirh "evvxunsezir /,A egxiy nt yni& mey fiit yih kux err veyz hnyvuyer uvixeznuty eth ny ivigzih zu fi yih kux zmi vregisitz uk zmi inyzntl fegprul "yii aefri / efui& uk evvxunsezir /=':71 1 "70= !- uk yunr eth err etter vxuoigzih kzxi hnyvuyery uk yivzng eyzi' Juurntl auix ynrz' eth ru)riir gutzesntezih yunr ursiy zmxulm zmi ith uk zmi vretz~y gxxitz uvixezntl rngityi "iex 0./1&' Lizixsnteznut uk zmi xehnurulnger huyi nsvegz mey fiit sehi feyih ut zmi yesi suhiry eth vezme eyysvznuty ey nthngezih nt Evvithn I uk zmi bixsutz detpii TLJR eth evvxuih ey vexz uk zmi uxnlnter hnyvuyer eteryny evvrngeznut kux yivzng eyzi,

Iuzm zmi inyzntl eggsrezih eth kzxi vuzitzner yunr sezixner nrr fi hnyvixyih yntl zvnger elxngrzxer hx frp yxkegi yvxiehntl vxegzngiy nt evvxuih hnyvuyer exiey ut ynzi, Otgnhitzer vnigiy uk eyvmerz eth rexli yzutiy zmez exi vngpih v nzm zmi yunr nrr fi ygxiitih uz fikuxi zmi yunr-yeth ny yvxieh,

Yiguxhy uk zmi hnyvuyer zmez nrr fi sentzentih ntgrhi zmi kurruntl "ey vxiygxnfih nt Yikixitgi /' Evvithn I&C

"e& zmi xehnutgrnhi gutgitzxeznuty hizigzih nt zmi yunr-yeth "sieyxih zu itnxutsitzer ruix rnsnzy uk hizigznut& "f& zmi zuzer ursi uk sezixner hnyvuyih uk "g& zmi zuzer xehnuegznnz nt zmi hnyvuyer uvixeznut ey irr ey zmi zuzer eggsrezih ut iegm hnyvuyer vruz ez zmi znsi uk yvxiehntl "h& zmi vruz ut mngm zmi yunr ey evvrnih' eth

=

Evvithn P Txnlnter Tkk)_nzi Luyi Jergreznut Reter Veli OO uk 7; bixsutz detpii Sgriex Vuix _zeznut APPINEJY L ~Dsrxlrygf"

~g" fswg ecoeyocxlsrw sv pclpyp cooscdog ceeypyocxgf cexlzlx fgxgvplrcxlsrw vguylvgf xs fgpsrwxvcxg xkcx xkg fswg olplxw lptswgf sr xkg ocrf wtvgcflri stgvcxlsrw kczg rsx dggr geggfgf)

Ts grwyvg xkcx xkg cfflxlsr sh xkg wslo esrxclrlri xkg vcflscexlzlx loo rsx geggf xkg dsyrfcv esrflxlsrw& xkg xsxco vcflscexlzlx crf fswg ecoeyocxlsr loo lreoyfg!~,/ cooflwtswco stgvcxlsrw sh wgtxle cwxg& Dssolri Tsgv wlox crf wslo,wcrf fgec'esvvgexgf xs xkg fcxg sh xkg ocxgwx wtvgcflri tocegf sr xkg fgwlircxgf flwtswco tosxw) Jr cfflxlsr& esregrxvcxlsr olplxw cttolgf xs xkg flwtswco sh gcvxkgr xtg pcxgvlcow ~fv wslo" vgwxvlex xkg tocegpgrx sh wpcoo zsoypgw sh pcxgvlcow xkcx kczg vgocxlzgo vcflscexlzlx esregrxvcxlsrw)

Ar hcvpgv ogcwlri ocrf ywgf hsv xkg flwtswco sh wslo loo dg rsxlhlgf sh xkg cttolecdog vgwxvlexlsrw tocegf sr xkg wlxg fyg xs xkg wtvgcflri shos ogzgo esrxcplrcxgf pcxgvlco) Tkgwg vgwxvlexlsrw cvg xkg wcpg cw fgxclogf hsv wgtxle cwxg wtvgcflri cw ilzgr lr Rghgvgreg .)

Tkg flwtswco stgvcxlsr sh xkg wslo tlogw loo hsoos xkg cttolecdog Vgvpsrx _crngg tvsegfyvgw xs pclrxclr fswgw cw os cw vgcwsrcdo ceklgzcdog crf lxklr xkg wtgelhle fswg evlxgvlc cw tvgzlsywo cttvszgf hsv wgtxle crf Dssolri Tsgv wlox cwxg flwtswco)

0)0 Elwtswco Posx Dkcvcexgvlwxlew

Aoo fgwlircxgf flwtswco wlxgw ~wl flhhgvgrx tosxw" cvg osecxgf sr xkg Irxgvi Nyeogcv Nsvxkgcwx Vgvpsrx _crngg tocrx wlxg crf cvg lxklr xkg wlxg dsyrfcv wgeyvlx hgreg) Tkg Ssyxk hlgof esrwlwxw sh cttvslpcxgo .)= cevgw crf lw egrxgvgf cttvslpcxgo .3-- hggx Ssyxk sh xkg Rgcexsv Cyloflri) Tklw hlgof kcw dggr xkg sro srg sh xkg NRD cttvszgf hlgofw xkcx kcw cexycoo dggr yxlolgf hsv xklw tyvtswg xs'fcxg) Jx lw crxleltcxgf xkcx hyxyvg flwtswco stgvcxlsrw loo cows yxlolg xkg Ssyxk hlgof wlreg wyhhlelgrx pcvilr lr esptcvlwsr xs xkg cttvszgf fswg olplx evlxgvlc wxloo glwxw hsv crxleltcxgf cwxg flwtswco sh xkg glwxlri dcenosi sh wslo rs lr wxsvcig& toyw coo gtgexgf hyxyvg flwtswcow sh wgtxle cwxg& Dssolri Tsgv wlox crf wslo , wcrf plgw cwwyplri xkg wcpg sdwgvzgf igrgvcxlsr vcxgw ~wgg Tcdogw .0 xkvsyik .=" tgvwlwx xs xkg grf sh xkg tocrx olegrwg lr /-.0)

Jr cfflxlsr xs xkg Ssyxk hlgof& xkg rsvxk grf sh xkg wlxg kcw cr cfflxlsrco xgr cevg tcvego egrxgvgf cttvslpcxgo /&--- hggx rsvxkgwx sh xkg Rgcexsv Cyloflri) Pvlsv cwwgwwpgrxw kczg fgpsrwxvcxgf xkcx c wlriog tosx sh cdsyx / cevgw lw wyhhlelgrx xs pggx vsyxlrg sv gtgexgf flwtswco rggfw) Tkgvghsvg xkg rsvxkgvr wlxg esyof dg wydflzlfgf lrxs 3 tosxw lh cfflxlsrco ectcelx cw rggfgf)

0)1 Rcflsosileco Jptcex Mgxksfsosi

Tkg cpsyrx sh vcflscexlzlx cffgf xs cr sh xkg flwtswco hlgofw lw tvsegfyvcoo esrxvsoogf xs lrwyvg xkcx fswgw cvg pclrxclrgf lxklr xkg tvlsv cttvszgf olplxw sh xkg dsyrfcv esrflxlsrw ~wgg Sgexlsr .)- cdszg")

Ts cwwgww xkg fswg vgeglzgf ~chxgv xkg wtvgcflri sh xkg glwxlrib ;&730 hx0 a3/;cosri p0 lxkb dsxk tcwx vgesvfgf flwtswco cttolecxlsrw& toyw tvsmgexgf hyxyvg cttolecxlsrw" d xkg pclpcoo gtswgf lrflzlfyco fyvlri xkg tgvlsf sh tocrx esrxvso& crf xs cr lrcfzgvxgrx lrxvyfgv chxgv tocrx esrxvso sh ceegww grfw ~vghgvgreg gcv sh/-.0"& xkg wcpg tcxkc psfgolri& cwwyptxlsrw crf fswg ecoeyocxlsr pgxksfw cw cttvszgf hsv wgtxle cwxg& Dssolri Tsgv wlox crf tcwx wslo , wcrf flwtswcow cvg ywgf)

=

Attgrfl L Ovlilrco Ohh'Slxg Eswg Dcoeyocxlsr Mcryco Pcig ./ sh 3: Vgvpsrx _crngg Nyeogcv Psgv Sxcxlsr E__MVLRg S &Jzytyon'

csoo nzo xznow txwoxoy so xoszn kyn nzo mzyotzy pkmz k ztnon ty aorwkz Otno 0-0/A &aopooymo 1'-

cso pzwwztyr t zoytkw ksk oo tnoytpton kyn tymwnon ty so kykwtC

&k' bkyntyr zy mzykxtykon rzyn) &l' Ryskwktzy zp ooynon kntzkmtt) &m' Ryrotzy zp wokp oroklwo) &n' Ryrotzy zp zon oroklwo) &o' Ryrotzy zp xok) kyn ~.! Ryrotzy zp mz" xtwv

Izs so xktxx tynttnkw kyn tyknooy tyno ko kxon z lo ozon z soo ksk) ts so ntppooymo loooy sox lotyr so zmmkym txo- cso lktm kxtzy on ty so kntzwzrtmkw kykwo tymwnoC

&k' Ltom ozo z rzyn mzykxtyktzy kyn tyskwktzy zp ooynon kntzkmtt pzx so rzyn l xzoxoy zp kt t pz k otzn zp 0/7 sz o ok ntyr so eoxzy hkyvoo kmto mzyzw zp so ntzkw to kyn mzytyz sookpo- cso 0/7,sz tyokw t oooykto zp k pkxo" txo oy zy k wz zp wkyn &7 sz o oov pz ; xzys'- cso ooytzy pkmz pz ztw xkotkw zy so rzyn lkmv tyz so kt t kvoy k 0-/M,/: lkon zy ky kxtzy sk so ntzkw ptown tww ntwk mskkmottm txtwk z oxtktn rkwkyn ootxoykw ow- &VdaMY, ;/!~!,J fEbP,07//)~aokmz bkpo bn~) Eoynt eR) cklwo eR M,3D dbVaJ) Ymzlo 0A=:i

&l' Nz so zo zp zuomtyr kyn twwktyr so xkrytno zp nzo txkm zo so oxktytyr wtpo zp so wky) t t kxon sk po ntzkw zp otm) tw kyn ztw xkotkw tww lo wkmon kyykww zy so kxo ptown k so kyykw kokro kntzkmtt woow zloon pz soo ko okx zo so k pzooy ok- cso po ntzkw tww kwz mzyt zp so kyykw kokro kntzkmtt mzyoy zloon ty so kmmxwkon ztw.kyn xkotkw mzwwomon zo so wk ookw ok sk tyzwon to pkmtwt mzymtzy zuom sk sk wokn z so ottyr lkmvwzr- cso xktxx tynttnkw nzo txkm pzx so ltwn zp ntzon xkotkw zmm k so kxo txo &1/03' pz lzs so Jzyzw _otzn kyn Ryno moyktz-

&m' Nz so kykwt zp so kntzwzrtmkw txkm ntyr so eoxzy hkyvoo kmto mzyzw zp so ntzkw to ytw 1/03) yz wztyr t kxon z kvo wkmo kyn kww ntoon kntzkmto xkotkw oxkty zy so pkmo pzxtyr k zmo zp ystownon ntom kntktzy-

&n' cso mz ozo txo k mskyron pzx 10;/ sz z / sz z opwom so mzynttzy sk yz kntzkmto xkotkw t ntoon ntomw zy mz pz sxky z kytxkw mzyxtzy- Jz mzykxtyktzy t zyw szrs zz kvo-

&o' cso nozttzy zy mz zp ooynon kntzkmtt t tytrytptmky-

-+

Eoynt S Ytrtykw Ypp,bto Lzo Jkwmwktzy Tkykw _kro 03 zp := eoxzy hkyvoo Vmwok _zo bktzy =RREODL_ M"Cpovkowfe&

~-! Npuv pg vif rbviyb ebvb boe wubhf gbdvptu wufe ko vif bobmuku btf vif ubnf bu vipuf wufe ko vif Yftnpov abolff~u bDCN buufuunfov pg pgg)ukvf tbekpmphkdbm knrbdvu gtpn tpwvkof tfmfbufu, Vif gtbdvkpo pg uvptfe xfhfvbcmfu htpyo po vif dpovbnkobvfe mboe ybu dpouftxbvkxfm kodtfbufe gtpn -,:7 vp .,- "bv rtfufov op xfhfvbcmf dtpru gpt iwnbo dpouyorvkpo btf htpyo po bo pg vif brrtpxfe ekurpubm rmpvu&, =mup' vif upkm fzrpuwtf vknf vp bddpwov gpt cwkmewr ybu dibohfe gtpn vif uvboebte .3 fbtu "hkxfo ko Sfgftfodf /& vp L fbt,

"h& Lv ku dpouftxbvkxfm buuwnfe vibv Yftnpov abolff tfmkoswkuifu dpovtpm pg vif ekurpubm ukvfu bgvft vif dwttfov prftbvkoh mkdfouf fzrktfu ko /-.0 "k,f,' vif upwtdf vftn bddyowmbvfe po b ukohmf ekurpubm rmpv brrmkfu bmup gpt vif kobexftvfov kovtweft bv vibv vknf&,

"i& Ipt vif bobmuku pg vif knrbdv bgvft Yftnpov abolff dpovtpm pg vif ukvf ku tfmkoswkuife' vif tbekpbdvkxf nbvftkbm ku rmpyfe woeft boe gptnu b wokgptn nkz ykvi vif vpr ukz kodifu pg vif upkm' cwv' opofvifmfuu' woefthpfu tfuwurfoukpo ko vif bkt bv vif ubnf tbvf bu vif wormpyfe uwtgbdf dpovbnkobvkpo, Jpyfxft' gpt ektfdv htpwoe rmbof fzrpuwtf vif ufmg)uikfmekoh ewf vp vif ukz)kodi rmpy mbft tfewdfu vif uwtgbdf epuf tbvf c bcpwv b gbdvpt pg gpwt,

=u uipyo ko Sfgftfodf . "=rrfoekz A& gpt vif ptkhkobm bobmuku ko ufrvkd ybuvf' vif mkswke vtbourptv boe fzrpuwtf rbviyb ybu gpwoe vp cf bo koukhokgkdbov dpovtkcwvpt vp vif epuf, Sfuvtkdvkpou po vif rmbdfnfov pg vif ekurpubm rmpvu rwv vifn bv ukhokgkdbov ekuvbodfu gtpn yfv mboeu' rpvbcmf yfmm uwrrmkfu' boe uwtgbdf ybvftu "Cpoofdvkdwv Skxft&, Viftfgptf' vif mkswke rbviyb ku opv dpoukeftfe ko viku bobmuku,

Vif epuf npefmu boe nfvipeu wufe vp hfoftbvf efrpukvkpo xbmwfu boe bddwnwmbvfe bdvkxkv pxft vif prftbvkoh mkgf pg vif rmbov btf epdwnfovfe ko Sfgftfodf L "=rrfoekzfu A boe I&, Vbcmf .; rtfufovu vif tbekpbdvkxkv vibv dwttfovm fzkuvu po vif Tpwvi gkfme bgvft vif mbuv urtfbekoh fxfov' yikdi pddwttfe po Opxfncft 1'/--0, Vbcmf .; bmup koekdbvfu vif tfukewbm tbekpbdvkxkv vibv ypwme tfnbko po Tpwvi gkfme bv vif foe pg vif rmbov prftbvkoh rftkpe "/-.0& kg op beekvkpobm ekurpubmu yftf vp vblf rmbdf,

++

,!,~

=rrfoekz M Ptkhkobm Pgg)Tkvf Dpuf Cbmdwmbvkpo Nbowbm Rbhf .1 pg 3: Yftnpov abolff Owdmfbt Rpyft Tvbvkpo =SSEPDLb M"Csrxmryhg&

3,. =VV_OSYLRPV =PD LPS_YV

/& Ylh zsoyph si xlh dffypyodxhg wsmo - wdrg fyvvhrxo mr wxsvdkh ehxhhr xlh Cssomrk Yshvw "dw si Dhfhpehv' 0..1& dw hwxmpdxhg ivsp imhog phdwyvhphrxw siohrkxl' mgxl' lhmklx drg khrhvdo wldth si hdfl tmoh xdnhr mr 0..1, Ylh hwxmpdxhg zsoyph si hdfl tmoh mw

wyppdvmhg sr Ydeoh /, 0& Ylh vdgmsdfxmzmx fsrxhrx si hdfl tmoh dw ghxhvpmrhg e dzhvdkmrk xlh ryphvmsyw kvde wdptohw "xtmfdoo 1. wdptohw thv tmoh& fsoohfxhg isv fldvdfxhvmdxmsr si xlh wsmo pdxhvmdo fsoohfxhg, =tthrgmhw = xlvsykl I tvszmgh xlh mrgmzmgydo vhwyoxw si tswmxmzh drdowmw isv todrx vhodxhg vdgmsryfMmghw, Ndesvdxsv drdowhw hvh thvisvphg hmxlhv e ahvpsrx cdrnhh sv xlh =TEa=)Ivdpdxsph "isvphvo xlh cdrnhh =xspmf - Dynh Erkmrhhvmrk& Erzmvsrphrxdo odesvdxsv mxl wdptohw fsyrxhg mxl vhwthfx xs xlh PTC hrzmvsrphrxdo NND vhuymvhphrxw dw mrgmfdxhg mr xlh ac RDCO, 1& =tthrgm J tvszmghw xlh xsxdo dffypyodxhg vdgmsdfxmzmx sr xlh Vsyxl gmwtswdo Sosx "/,; dfvhw& ghfdhg xs xlh gdxh si xlh odwx wtvhdgmrk si,dwxh pdxhvmdow si Pszhpehv 3'0..1, 3& Dswh Csrzhvwmsr Idfxsvw "DCI& wthfmimf xs xlh odrg wtvhdgmrk sipdxhvmdLw dx ahvpsrx cdrnhh hvh xdnhr ivsp xlh ac RDCO, =tthrgm I, Ydeohw // drg /0 "Thihvhrfh L&, Ylhwh DCI~w hvh edwhg sr xlh wdph gswmphxvmf psghow drg mrtyx tdvdphxhvw dw ywhg mr xlh svmkmrdo drdowmw si whtxmf dwxh wtvhdgmrk dx ac drg lmfl dw dttvszhg e xlh PTC isv mrfoywmsr mr xlh RDCO dw =tthrgm A, Vhfxmsr 1,0 si xlmw fdofyodxmsr tvszmghw dr syxomrh si xlh nh dwthfxw si xlh gswh psgho drg dwwyptxmsrw ywhg, Ylh isoosmrk "Ydeohw 0 ~ 1& omwxmrk rsxhw xlhwh wmxh wthfmimf gswh fsrzhvwmsr idfxsvw isv esxl xlh Csrxvso Shvmsg drg xlh Lrxvyghv wfhrdvms isv xlh ryfomghw ghxhfxhg dw tswmxmzh mr srh sv psvh si xlh wdptoh drdowhw,

I . "oL& !8. !8. .= + +

.f_ 8. \4 lf.:_ =4\.:_ \4 =If-:I £4==\.:= .i l4=l.:_ f4\=.:_ =4If-:\ =4\=f.:= .£f 8 =4i_.:I =4:\.:I I4_\£-:I =4:\£- ~.=\_ \4 =£.:\ =4I£.:\ l4f\=-:I \4\fi.:= ~.=\l 8 I4ii.:\ l4:I.:_ =4=:I-:_ I4I:.:I .=_= =4f_.:_ =4f.:f \4If:-:= l4l££- .=__ i4::.:_ I4__.:f Ii_4i £4£££.:=

=I

=tthrgm M Rvmkmrdo Rii)Vmxh Dswh Cdofyodxmsr Odrydo Sdkh /7 si 7: ahvpsrx cdrnhh Pyfohdv Sshv Vxdxmsr .AA1;03E 7 ~/_YdRYeNM"

\

!.-+~lyil;£y/M,MJadfyi! .f_ =4:I.:I \4=I.:\ .i \4 =.:I 4:.:\ ~f =4£.:I =4If.:I .=\_ =4I=.:I 4\i.:\ .=\l 8 i4£.:\ \4£f.:\ .=_= =4I=.:I \4__.:_ .=__ 8 f4::.:I =4fI.:\

=\

.aaNYMRg 7 =bRPRYJT =OO&CRdN 0_cN /JTLeTJdR_Y :JYeJT AJPN ', _O )- DNbV_Yd IJYSNN ;eLTNJb A_fNb CdJdR_Y CSSIPELa M ~Dtsxmsyhg"

3)- I_CNYCVpRPT

Ls tvghv xt ghrtswxvdxh ftrupmdsfh mxl xlh etysgdv gtwh ftsgmxmtsw dw wxdxhg ms xlh REDO& xlh fvmxmfdp tvkds dsg ltph etg gtwh ivtr dpp udxldw xt xlh rdmrdpp hutwhg msgmzmgydp gyvmsk _hvrtsx bdsohh Dtsxvtp Shvmtg dsg xt xlh Lsdgzhvxhsx Lsxvyghv ~itv xmrh uhvmtgw itpptmsk xlh hsg ti xlh fyvvhsx tuhvdxmsk updsx pmfhswh wflhgyphg itv /-.0" hvh fdpfypdxhg itv whzhvdp wfhsdvmtw ~fdwh wxygmhw" tv ftremsdxmtsw ti gmwutwdp tuxmtsw) Vlh gtwh fdpfypdxmtsw hvh uhvitvrhg ywmsk xlh wmxh wuhfmimf gtwh idfxtvw itv ghxhfxhg vdgmtsyfpmghw dw uvhwhsxhg ms Vdephw / dsg 0 ~texdms ivtr xlh _b =4I:~ Cuuhsgm J& Vdephw LL dsg ./") Vlh tenhfxmzh mw xt ghrtswxvdxh xldx xlh dggmxmts ti xlh hmwxmsk wtmp,wdsg rdxhvmdpw fyvvhsxp ms wxtvdkh mpp stx fdywh xlh vdgmtptkmfdp gtwh pmrmxw itv rdxhvmdpw wuvhdg ts xlh Ttyxl gmwutwdp imhpg xt eh hfhhghg& hzhs mi mx mw dwwyrhg xldx dpp uvtnhfxhg iyxyvh dssydp gmwutwdpw ti whuxmf dwxh& fttpmsk xthv wmpx dsg hfdzdxhg wtmpw,vtdgd wdsg ftsxdmsmsk xlh tewhvzhg lmwxtvmfdp phzhpw ti updsx vhpdxhg vdgmtsyfpmghw dvh dpwt updfhg ts xlh wdrh gmwutwdp uptx)

3). Ddwh Txyg L ~Sdwx Tuvhdgmsk Lrudfxw"

Vlh imvwx fdwh wxyg ~Ddwh L" hzdpydxhg xlh wuvhdgmsk vhpdxhg gtwh mrudfx dwwtfmdxhg mxl xlh udwx whuxmf& Dttpmsk Vthv wmpx dsg wtmp wuvhdgmsk dfxmzmx tsp) Vdeph 1 wltw xlh dssydp lmwxtv dsg xtxdp drtysx ti vdgmtdfxmzmx ms whuxmf& wmpx dsg wtmp,wdsg dwxh rdxhvmdpw e vdgmtsyfpmgh xldx ldw ehhs wuvhdg ts xlh Ttyxl imhpg itv xlh udwx .1 hdvw ~pdwx wuvhdgmsk ts ..,1,-0") Vlhwh vdgmtdfxmzmx gmwutwdp zdpyhw hvh xdohs ivtr xlh udwx wuvhdgmsk vhftvgw) Ywmsk ~rypxmupmsk" xlh gtwh ftszhvwmts idfxtvw pmwxhg ts Vdephw / dsg 0 dptsk mxl xlh xtxdp dffyrypdxhg vdgmtdfxmzmx ftsxhsx ts xlh Ttyxl gmwutwdp uptx dw ti xlh pdwx dwxh wuvhdgmsk ms /--0 dw wlts ts Vdeph .;& xlh ftrrmxxhg gtwh mrudfx mw itysg ts Vdephw /c dsg // itv xlh Dtsxvtp Shvmtg gtwh dw ti xlh pdwx wuvhdgmsk ts Ptzhrehv 1&/--0& dw hpp dw xlh Lsxvyghv Etwh uvtnhfxhg xt /-.0 ivtr dpp rdxhvmdpw fyvvhsxp wuvhdg ts xlh Ttyxl gmwutwdp uptx) Vlmw dwwhwwrhsx dwwyrhw st txlhv rdxhvmdp mw wuvhdg ts xlh gmwutwdp uptx ms xlh iyxyvh& dsg xlhvhitvh vhuvhwhsxw xlh hmwxmsk gtwh ftrrmxrhsxw ivtr dpp udwx wuvhdgmskw) Vlmw hwxdepmwlhw xlh gtwh rdvkms ms ftrudvmwts xt xlh Dtsxvtp Shvmtg dsg Lsxvyghv gtwh pmrmxw wxmpp dzdmpdeph itv xlh Ttyxl gmwutwdp uptx)

3)/ .=\I Txyg LL ~Txtvhg Ttmp,Tdsg Lszhsxtv Lrudfxw"

Vlh whftsg fdwh wxyg ~Ddwh LL" pttow dx xlh wuvhdgmsk gtwh mrudfx ~Dtsxvtp Shvmtg dsg xlh Lsxvyghv mrudfx dx xlh hsg ti updsx pmfhswh" imvwx ivtr xlh vdgmtdfxmzmx dwwtfmdxhg mxl xlh hmwxmsk wtmp ms wxtvdkh ~.;&730xx0dw msgmfdxhg ts Vdeph L" ehxhhs xlh Dttpmsk Vthvw& dsg xlhs ms ftremsdxmts mxl dpp udwx wuvhdgmskw ms tvghv xt ghrtswxvdxh xldx xlh wmskph wtyxl gmwutwdp uptx fds dfftrrtgdxh xlh fyvvhsx edfoptk ti wtmp st ehmsk wxtvhg mi mx hvh dpp wuvhdg ts xtu ti dpp udwx gmwutwdpw)

Vdeph .; msgmfdxhw xlh xtxdp dffyrypdxhg whuxmf& wmpx dsg wtmp dfxmzmx uhv vdgmtsyfpmgh vhrdmsmsk ts xlh gmwutwdp uptx dw ti xlh pdwx wuvhdgmsk~JJ/;a/;M!, dw hpp dw ghfdhg xt xlh uvtnhfxhg vhihvhsfh gdxh ~7,.J;a! itv xlh wuvhdgmsk ti dpp hmwxmsk wtmp ehmsk lhpg ms wxtvdkh& dsg xt xlh uvtnhfxhg hsg ti xlh fyvvhsx updsx pmfhswh ms /-.0)

Vdephw ;& =& .- dsg .. uvtzmgh xlh hwxmrdxh ti vdgmtdfxmzmx ftsxhsx ms hdfl ti xlh wxtvdkh umphw ti wtmp,wdsg ehmsk lhpg ehxhhs xlh Dttpmsk Vthvw itv xlh ghxhfxhg syfpmghw Dw.0 :& Dt7-& /s73& dsg Os31& vhwuhfxmzhp) Vlh dfxmzmx ftsfhsxvdxmtsw dvh edwhg ts rypxmuph kvde wdruphw ftpphfxhg

+-

AM!88

Cuuhsgm M Rvmkmsdp RiiTmxh Etwh Ddpfypdxmts Odsydp Sdkh .: ti 3: _hvrtsx bdsohh Pyfphdv Sthv Txdxmts EVVMSLOb P 'Jvuzouki)

lxvt kfhn vl znk yo ykwfxfzk yzvxfmk wosky, fui fxk zfrku lxvt znk mxfg yftwsk sfgvxfzvx xfiovsvmohfs fufsyky lvx kfhn vl znk yzvxfmk wosky wxvoiki ou Ewwkuioky E znxvmn N. _nk fkxfmk Jy- 17A hvuhkuzxfzovu ou kfhn vl znk yvos wosky fy ikzkxtouki g ouhsioum ou znk fkxfmk znk touott ikzkhzfgsk hvuhkuzxfzovu 'RLJ) vl kfhn xfiovuhsoik gkhfyk tvyz vl znk yftwsky ouiohfzki f wvyozok hvuhkuzxfzovu lvx Jy- 17A. _noy ysomnzs gofyky znk fyykyytkuz zvfxiy f hvuykxfzok wwkx gvui kyzotfzk vl znk wvzkuzofs fhzooz oss znk wosk youhk znk yk vl znk RLJ ivky uvz xkwxkykuz znk koyzkuhk vl wvyozok tkfyxki fhzooz ou znk yftwsk, gz oy zxkfzki fy yhn. Nvx znk vznkx ikzkhzki xfiovuhsoiky 'Jv-=0, du-=; fui Ru-;:), znoy gofyoum vl znk ifzf fy uvz fwwsoki youhk znk vhhxxkuhk vl wvyozok fsky vus xkwxkykuzki f ytfss lxfhzovu vl znk zvzfs utgkx vl yftwsky zfrku. _nk zvzfs fhzooz ikzkxtoufzovu lvx kfhn wosk oy znku hfshsfzki g zfroum znk fkxfmk tkfyxki hvuhkuzxfzovu zotky znk tkfyxki yvos ikuyoz zotky znk kyzotfzki vstk vl znk yzvxfmk wosk, hvxxkhzoum lvx ikhf zotk gkzkku znk ifzk vl znk yftwsk fufsyoy ifzk zv znk kyzotfzki ifzk vl loksi ioywvyfs '=/PsT:). _noy hfshsfzki zvzfs xfiovuhsoik fhzooz fsk lvx kfhn wosk oy fyytki zv gk wsfhki vu znk youmsk 1.D fhxk Yvzn ioywvyfs wsvz ozn znk xkyszoum yxlfhk hvuhkuzxfzovu 'Jo/fhxk) lvx znk wxvpkhzki ioywvyfs hfshsfzki lvx kfhn wosk fui zvzfski lvx fss yo wosky hxxkuzs ou yzvxfmk. _nk kyzotfzki fkxfmk hvuhkuzxfzovu lvx kfhn vl znk lvx ikzkhzki xfiovuhsoiky oy ikhf hvxxkhzki lxvt znk ifzk vl znk yftwsk hvsskhzovu zv Puk 1,300:, fy znk xklkxkuhk ifzk lvx kyzotfzoum ivyk otwfhzy lxvt znk wxvwvyki ioywvyfs vl znk fhhtsfzki tfzkxofs ou yzvxfmk. _fgsk 13 yttfxoky znk xfiovfhzooz fyyvhofzki ozn znk yvos/yfui ou yzvxfmk ikhfki zv Puk 1,300:, fui zv znk kyzotfzki kui vl znk hxxkuz wsfuz sohkuyk ou 3017 lvx ikzkxtououm znk Ouzxikx ivyk otwfhz fz znfz zotk. _fgsk 30 hvtgouky znk xfiovfhzooz hvuzkuz vl f11yvos/yfui tfzkxofsy yzvxki gkzkku znk Jvvsoum _vkxy ozn fss xktfououm fhzooz wxkovys ywxkfi vu znk Yvzn ioywvyfs wsvz, ikhfki zv 3017 lvx yk ou ikzkxtououm znk Ouzxikx ivyk fz znk kui vl wsfuz sohkuyk.

_fgsk 37 fwwsoky znk ivyk hvukxyovu lfhzvxy lxvt _fgsk 3 lvx tfott vxmfu fui nvsk gvi ivyky ozn znk wxvpkhzki fhzooz vu znk Yvzn ioywvyfs wsvz lxvt _fgsky 13, 1C fui 30 zv loui znk Jvuzxvs Vkxovi ivyk lvx fss wfyz tfzkxofs ywxkfioumy, yzvxki tfzkxofs fiiozovuy, fui znk yt zvzfs vl wfyz ywxkfioumy fui wxvwvyki yzvxki tfzkxofs fiiozovuy. _fgsk 3: ossyzxfzky znk yftk ivyk otwfhz hvtgoufzovu vl fyzk yzxkfty fy fwwsoki zv znk yozk Ouzxikx fz znk kui vl wsfuz sohkuyk. _nk hvtgoufzovu vl fss wfyz ywxkfioumy fui znk hxxkuz yzvxki yvos tfzkxofs xkyszy ou f tfott vxmfu ivyk vl vus 1A.A & '0.1AA txktsx) vl znk e txkt/x Jvuzxvs Vkxovi ivyk sotoz. _nk tfott Ouzxikx vxmfu ivyk oy kyzotfzki zv gk 0.:;= txkt/x vx D.1& vl znk ; txkt/x Ouzxikx yhkufxov ivyk sotoz. Nvx hvtwfxoyvu, _fgsk 3; ouiohfzky znfz znk tfott vxmfu ivyk ixoum znk Jvuzxvs Vkxovi lxvt vus znk oukuzvx vl 1C,=;7 ~ vl yvos/yfui oy kyzotfzki zv gk 0.0;3= txkt/x, vx ;.7& vl znk e txkt/x ivyk sotoz.

;.7 Jfyk Yzi OOO 'Vxvpkhzki Nzxk Ywxkfioum Otwfhzy)

_nk znoxi hfyk yzi 'Jfyk OOO) wxvpkhzy nfz znk sorks fuufs ywxkfioum fiiozovuy vl kfxznku tfzkxofs lxvt fss yvxhky 'ykwzoh fyzk, Jvvsoum _vkx yosz, yvos/yfui toky) vsi gk gfyki vu noyzvxohfs xkhvxiy, hvtgouki ozn znk koyzoum 1C,=;7 lk ';3C xu") vl tfzkxofs ou yzvxfmk, ou vxikx zv ikzkxtouk znk svum zkxt fhhkwzfgosoz vl znk Yvzn ioywvyfs wsvz zv hvuzouk zv gk yki lvx fss fyzk ywxkfioum fwwsohfzovuy.

Ifyki vu znk noyzvxohfs ywxkfioum ifzf soyzki ou _fgsk :, _fgsky ;, = fui A ynv znk zvzfs fhhtsfzki ykwzoh fyzk, Jvvsoum _vkx yosz fui yvos/yfui fuufs fkxfmk loksi ywxkfioum yxlfhk hvuhkuzxfzovuy g xfiovuhsoik fui fyzk yvxhk, xkywkhzoks. _noy ifzf gxkfrivu oy yki ou znoy ioywvyfs hfyk yzi zv wxkiohz lzxk ioywvyfs xfzky zv gk fwwsoki zv znk Yvzn ioywvyfs wsvz. _fgsk 17 wxvoiky f

~!

Ewwkuio P Txomoufs Tll-Yozk Lvyk Jfshsfzovu Rfufs Vfmk 1C vl ;A akxtvuz cfurkk Shskfx Vvkx Yzfzovu JVVNSMOc P &Lutzntih'

yssex uk zmi fnrhv uk kzxi yvxiehntly uix znsi ekzix 1//7 kxus err zmxii eyzi yzxiesy &Yivzng eyzi) Luurntl _uix ynrz) eth yunr.yeth sniy') mngm gurh fi vxuoigzih zu eggsrezi ut zmi Yuzm hnyvuyer vruz f 1/03- _mi etter hnyvuyer wetznz kux iegm eyzi yzxies ny feyih ut zmi eixeli etter hnyvuyer wetznz ufyixih kux iegm yzxies yntgi ut,ynzi hnyvuyer ey uxnlnterr evvxuih nt 0CC/- _mi zuzer uk err zmxii yzxiesy &yivzng eyzi) Luurntl _uix ynrz) eth yunr.yeth' ny zepit zu fi xivxiyitzezni uk zmi kzxi litixeznut xezi kux iegm iex kxus 1//7 tznr 1/03- _mi reyz gurst uk _efri 03 nthngeziy zmi hige guxxigzih eggsrezih egznnz ut zmi Yuzm hnyvuyer vruz kxus utr ehhnznuty zu zmi Yuzm knirh kxus err kzxi eyzi iexzmit sezixnery- _efriy 07) 0: eth 0; vxunhi ehhnznuter hizenr uk zmi vxuoigzih etter eth eggsrezih sezixnery f eyzi yzxies &n-i-) yeth.yunr sn) Luurntl _uix ynrz eth yivzng eyzi'- _mi fnrhv iweznut yih nt _efriy 03 zmxulm 0A eggutzy kux fuzm etter ehhnznuty zu zmi knirh ey irr ey hige uix zmny nt,lxuzm vixnuh ny lnit fD

Jgz) &z'+ Jgz) &e' &0,N&r,Or'O&r , N' bmixiD Jgz) &z'E zmi zuzer egznnz uk xehnutgrnhi~n~&Ln' xisentntl ez zmi ith uk zmi fnrhv vixnuh) . &iexy'-

Jgz) &e'+ zmi etter xehnuegznnz ehhnznut uk tgrnhi~n~zu zmi hnyvuyer vruz nt Ln- _mi eriy kux vxuoigzih kzxi ehhnznuty exi feyih ut zmi etter eixeli eri ufyixih kux zmez tgrnhi kux zmi yvignkng hnyvuyer yzxies &n-i-) yivzng eyzi) guurntl zuix yrnz) yunr.yeth'-

- iv&,Jn-0z'

ny zmi hige gutyzetz kux zmi yirigzih xehnutgrnhi ~nzI&r.iex'

hz znsi ntzixer fiziit evvrngeznuty E ~ iex-

Ot ehhnznut) Leyi Yzh OO efui ierezih zmi xehnurulnger nsvegz kxus zmi hnyvuyer uk zmi inyzntl ntitzux uk yunr vxuoigzih kux snh,iex) 1//7 &ntgrhntl err veyz eyzi yvxiehntl uvixeznuty') zmi zuzer nsvegz kux 1//7 ymurh eryu ntgrhi e vxuoigzih hnyvuyer uk fuzm yivzng eyzi eth Luurntl _uix ynrz kxus uti iex"y uvixeznut- _efri 0= gusfntiy uti iex"y litixeznut uk fuzm yivzeli eth ynrz kux eyysih yvxiehntl nt 1//7) vry yfyiwitz hige zu 1/03-

_efri 1; gusfntiy zmi ynzi,yvignkng huyi gutixynut kegzuxy kxus _efriy 1 eth 3 kux zmi Lutzxur Vixnuh eth Otzxhix ygitexnu) xiyvigznir) nzm err vxinuyr yvxieh xehnuegznnz ut zmi Yuzm hnyvuyer vruz &_efri 0A' nzm fuzm zmi vxuvuyih hnyvuyer uk zmi inyzntl yunr yzuxih ntitzux &_efri 01' eth vxuoigzih etter ehhnznuty uk iexzm zvi eyzi sezixnery feyih ut zmi ufyixih eixeli etter litixeznut xezi &_efriy 03 zmxulm 0='- _efri 0C vxunhiy e yssex uk eggsrezih xehnuegznnz ut zmi Yuzm knirh kxus zmi veyz yvxiehntl) sezixnery nt yzuxeli eth kzxi etter hnyvuyery ut zmi yesi vruz uz zu zmi eyysih ith uk vretz rngityi) mngm guxxiyvuthy zu zmi Otzxhix huyi ygitexnu znsi kxesi) _mi xiyrzntl huyiy zu zmi senss uxlet eth muri fuh uk zmi senss nthnnher ez zmi ith uk vretz rngityi &_efri 1;' xikrigzy zmi senss ivigzih nsvegz kxus err veyz eth kzxi hnyvuyery fintl vregih ut zmi Yuzm hnyvuyer knirh-

~!

Jvvithn P Txnlnter Tkk,Ynzi Muyi Lergreznut Reter Veli 0C uk := aixsutz detpii Sgriex Vuix Yzeznut EVVLSJNe O &Iwvpvlk'

;-/ YL_bPa_ . ITSIPb_NTS_

aol lgtgpwv wm ol zgkpwtwnpigt puxgi wm gtt xg) giiutglk wzgnl pvlvwz) gvk xzwrlilk mzl gl xzlgkpvn wxlzgpwv wv ol 0-C gizl _wo kpxwgt xtw ogl owv og ol lppvn mpltk p hlpvn wxlzglk popv ol xzlpwt gxxzwlk kwl tpup izplzpg- aol xlipmpi mpvkpvn pvitklD

0- Mwz Igl _k N &xg _xzlgkpvn Nuxgi') aghtl 10 ow og gmlz 07 lgz wm xzlgkpvn lxpi gl) Iwwtpvn awlz pt) gvk wpt.gvk upl wv ol g pvntl) 0-C gizl kpxwgt xtw ol iwuuplk kwl puxgi zlt pv g ugpuu wzngv kwl w g izppigt zlilxwz &Iwvzwt Vlzpwk l' og giiwv mwz wvt 03-=~ wm ol 0 uzlutlgz tpup- dpo zlxli w ol Nvzklz kwl tpup wm : uzlutlgz g ol lvk wm gulk gipl xzwxlz iwvzwt &p-l-) lvk wm xtgv tpilvl gulk mwz kwl xzwrlipwv xzxwl') aghtl 11 pvkpigl og gtt xg xzlgkpvn ozwno ol lvk wm1//3 giiwv mwz wvt =-1~ wm ol ugpuu wzngv kwl w ol tpuppvn zlilxwz g ol lvk wm xtgv tpilvl- aoll mpvkpvn pttzgl og olzl p pnvpmpigv igxgip zlugpvpvn pv ol _wo kpxwgt xtw w iwvpvl w giilx gkkppwvgt lgzolv uglzpgt og gzl pghtl mwz tgvk xzlgkpvn pow lillkpvn lghtpolk kwl tpupgpwv-

1- aghtl 13 ow og ol puxgi mzwu ol xzwrlilk xzlgkpvn wm ol lppvn 0A);:3 m3wm wpt.gvk uglzpgt pv wzgnl p lpuglk w giiwv mwz wvt :-3~ wm ol 0 uzlutlgp Iwvzwt Vlzpwk kwl tpup) wz wvt 0=-=~ wm ol gul tpup olv gtt xg xzlgkpvn gzl iwuhpvlk po ol uglzpgt izzlvt pv wzgnl &g wm ol lvk wm Swluhlz 1//3'- aol ugpuu Nvzklz wzngv kwl mzwu gtt xg xzlgkpvn gvk wzlk uglzpgt p igtitglk w hl /-7:; uzlutz &aghtl 17') wz C-0~ wm ol : uzlutz Nvzklz ilvgzpw kwl tpup- aoll zlt pvkpigl og ol lppvn pvlvwz wm gl uglzpgt pv wzgnl igv hl xtgilk wv ol _wo kpxwgt xtw pow lillkpvn kwl puxgi tpup xzlpwt lghtpolk mwz g pvntl kpxwgt mpltk) wz pvn g pnvpmpigv xzwxwzpwv wm ol _wo kpxwgt xtw" igxgip w zlilpl gkkppwvgt uglzpgt mwz kpxwgt pv ol mzl-

3- Eupvn ol gul gvvgt glzgnl nlvlzgpwv zgl wm zgkpwgipp pv gl uglzpgt &lxgnl.pt.wpt' og og hllv whlzlk wlz ol tg 07 lgz p gkklk lgio lgz ozwno 1/03 w gtt xg gl xzlgkpvn &pvitkpvn ol wzlk wpt pvlvwz' gtzlgk iwuuplk w ol _wo kpxwgt xtw) aghtl 1; pvkpigl og ol xzwrlilk kwl g ol lvk wm ol izzlv xtgv tpilvpvn xlzpwk &lgz 1/03' pltk g tpuppvn ugpuu izppigt zlilxwz kwl &mwz lpolz ol iwvzwt xlzpwk wz pvgklzlv pvzklz' lypgtlv w wvt 1:-3~ wm ol uw zlzpipl gvvgt kwl tpup &gwipglk po ol 0 uzlu.lgz tpup mwz ol ugpuu wzngv kzpvn ol Iwvzwt Vlzpwk'- aop mpvkpvn kluwvzgl og ol iwvpvlk l wm ol _wo kpxwgt xtw) llv po ol gkkppwv wm 0A);:3+ wm tpnot iwvgupvglk wpt izzlvt pv wzgnl) ptt vw lillk ol gxxzwlk tpuppvn kwl izplzpg lghtpolk pv ol TJIR-

7- aol gxxzwlk kwl puxgi ulowkwtwn lk w kllzupvl iwuxtpgvil po ol wv,pl xzlgkpvn kwl tpup gzl vw kzplv h ol wtul wm gl uglzpgt kpxwlk wm- h h ol wgt zgkpwgipp iwvlv wm ol uglzpgt og p xzlgk wlz g mplk kpxwgt xtw gzlg &0-C gizl mwz ol _wo mpltk'- aol kwl uwkltpvn gul og gtt zgkpwgipp xzlgk wv ol mpltk zlugpv pv ol wx 0: lzv zmgil tglz wm wpt- llv gmlz hlylv gkkppwv gzl

~!

Exxlvkp O Tzpnpvgt Tmm,_pl Jwl Igtitgpwv Rgvgt Vgnl 1/ wm := clzuwv fgvsll Sitlgz Vwlz _gpwv 0DD7A3:J ; "1dchYciRP&

eaMORP dc hVR gMbR SYRaP MfRM) 7mYghYcT aYbYhg dc hVR OdcORchfMhYdc dS fMPYdMOhYkYhn Yc lMghR bRPYM efdkYPRg efdhROhYdc Sfdb gbMaa kdalcRg dS ~Vdh~ df VYTV geROYSYO MOhYkYhn bMhRfYMag Sfdb NRYcT gefRMP dc hVR PYgedgMa SYRaP)

~!

0eeRcPYm ; CfYTYcMa CSS'EYhR 3dgR 1MaOiaMhYdc =MciMa DMTR -, dS ./ IRfbdch LMc_RR AiOaRMf DdlRf EhMhYdc OddSbRYl _ )Pyut,

gpru =

If fuysL. \4 ~ fy- \. _ I i Spsx mup xu fx Ryp TYut

fuptyw apuYp a/A= mup su/uu n/CA P0.;3= P/7;D Pu/70. Rpu gu )hPvpsu, )u0'YYp7Y, )PhppuN )Pipsu, )Phppu, )Pipsu, I3 737;7_w), fuEw 3 ;0EI 3 3 30:C 3 777:37I3 fupwu 307D :03; 30 ' 3 c0b 70=cS/3E 7II7 u 3 3 3 3 3 3 7II: e17k'I: fuEw 3077 70D; 30A: 303A 30;: 7II; e10s_I; furYwu 3033C 303A -..- 30:7 3 30; 3 7V= cCvMk3= furYwu 303E 303=; 3 3 303I 3 7IIA 3C7:I7IA fupwu 3 30EE 3 3 3 3 7IIC u 3 3 3 3 3 3 7IID 3Cv7E7ID fupwu 307: 7 3 3 30777 3 7IIC 3D7;37IE fuwu 307= 4~/ 303I 3 307: 3 3I77E7IE PgfY 3 3 3 3 ;30ED 3 7III ,d!/M/f/i fupwu 3077 70=D 30: 3 30:A 3 :333 3EY3e1),), fuJhwu- 3 3 3 3 3 3 e1:Mhcc PgfY ,~//d 30EE 3 3 3 3 7e1:/=7cc fYvfpt 3 30C3: 3 3 ;0CIE 3 :337 ~:3/37 fupeu 3 0 3DE 703EE 3 307AC 303EI 3I7:A737 fYifut 3 3 3 3 70" 3 :33: 3E7:773: fupwu 3037 303= 3 30337 ,~,/ 3 //////,; fcyYYfpt 3 3 3 3 70;D 3 :33; ,d/,//,J fuYpwu 3 703; 3 3 3 3 7e1:A73; fupwu 8 307: 8 3 3 3 77Y3=Y3; fyYYfpt 3 3 3 3 70;3= 3 77Y3=Y3; PgfY 3 30:a 3 3 3 3

Oupwu Os_bY )PhppuNJ ,~,a 70=A 307E 3033;C :0I3 !£ 70 up Ybtw xy, 3037 OoYYY7YeYYPYYY )P1g, ,~/;J :0DC 30;=: ,~,,d A0A: ty&ut v 70I 3037; psu vyut upsx up + l ptypMJYYY uYYs pu fau0

:=

Outy _ cywyp cvv/fyu Ru Ppspy app dpwu :: v AD iu mpzuu bsup du fpy /CC3=17L : ~0dchYciSR"

ENOaS ,

IN7SfY.7

8li 8£ 8£l ~8\fi 8\f +- +- 8:\ +- +- +- \I \II!f\\I +- I f: I I ,~;f \\\_I\!I I ,~/d _:If I \\ I: ! ,~;i !:iI::+- I I I I \_ I I \I\\\_ ,~// \:f -~8. ,~,M -~/. \f \I\\i=f I:II I:Il \: \ I:_\ I \i I:f I ,a//J!iJ I:I -~4/ I I I:I \l I£=_+l I I I: I I I I \£ I I I I I I £yl I\\ I:\_ \ I I \ I:\ I IfI\\ ~ I:\i ;~: I:I I \ ,~/; I I\l\ ,~// \4i ,~; I _III I:_l I IIII . I I I I _II\ I8_I8I\ I I I i:I \:I I ,~/Mf _II_ I_\I_ I:I ,~,/ I:Ii I I:II\ ,~,/ _IIf I\I\\If 8 I I \:If I I I \I\_l\If : I I I:\_ I I I I +- I:I£ \:fi I:\ I:IIi I:\i + \: - I:I\

+- I:\I _:l£ I:fi_ I:II \: I:_ I:I\f TaS7R :

/eeScRYl : AfYVYcNa ATT&DYhS 1dgS 0NaPiaNhYdc ;NciNa CNVS ') dT ,- JSfbdch MNc_SS =iPaSNf CdkSf DhNhYdc /DD3A1:L ; ~0edi_dkTS"

IOPbT -

8li fI Nd&-, 8\fIi 8\f 8\i\ -. -. -. -:. -. \ ,M//J!~MJ E:: -. I I I I fI: I _III \I_i\ E:: I:\\ I:£ I I _IIf \\I:If I I I I:_l£ I I I I -. I:IIi I:IfI I:III I:III I:£ -f\ : . I:III -. I:II I:I£ I:III I:III \:_ \: I:III

~ \ f\ \ : + :

IOPbT .

=

8li fI Ni7,, 8\fIi 8\f 8\i\ -. -. -. -. -. -=. _III \I\_i=II I I:£I_ I I f:£ _II\ I\_l=I\ I I I I I \:i I _II_ //!///,; I I I I \:f _IIf \I:If I I I I I \:fIi I

-. I:II I:\l I:II I:II \:l I:II

-. I:II I:_ I:II I:II f:\ \:! I:II

i 4: :

_\

/ffTdS_m ; Cg_Y_dOb CVV&E_iT 1ehT 0ObRkbOi_ed =OdkOb DOYT ') eV ,. JTgcedi MOdaTT AkRbTOg DelTg EiOi_ed L \\='P : 1 \\\ dfgpkc \\=I ~ 'P 'P 3:C pfwx cuvkfiosm711:, !;,!,,!/ 4 \\= Swxorfxki Rfxk tl \\= \I I ,!;,,,!/ \I Pw3:3 .+f il \4 " Iil 3:C 3:C fuupoki 1 _8 48 tlxtxfp ~ Ptsh0'V i\ \\='P 4_8 8 ks lxN: !! !! \\\c yPopfhvk 711713I ;.ACE ')=J&')Y)7 701D C037S1D 301C E0A7S-aa A0CES1D 711717I E.111 1AV1;V17 7011 ;03DS1D 3033 303:S-b3 :0EES1D =01CS-tt :30;D" 8 ckku 4 A3A ,,aJ!, 70=D ;0DaS1D 30=A 307:S-aa ;0=7S1D =0E;S-tt :A0E=" M ~ . \\\\II\\\ 7113 . ShIfzfxpts A0;DS13 ;01:" E:3 31p77V13 . i£4\ : 70=D EC1 =0;3SaO 301=C 30;7S-tt =031SaO ~ stshtsp) 1;33:3E= D03: C0;DS13 ;0A=" e E077SaO 30C :0=CS-tt C0A=S1D 71171: - 30DDS-aa 330AE" 70;=C 3733A317 30=; ;033S1D 307; :0;7S-aa :0ECS1D 30DaS-aa I 33071" \\\\\\ xtxfpwI +++ 3D0A=: + =0D3SaO t + :01AS-b3 =0:;S1D t 30A3S-b3 311011" \\\\ &~11) . 'p) ~ : _txkI ctopfsfpwowifxf uvtzoiki os NuuksiokwN xnvtymnT0 100 'P ks 'P I. .I. 00 4 100 \ t xIII3 ++.f.I 0000p+. 'P 00. \\=dMf~ II\ 4+8 \\= R ~ \\=~ 77 \\\P 4 e/ ~ MPRcV0 )7 ccI

4 4!.! ~ cPhi lff£! ,M/,/!/~J h11o ~ \\ \ \\\=ccI \= 48 \\ +~ T" M//!/~J i\ ~ PPV 4 £ \\\= =C1c lfflfi \ fiffl l\f \: i\f \: \: Y lfflfl =fff f_fffl l\ff \: i\ii \: \: \: f\ff+ 4 8 i iiifl8i l\ \lf i\ i\fi llf \: f\ff+ ,1,,,,D lffi £i /,/;a/ l\ \: i\f \: \: \fl ££\fi+ 3D3: i4\: f fii£i \i£ l\if i\ £\£fi i\f 8 \: f\ff+ \! =)) i\ifi \+ lfflf£ - l= /;//M/,; i\ \: i\l \: \: igc\! N \: f\ff+ - i=£ \flf ieiPc ~ \ilfi \££f r EeiV1 LeacPdPcnhahTPiPfgelaTVTad;ffVdTamVh;i_gekY_A, l\ffi iff\ff+ =\\ e. 111- Lp.!! ! S ~ !f 4 -) 4 Vd)Y . .! fi! e !!!f! R e &bJ" ccI O, h11&~' OccI ~ ~ ccI h11 V,1, ./ : fff'// 0 g NTVda /. )__ ~ ~ llf A l8l££l '// Lcda Y f_ _ f_ _ f\ := ._ b ;!!!~/ f\ fff £f ~ 0 OCdDbe !!!i nCD nC-dbe ~ fff'// ll_l£ \ :=:= fl fI £fl fI fI ll_l - \lll lll fll f_l £f££ £flI fl_l CDE fI lfll. LdDkP : = £ !!J~,J~! f fI £f fI f_ f_ fl. DC ll£ £ £li=£ f fl_l £fl f_l £f_l fI lfll. g £ : f 8_ l ll££ f£ fI £f fI fI = f_l f. fI lfll. ecpll_l 4 \ ££££l £f fI £f fI fI 7h, 8_ fI 8+l \ lfll. 8+l £\ £ 8= f_£l ; _ £f£lI f£l f_l£ R £llfll. fffffg s Igma3 MgcdTfTdrlcl_TmT hkgoc_a_ f fffff=: g )) ffff 8 "mdJ7E3= Y ~ 3337 ". '// .) '// af~ 8_8 ),,,E~13 _8 -----~.g m33E /----/ £i _fff:£ fTi& ~__f YS:+= ~ ~033 ffC : ff\&J' 1 h RVYfb// +4+ "f=

&J' ll= &J'++ A_mLms mh;aJ;J~ lf f f 84 - "f= Chgb-ugh 8: Chgb-u ff\ /---~. £l mhmVf 7. £f + ~ !! &J' ff\ lll£ \ l£ll bg lll fl fll £fl DN flll li8:\ fl£ £fl fll fI £fl£ f- +4+ &fgVeab: £f££ fI £ ££il:£ f fI lfllI ll£ fl £f £fl£ lfll- £ £li:£ fl fl £8 _hgmfepg- I //.//, f fI £f8£ lf- l fI fI : l£££ f£ fI fI lfll- =, £f fI fI 4+l lll . fI lfll- f JMJJd/J!M \ £f 4+l fI £f i, fI fI fI lll- S IhmVYuu £\ £f£l ~ mhmVfuu fll£ £fll fffff fl f£l£ £llfll- 4+ fffff=: u Mhmb3PhefVgVfslelaVmVikhoeabaegAiibgaerblAIdkhncdE ~h l ~ Pt R _ "f= 33337 4+l 8!: 4+l .-- &J' bg &J' 44 4 .. &J'++4lf T- ll4 ++++l4 o-~)N h meO- "f= T- &~' "f= ~ 0733 "f= ;b3-- m :LLAI=CR D";kioeipba&

OVYgb ,-

= \iJJl£d _I\f '''' ''T)T''' £\~ _I\f JJ« !+- fJJ JM;Ja !+ 8:8'' : !VVb& 8li I\\f I:_\f 3 \:ii8Ii 8£ I:_I I:\f\l 3 :_8_ 8£l \:If_ I:l l:I8 8\fi I:ffl£ I:III 3 :. \f I:I__ \£:\ \:f\.I\ 8\i\ :f I:III 3 :.

u Ikob7 MV rVgpbn OVYgb !8\f+4 OVYgb ~y;/f;!, OVYgb\I !8£l+4 OVYgb "Ei'0/&

OVYgb ,.

4 4 = _I\f

NCgo NkeCgNVia

JJ« !+ !+ !+ !+ !=+

8li I:\\f I:Il£ I:IIf I:Iif I:\If 8£ I:\l I:\f\l \:fil I:IfI_ I:\i \:li :\f 8£l \:If_ I:\I I:IIII I:\\£ I_£ I:il 8\fi I:ffl£ I:IIi I:IIII I:III I:IIi I:I\_ \f I:I__ I:\i_ I:l i:_ l:\ if:£ 8\i\ :f I:II I:IIII I:III I:II '''~~~

R

:llbiaet D JmedeiVg Jcc'Neob =knb ;Vg_pgVoeki EVipVg LVdb -3 kc 01 Pbmhkio SVifbb Ip_gbVm Lksbm NoVoeki R

,RRDOCJa~ 1SJIJO=M 1EE~7JVD .PTD -=MAYM=VJPO /=OY=M 3=ID &" PE ') :DSNPOV ;=OLDD 0YAMD=S 3P_DS 7V=VJPO 1EE:C7;M &3edi_dkTS'

JOPbT ,/

_ ~ 4 ~ iMMMJf !8~ ~ f=~~~

iMMMJf f\_i _ ~- iMMMaJMd +-

:£l \=__i \=\\ 0 l=\:\£ : \=_i_£ _=i£ 0 l=f_:\_ :£ _=\if \=_\ 0 _=£:\£ :_il \=ii£ \=\\l _=:\l _i \=\ff _=_i 0 =f:\_ :_l_ =i \=\\ 0 f=l£:ii

_

MM;fMJd iMMMJf f\_i

MMMf/d iMMMJf f\_i ~l;y£«!, "~ iMMMJf +- f\_i +- +- +I- :£l \=__i \=fl_ \=££i \=_£_ 0 : _=\f:\l \=_i_£ _=ii \=££i _£=_l\ 0 l=l :£ _=\if _=l \=££i \=\ 0 =\:\£ :_il \=ii£ \=\\\i \=££i \=\\_ 0 f=£i:\£ _i \=\ff i=_ \=££i i= 0 i\= :_l_ =i =:_\ \=££i _=\:__ 0 i=\:lf

. :

R

1ffTdS_m = Dg_Y_dOb DVV)I_iT 7ehT 3ObRkbOi_ed AOdkOb EOYT -, eV ./ LTgcedi NOdaTT CkRbTOg EelTg IiOi_ed AOOEMDIT J "Cmlrglsdc&

R_aid .;

£il _fffff!ff_4______4__,,,,,,,,, ,,,,,,,, f PmiiI__lc l -Il ~ £il+ rm £il4+ £il+_ £il_ £il ______ff_\__\f\\_ 8: !y, ,, ,,Y , !y«J, 8: 8: _ li£~ l~ i_i il lf_:l bd,dm f f£_i£ if£l fl lfIil _ fi_i fi_i lf_i if f_:l _l £f_i N-NNE'NN f~ ifil£ lf£l_i£ f\ if lfli if£ fll fIil _ll f_£ N-NNE'NN £ ifii fl_:

Mmrdp= x Abrgtgrw Cmlbdlro_rgml eomk R_aid IP- Abrgtgrw Cmlbdlro_rgml eomk R_aid &/- Abrgtgrw Cmlbdlro_rgml eomk R_aid& 3) .7 _lc &:- Abrgtgrw Cmlbdlro_rgml eomk R_aid .0 _lc &1-

£i

8 . :

laaadMaf laaadMMi

8

O_prI __ £il aaJiaMf 8:= 8: £il £il £il 8: !laaaMi, l__fff!l: _____!~ _ if £f_i lfi£_i lff8: £ff8: _ lfl f£I fI f£f£ f£I _ lf lf£l_i fi_i fi_i lf£lf8: _l ifiil £f_i £f_i fI £f_i l f fIil fiIil lflIil fIil /;;y£~;aia l\_ll ~7NE~Y \___fi~_l ff4 fff_~f~ aaJiaMf f

R

Anndlcgv J Nogfgl_i Nee,Pgrd Dmpd C_ibsi_rgml L_ls_i O_fd 0/ me 3: Sdokmlr V_lhdd Msbid_o Omudo Pr_rgml 3LL;I:AP C &7hgmcgn_Y'

NSTe_ .- LSlm Mik_SYcgb 7hgmkhe L_kchY :hl_l 3l ha //!,J!,; &Ih Mmhk_Y ESm_kcSe hk =nmnk_ 3YYcmchgl AgVenY_Y'

88 4444448484444 44448 ==_=:\

84f_ :8I_= 8:_4:f _8if4:f V_)_h =i8\\ =8=l4:I £8il4:\ 4if =8_l I8_=4:I =f=4:I 84=\_ :8:::i\ I8::4-.i £8:i4:l 84=\l \£8=£ =8:I4:= I8i£4:I 4=_= £8£4=: =8\i4=\ =8\I4=_

4 =8\l4:= f8:l4:I = +~ - ! =\8l! f8=!

NSTe_ .. LSlm Mik_SYcgb AgmknY_k L_kchY :hl_l 3m ;gY ha LeSgm DcV_gl_ cg .,-/ &Ih Mmhk_Y ESm_kcSe hk =nmnk_ 3YYcmchgl AgVenY_Y/!J!,;~ Sam_k"

///,J/,; 7JAN_7m_Y I:=\

4f_ :8I_= =8:I4:_ =8:_4:i \8=£4:l V_)_h =i8\\ _8i\i =8_£4:= _8I=4:I 4if =8_l l8:£4:f =8\_4:i £8£f4l 4=\_ :8:::i\ I8f\4:f \8:l4:l I8\l4:l 4=\l \£8=£ \:8ii I8 =_4:= =8=£4:= 4=_= £8£4=: \8i4_I _8\i4__ =8I_ 8f

~ \8iI4:= =8i4:= f f ~ l8I! \8I! 4 )))))))))

/,

3ii_gYcp C JkcbcgSe Jaa)Mcm_ :hl_ 7SeVneSmchg ESgnSe LSb_ // ha 01 O_kfhgm RSgd__ InVe_Sk Lho_k MmSmchg 0DD7A3:J ; "1cbgVbhRP&

il . 8 J!//,;~

Mdaf \IIIIII\~\ !~ ''M\\\ \\ !! M''IIII~ \\\ I \~~ \\~\ \\\\ \ \I_ i\iI_ \I_ \\ffI_ f\lI_£ \_lI_ I f\_I_i \_£Il f\£I_£ f\\lI_£ f\f_Ii \ fI_l I f\llI_i \llI_l \Il \Il i\iI_i f\£lI_i Ifl£ f\I_ \I_ \= \= f\I_ \I_ Ifl f\__If i\I_i \\iI_i f\\flI_i f\\lI l\I_i I \ f\£If f\If \= \= f\£If f\If

f\i£I_f £\iI_i \iI_i f\I_i f\I_f \_lI_i f f f f f f - fi \\- £\l- \l- f\- f\- \_- \

i£ . 8 : cS i_; l

'''')'~ Mdaf ~ \\\ \ f\_£I_ l\ fI f\\I_ £\£I_ i\_I_ \I I f\£I_f \ifI_i i\£Il \iI_£ f\fI £\iI_i I f\l£I_ \I_ \I_ \llI_ i\l_I_ f\iI_ Il£ l\_I_ i\lI_ \= \= l\_I_ i\lI_ Ifl i\ f£I_f f\fIf \f+4I_i \_£I_i l\_I_f f\I_f If£f \\lI££ f\i£I£ \= ''''M) \=\\ £\lI££ f\iI£ 'M)' '' M'M)M'I~\II4I4I I \\\ M'' l\iI_f f\_I_f \£fI_i \ fiI_i £\If i\ffI I - \i- l\i- \ f\- f_- \f- £\i- ''''' I4II\4

lf

0ddRbPVk ; CeVTVbN_ CSS'EVgR 3cfR 1N_Oh_NgVcb =NbhN_ DNTR ,- cS ./ IReacbg LNbYRR AhO_RNe DciRe EgNgVcb ~ "&"I 3 Y l SgS f . ;=g;g ~ ~ + + f fifiif! 4ffiif8 4fifiif8 4lfi£8 4lfi£8 TcYdY_S 48C 4_8 . "&"I i

;;;;R& l\i£fi \ ~ \iif i\\48 \\ "&"I f\ff+ f\f£l+ l\f\i i\\48 i\£\48 E.) l\-f£ \l\48 \\i fl+ f\f+ \\\\c \f£ \f£ \\ i£ \££\ f\ff+ £\f+ \: \: \: \: \: f\ffff+ i£ i\i:fi \l\l f\ffff+ i\i£\l \i\l \fifl Dg . \i\i \: \+ i\f+ &T;0 \: \: \: 8 \: f\ffff+ &T;0 i \: f\ffff+ ,~~~,! \: \: \: db;0 \: f\ffff+ f\ffff+ ..!. ! \lfl i\fl M \ifl \il\l \+ i lf\+ \\\\\ i 7 + DA \£+ i\+ i\+ i\f+ \\\\\ Y lff£4i8 ggY ~ il\ \\\ . d;; .! ~ ..!f \\\\\= /g 'Ja :&.!f ~ ~ E.) 'O e N-=;V R Y f !!!f. ~!.!

.YPTL& \ 48 .

\\\\.Cg ~ . 31 CS;-- 1EE:C7;M = ~3fekaelVT"

JPRcV ,/

= 4 8 \

\ \ .III4IIII+= \ _ i_fl! 48 )&&&&&IIII\ I\I ~£ f\I_f \£I_ l\I_ f\I_l \I_£ _\f+ _\_i+ I f\ll:_f \£I_l \_I_l £\i£I_f f\ifI_f \l+ l\+ I £\I_f \fI_l £\iI_l \I_l \lI_l _\i+ i\£+ Ifl£ f\ifI_i l\I_ f\I_ f\£I_£ f\flI_£ _\_fl+ _\_fi+ Ifl \:_f i\lI_f \iI_i \fI_f l\£fI_f \+ l\i+ -If£f \I_l f\_I_ f\_iI_ \iiI_ i\l£I_ _\__+ _\___£+ If££ \: \: \: \: \: _\____+ 'O&& _\____+ I i\lI_f \£I_i f\_: £\I_f f__\__\£ f__\_+

I f f + i\l+ \£+ if\f+ \£+

= ;;/M;~J!, 4 \ f\

--

1ggVeTan = Dha_aePc DYY&IakV 7fiV 3PcSlcPkafe APelPc EP_V -/ fY .0 LVhdfek NPebVV ClScVPh EfmVh IkPkafe DYYLTJPf R "Iwvrvml&

.!+!.!-~!4

"P& dmzuwv ghvsmm Vnn rm Jwm Ihtkthrwv Shvht "VJmS&' _mrrwv 0-' rvktlrvo pm nwttwrvo hxxmvlrmA

"r&Dxxmvlr E' ~Dxxzwht wn Izrmzrh nwz Jrxwht wnatropR Iwvhurvhml amxrk ehm Vv)arm h dmzuwv ghvsmm~ "Pvktlml T_I hxxzwht tmmz lhml Do 0-' .=;=' dg zmym nwz hxxzwht lhml Rvm /;' .=;= rp Dhkpumv P hvl PP,&

"rr&Dxxmvlr M' ~Dxxzwht Yzhv w RVIM_/-,/--/ Mwz Vvrm Jrxwht wn Iwwtrvo bwmz art~ "Pvktlml T_I hxxzwht tmmz lhml Shzkp 1' .==7' dg _mym nwz Dxxzwht lhml Do 0-' .==3,&

"rrr& Dxxmvlr O' ~_mym w Dumvl Yzmrw Dxxzwht Nzhvml cvlmz PVIM_/-,0-/"h& nwz Jrxwht wn Iwvhurvhml amxrk ehm hvl Iwwtrvo bwmz art w Dttw nwz Jrxwht wn Iwvhurvhml awrt~ lhml Rvm /0' .===' rp xxtmumv lhml Rhvhz 1' /---' hvl Rvm4~ . /...-

"/& caT_I _mothwz Nrlm .,.-=' _m,tC ~Ihtkthrwv wn Dvvt Jwm w Shv nzwu _wrvm _mtmhm wn _mhkwz Lnntmv nwz pm Yzxwm wn Lhthrvo Iwuxtrhvkm rp .- IM_ Yhz 1-' Dxxmvlr P'~ lhml Vkwimz .==:,

01

Dxxmvlr R Vzrorvht Vnn)arm Jwm Ihtkthrwv Shvht Yhom 0: wn 3: dmzuwv ghvsmm Tktmhz Ywmz ahrwv 1EE:C7;L = ~3cbgVbhRP"

1ddRbPVk 1

~I::I.:=

=\l .=\l .f_ +- +- ~ +- +8- +8-

\£ f4li.:£ =I:: =Iii =4=i.:l \ =I:: =:iI l4li.:£ _ =I:: =\\ _£ f4iI.:£ =I:: =f=I _: _4=. =I:: =_£\ _ =4=f.:l =I:: ==\l f i4f.:£ =I:: =\: =4£_.:l f: =I:: ==_ =4lI.:l f f4£i.:£ =I:: =:f= = \4\.:£ =I:: £f =£ f4l.:£ =I:: =\\f = I4I.:£ =I:: ==££ =: l4\.:£ =I:: =\ff. = \4if.:£ =I:: =i££ = _4 =£.:£ =I:: =I_ I i4£\. =I:: =I_: I£ 4f\. =I:: =:_\ I _4££.:£ =I:: ==l= I: ,' =i.:£ =I:: =_I: I \4_\.:£ =I:: =\:_ I _4lf.:£ =I:: =\i: \ 4\f.:£ =I:: ==£ \ 4f.:£ =I:: =\_£ \ f4if.:£ =I:: =:l\ _ _4__. =I:: =_£i _ 4\l.:£ =I:: =:fl f£ l4I\.:£ =I:: =_I£ f _4f\.:£ =I:: =ff=

=I:: =I£f4lf ig ' _4:i.:£ =4:l 8 4 =:l=4_i 8\ ! 4 0 l4=I.:£

1ddRbPVk = DeVTVbN_ DSS&IVgR 7cfR 3N_Oh_NgVcb ANbhN_ ENTR )/ cS -. JReacbg MNbYRR ChO_RNe EciRe IgNgVcb 0EE:C7;L = ~3cbgVbhRP"

i

~ I::I.:I

=\l .=\l .if +8- +- ~ +8- +- +-

\ \4£.:£ =I:: =\££ _ i4\.:£ =I:: =II= _4f\.:£ =I:: =Il£ _4i.:£ =I:: =I_ l _4:_.:£ =I:: =\\f l4I.:£ =I:: =Il_ i= _4:i.:£ l4l\ .:£ =I:: =\I iI \4:I.:£ =I:: =_:_ \ _4:£.:£ =I:: =\=\ _ \4\_.:£ =I:: =I\: if \4\£.:£ =I:: =I_= i I4 =\.:£ =I:: =I il _4I_.:£ =I:: =Il £ \4l\.:£ =I:: =_lf \ \4:.:£ =I:: =ii 3, _4If.:£ =I:: =\I f _4:i.:£ =I:: =\=£ i _4 =_.:£ =I:: =I\: l _4i:.:£ =I:: =\\f :l \4II.:£ =I:: =I_

f4:.: =I:: =\I4 4 =4== 8 ! 4 _4=£.:£ ==:£4If 8\

1&'

0ddRbPVk = DeVTVbN_ DSS&IVgR 7cfR 3N_Oh_NgVcb ANbhN_ ENTR )/ cS -. JReacbg MNbYRR ChO_RNe EciRe IgNgVcb 3II;D:=M A "7dchYciSR&

~ =88=-8I

:Ii -:Ii !+ ~ !+ !4+ !4+

, I.-8l :888 :I\l = I.\f--8l ::88 :\=\ I =._l-8l ::88 :\:8 \ M!£f~/d ::88 :\:8 I.l\--8l . :888 :8I\ f \._l-8l :=88 ::8l i I. :\-8l :888 :_=f 0 \.=£-8l :888 :_I= £ _.\=-8l :888 :8lf .. :8 _.--8l :888 :=l£ :: _.fl--8l :888 ::l_ := \.f=--8l :888 ::I_

:8\:.fi :=£8._l kh I.=-8£ ;!Ja ly,ii . 1 :=Il.£f I ~ .1 \.::-8l

7'A

3eeScRYl A EfYVYcOa ETT'JYhS :dgS 7OaPiaOhYdc COciOa IOVS -) dT ./ LSfbdch NOc_SS DiPaSOf IdkSf JhOhYdc /CC3=17I : ~0a_eS_fON"

:

I::=

=\l .=\l .i .i .f_ +- ~ +- +- +- +- +- +-

= i4 ff.:£ f4\i.:£ =::: =_\f I \4_\.:£ _4I_.:£ ==:: =lf\ \ I4=.:£ \4:\.:£ =::: =ff: _ _4£\.:£ _4 f.:£ =::: =i=f f i4\l.:£ l4£\.:£ =::: =ifl i \4il.:£ _4=:.:£ =::: =i: l =4i.:£ \4 =\.:£ =::: =fif £ =::: =if: \4==.:£ I4Ii.:£ =::: =_\ =: i4:.:£ i4:f.:£ !~~, =liI _4:l.:£ == _4i\.:£ =::: =_I= =I _4lf.:£ I4\f.:£ =4I\.:£ =::: =_f_ =\ l4=_.:£ _4\:.:£ =::: =fi= =_ _4:_.:£ \4II.:£ =::: =if i4if.:£ =f i4_l.:£ f4I.:£ =::: =f:\ _4I:.:£ =i \4l\.:£ =::: =i:l _4i.:£ =l \4 =\.:£ =::: =f\i =£ f4:f.:£ i4I=.:£ =::: =f_ f4_f.:£ = f4 f.:£ =::: =_l_ i4If.:£ I: \4iI.:£ I4 \£.:£ =::: =_Il

\4 =l.:£ £4lI.: _4.: =::f4I =fi\4f 4 . =4fi ! _4£:.:£ _4_\.:£ =fff4_ 8\ 4

:.=

/bbO_NSh : AcSRS_LV APP&DSeO 1adO 0LVMfVLeSa_ ;L_fLV CLRO )' aP ,- EOcYa_e JL_TOO =fMVOLc CagOc DeLeSa_ 1EE:C7;L = "3cbgVbhRP&

1ddRbPVl :

,))& IcV_ :lONiNgVcbf

+8=f 8=f +_\ MJ~ ~.! ~.! ~.! .! ~!

8 I-4l+4i 8444 84ll : _-88+4i 8444 84I= = _-4I+4i 8444 844f I I-fi+4i 8444 844i \ \-=4+4i 8444 884= _ \-ff+4i 8444 ,!/; / \-lI+4i 8444 l\_ i I-f\+4i 8444 l\f l \-4\+4i 8444 lf_ 84 _- 8_+4i 8444 84\4 88 \-\I+4i 8444 84I= 8: _-\4+4i 8444 88:_ 8= =-II+4i 8444 88I8 8I \-_f+4i 8444 llf 8\ \-:_+4i 8444 884\ 8_ \-i4+4i 8444 88l4 8f \-\i+4i 8444 84I4 8i \-:l+4i 8444 88I8 8l \-i\+4i 8444 84\4 :4 \-:4+4i 8444 84f=

- £ 8-l\+4i £ 8444 84\_-\

~ - 0 \-I8+4i 0 8-4\_\ . 84\_-\ .=

+

1ddRbPVl = DeVTVbN_ DSS'IVgR 7cfR 3N_Oh_NgVcb ANbhN_ ENTR -, cS ./ JReacbg MNbYRR ChO_RNe EckRe IgNgVcb OeeTcS_l a ,Rwsr-

Osrw V

:JJD gwz fsn Onzw Ngspw Vsps iunrs

hvs nnpvsr s ,ifnrwnpwz Onzstgwz ewzs gsr Psss Rzwu hs&/ fTY__,!;/~ rnsr az _g/ :,JD- wrwpns vn wz wzs nzwuff- ss A777 pzzspsr w :JJC nr sr osss vs Rzwu hs1 Ts vuv vs znus t vs wzs ,=:77ff-! rwr wrwpns n rsspnozs zn sznsr nrwnpww/ vs wzs ss ssnzz powsr wv w rwsr t o znr snrwu vs gv rwnz3z n nnz rwnz zs zww t wknr ws swsr1 hvs sn t vs wzs psz pnw no:f t nswnz1 JE7 V vs swnsr ppsnw t R:=E w vs powsr wzs/ ppsnw nzs t hnozs / nr = ss nsnusr w w vss zs n vL

R0:=EL J77 :f~nn nsnus ppsnw t =;I Rzzyu =:77 _t wv rsspnozs npww ,nsnusnozsnzs& __ a"Rw_yu-

Osnus ppsnw ,swuvsr ns1-J77 0 _) =;IR/t' + =: ~ __ Rzzyu J77 + =:77

I;1== Rw_yu ,r-

hvssts/ ni8f swuv onw nzwpnozs vs snsr zs t vs snwwu wzs t wz osss vs Rzwu hs/ fI8 swuvsr nsnus ppsRzw t Rn:=E\_.

I;1== Rwzzpu _yu3_ddd u 4T07D Rw3Rw :1:; s3r zs nw

J1;; P07I Rwzu ,s- t R:=E

VR70D7M

Osnus ppsnw ,swuvsr ns1-l J77 _) IC utzzyu + =:77 _t 717=A Rzzyu J77 + =:77 4f~

:J1:C Rwzyu

d n s swuv onw nzwpnozs vs snsr zs tos snwwu wzs t wz osss vs Rzwu hs/ vs swuvsr nsnus ppsnw t R0D7wL

:J1C Rzzyu . _yu3_ 777= .: T07D RwzRw :1:; s3r zs nw

;1:A T7I Rwzu ,s- t R0Dd1

V_

x0tE

Osrw a dwuwnz dtt0gws Ss Rnzpznw bnnz enus A= t CE ks mnyss cpzsn es gnw RkkYhVct d -T.

gYgimRhVpg

uRheY RoigcT Sifoih

o f- :- £ Vx d cn/ :JJD ax ff mYid :n:JD _ g1 n1 n s1i1,& w

nyz mxxz Rx y n k n S1 x T /!i!y!l £~~~ad~~a~~ £ oiv~ _ ff oxz1z

mY_YmhTLn

-:. YLx fxyx Rx m nx hy 7;;D:D yd 7;;E=n/ c kz xV mxVx myxz Vx _4:O:-/

SRTecdmiphc;

n ~ Tccni,pTLcxxzL x 1 ::v,7 V zL ~ yc 3xz yuz x,1 zc dcccxzxxidzx: x" x pRc y1 i w x;/,, x zL ccccw:xdu xy xs1 w 8il _4 wx1 :P ~ 1 zxL x xy J77 zyz 1 w 1z z1z"x , 1 x x :A/777 zLy zpx1d x1x x1cd p~!+ 111 o xzx :7 ,&,,x x: )111Ticccx c,g x xzL/ Nhx ~ xxccc., c y1 ~ ~ xz xxxVx;/,, zyz xLx:xV z VzLwx xx M,, zyz :L xx1.

VcnTpnncih

g z c vv/ c, Luxcx xy xx-mMczlc. y +---L1 z zx zx:d : zxi&g y1 dx,1 z ~ =s zyz dd y z1zzxx=7 TiccT1xxy \_ -7;;DID x 7;;E:C. x x x xzx c x I;y -yx xy cn1" :Lz x 1 x p xcz.1 Yxz zx xxc = dc,I x cyic y / M xc g xz LLz ~ cxz x ,/Ric:y o 77cVcccIcc 7:: xz xxcx NLx x x zxcx z d1 dxd: / xxdc 7;;DJ: x x NOccVD:n171 zxx D-y x xy x x xz/J!, s: 1

oxyw c x ; npdpg1 c c,Tcnpc' y xx zL,L Tx:=E 1 TDi1 hiV =7 z 11c xzxp x zzww Txy/ x x cx xihzL1d1 Tihlc, yx xx y ~8I x Lcxz zxxx1

o J77 zyz z gcn x: x ccs xy/ y x pc 8:;8 zx xx zzz -7;;E:D zyxx 7;;E=1C.1 oxyd yv yx y" T:=: x ibMi ~~sLz x -t y xxy Vcx1Vl1x x x xxz 1 1 x x ciT_mi1;77; xx yczxd c:y Vii1

=+.

/.~:

R d ix in V Txzx gxx kx AA CE r ux hzx k nx =RREODJ_ L "Crpvlpwgf&

SEP'JJ1J:3) Lwn JT) -::3 Rcig .

Rnb ecnncv rwt ercxeoewe;g vr flue;wc vkgDCn_n uvnns)cge;guct vr kcpfng vkg :,, Cwdle vrrv slng)

NoT)Tvpco Mgcf ScflrJrulecn EpilpnJct Ac~PlVJ=-vnMn Epclprgtlpc Dgsctv) =vvcedoervu

e

S) Nwe;g)JJr R) VwJghlgJf N)Nctlcp

I'/

=ssgpflz L Ptlilpcn Phh'Tlvg Drug Ccnewncvlrp Ncpwcn Rcig 01 rh 17 Ygtorpv acpmgg Owengct Rrygt Tvcvlrp DSSJPIMa N&Epoukovgf'

Vcdhg / _~E bcolgg Tpkm Docuwtkt

J,mcd tpkmfcug /!,~ 1/.. hu1 tpRungskugf ,Lgoe-, mkogeRotVMYeukpon-ugs"gh E-)1; &SEmMli ekuz' t-nrug Epog- --tkin- 1 tkin- ORE /-.-

"/-3 0/ :1 ;= 0,3-/ RR 00 :: ;3 1,:-= 11 0: ;= =A ---A-: ,A 01 :A Au 7,/0-1 0. 0/ =1 ;1 =,/:-. /: /A :; :A ;-/;-= 3/ 0: ;7 //. =-0.-7 ~+ 0/ =1 =: ~01-0 ,: 11 AA /0. /.,0:-. /; 01 :A =. //,0=-; // /: 3= :. /0,1/-3 ,/3 0/ :1 =0 /1,13-0 ,/0 0/ :1 =1 ) ---1:-A 00 /= /73 7A //7,1A-: /0 00 :: =; /=,30- /: /= /73 :3 /;,37-/ /0 0= =3 /=,3;-= /; 0/ :1 ;; /A:.-: ,11 0. :. =3 0.,71-1 ,30 01 A3 0/,::-. 0: 1= /.= /1. 00,7=-= 0: 0; =/ A1 01,=/-: 1. 07 ;: -+ 0---=3-0 /= 07 ;: =A 07,=;-. 0= 0: ;= == 0:,:A-; 3: 01 :A ;1 0;,;0- 11 01 :A ;: 0=,;:-0 3= 01 :A ;. 0A,;;-A 1; 07 ;7 =3 1.,=.-= A 0A =; /..

Dwg-,-igC // 01 ;. =: Ocy- wcmvgC 3= 1: /.= /1. Oko- wcmvgC ,30 /:

.~!

Drrgofky N Rskikocm Rhh,Tkug Iptg Ecmevmcukpo Ocovcm Scig 3: ph 7; _gsnpou bcolgg Pvemgcs Spxgs Tucukpo CSSIPEM_ N "Dontinufe&

Vbclb / Yfnnont abnkff son Cnblvsls

I'lbc soil ebtb gRl 0.-- gt0 soil mwktle b) 'Jfndf' linf donbtruotgon mbtfribl Do'TR "SDilldh ery& Tbmplf Donf) )'b,hnwb 0 tLhrnb ORD .+-+

.'.)1 .- .; 71 :- /'1). './ /0 7= .-- 0'7); z.. /. 70 =: 1'=)7 0= 0- =- .-- 3'./)0 . /. 70 ;7 7'.7)- 0/ .; 71 ;: :).:); !a/ /3 :7 ./- ;)/-)T .7 .3 17 37 ='/0)/ 10 /; ;1 =. ."&~/7)- '.: /0 7= =: ..'/;): !.4 /. 70 =0 ./'0.)1' '1 /- 7- ;1 .0'01)/ '/ .: .3. :.3 ~ )))0;)= 1 /7 :3 =; .7'0=)7 '.7 /1 :/ .-- .7'1/)1 !48 /; ;1 ./- .:'17). '.: /0 7= .-- .;'1:); '.1 /= ;: .0- .='7-)7 '= .; 31 ;/ /"&~.30)0 0: // ff :/ J;!aa,/ .: /: ;. .1- //'7;); R 0- =- ./- /0'7.)7 : /; ;1 ..- /1'71)/ '.- .= 3: =- JM~d,/ /: /: ;. =; /7'7=): ~ /= ;: ./- /:':/)1' .7 /. 70 := /;':7)/ 7 /7 R =; /='::)= '; 0/ =7 .0- 0"&~;-)7 '/: /0 7= ..-

=iI_f\I: - /1 :. =: Obx) vblufA 10 0/ =7 .1- Oin) vblvfA !a/ .7 13 77

J'3

Cppfneix N Rrihinbl Rgg'Titf Eosf Dbldulbtion Obnubl Sbhf 1: og 3: Yfrmont abnkff Pudlfbr Sowfr Ttbtion N ===8~ MA === ~ i ~ Y"3rn \\ i &rmuzt ! r -!. o3;AI ~ TEc ,dTxxwt. d~uxr So3 ===8~ ;3:3 Tzr3 4= A PA xdTxxwt+ duur So Tzr3 pu 33mxtym A utym MM3 A3utym ;;3; ~ =~ EA ;EL dcmxxr =A3A CL AJ ===8~ D== EI ;I; duur ;;C AD3E AAI ;CA T7- CA ;=L mxxr JI 3x7x_ === CI3I AI =; f_ =L JI druxr EA ~ EL3L ;;; ;I ACJ E; ;DA uur D; 3uur ';=3; CI =L ;AD =E IJ r_vr JI I;C3A _\ IA =A =C I= dN._ EL 0xxx_ R J;J3E J= ;E === CC ;A= d._r CD uur +!\ _= ;C: =J +!\ ;J: AI ;;; dcxxuxr JC dc0uxr ;:=:3L L= =; gx f£ E; ;DA rxur EA d~xxr ;;J A; k &=3: J;: E; ;EA dVf_r LA mx"x_ ;=C3= AIJ ;;C =; h AJ ;;C 37xx EA dmxxr ======;AJ3C ;:E =; / _\ rr ;LJ JA d:J_xr ~ ;CJ3J duur ;=C AIJ =C I= =I J; duur ===== ~ _l_\= ~r E= ;A ii_ == EJ x_cx_uxr AL mx7r ~ ;';A JI ;= f£i AA LL AE uur ;I;D3= ui.xr D == : ;E: ;= AE mvxr EE ;';I3C EI L === =CI A: L: dTxf__r =I dcfxu3 ;L;L3J ;:D ;I f if DD ;EE mxxr D; 0uxr f\f_= DC C: +!\\ =AD A= mxsr ;=: -_ ;:: =A EL :33O ~ 4 3ux3 ++ ~ T7- ~ ! + :: ~ === l3 \ Sx;_trM A=J AL J;D \\+ = h__yM J;: =A !!!\+ buz3 hxxxrM ;CA C: I _\ ;= 33a ~ 3330 D L ~ oue)l3 -!. ~ R ~ ~ ~ rM33T £ DOOFNELS C ~/TSaNSbJI"

DWV K

PWUV Y MT RWTV -A33C1 R ET IWV

!~+

.VVJSINd 1 :YNMNSDP :LL&=NaJ 0T_J /DPEbPDaNTS 3DSbDP ;DMJ '- TL ), AJYRTSa CDSOJJ 7bEPJDY ;TcJY =aDaNTS :MMAJ=DS E ";ihndhoa_&

PinVf NaYil_a_ OklaV_dhc =VnV bil .,,/

OaldVf~ OklaV_dhc Ia_dV Ih'10 ;i'3L .4~-!+ ;m'-/0 ;m'D/7 ;a'-0- ;a'D00 =Vna Pska "o;dfVYla& "o;dfVYla& "o;dfVYla& "o;dfVYla& "o;dfVYla& "o;dfVYla& "o;dfVYla& .,,/',- 7'-'/ OakndY ~ -),/ ~ ~ ~ ~ ~ .,,/',. -,'.)1',/ OakndY ~ ,)-. ~ ~ ~ ' ' .,,/',/ --'0',/ OVh_fmidf ~ ~ ~ ~ -)/0 ~ ~ .,,/',0 --'0',/ ;P Odfn ~ ,).13 ~ ' ' ~ '' PinVf ~ -)0- '' ' -)/0 ~ ')

Ct.

:kkah_dr E LldcdhVf Lbb'Odna =ima ;VfYofVndih IVhoVf MVca 1, ib 17 Ralgihn TVheaa JoYfaVl Mipal OnVndih /CC3=17L : "0dchYciSR&

I=7E31 ~ . 88 \=iii4===I

R \==i y!M~!/d , )~)

8 . 8 ff= . I=l=I

I= \=8\==\ 4 + 8 iI=f-

8

f. \==f. I£. \==i. . 8 +- +- I= ;il y Jlilf al£f« +I= - \=8\==\ + I= \=8_=\+--. 4 8 . \8_ Ii= 8 . 4 4 i\ 8

~ 8

= iI. ~ I.\==i +£= fIff=-8

.

8 . . \

8 i=4\£I

: ; ~.+..+~N !

/eeScRYl : AfYVYcOa ATT'DYhS 1dgS 0OaPiaOhYdc ;OciOa COVS -, dT -. JSfbdch MOc_SS =iPaSOf CdkSf DhOhYdc .AA1;03E 7 ~/_YdRYeNM"

adyfli£

l

£! - £- ! ! - C' =_I £ adyfli£ ! £ 4i=.\+4=4I -- _.! ~=: 4.f - - ! .I=.8+.._. ! ! ! ! 8:.. ! -- - - ! 8..:_+448f ! adyfli£ - - ! -- .I.. adyfli£ 4fI 448 !aM ,J;,/!,J,, ! .I\8.+8\.4 - - ! - - adyfli£ -- 4_\ 448 adyili~ .I:I= ! .I\8.+8_.4 ! ! £ adyili £l -- 44\ =.. - adyili~ .I:I=+.44\ ! £ .4_.8+I:ii

- ! - adyfli£ :8. -- I\\ adyili~ .I:I= ! .I:=\+.I\\

- ! - - - £ ! £ :: ! - ! .::.4+\i:_ ==. £ ! 4.\.4 ! £ - - £ ! 4i ! £ .84.f 4:=. - - ! :i84: f: ! £ .4:_.

.aaNYMRg 7 =bRPRYJT =OO&CRdN 0_cN /JTLeTJdR_Y :JYeJT AJPN ,) _O ,- DNbV_Yd IJYSNN ;eLTNJb A_fNb CdJdR_Y .AA1;03E 7 ~/_YdRYeNM"

LL-

- - - - 48f8 ! - £ +4. ==. l ! l 4f8.8 ! 4.\.4 - - - - ! ! - ! - \:i l ==. l ! l _.44: ! 4.\.4 - - £ ~ ! £ if ! - ! .=II\ ==. l ! 4.\.4 - - - - 4:i ! I.I ! - £! .I:.4 ==. l ! 4.\.4 - - - - 448 l 8. -- ! .I\8.+8\.4 ==. l ! 4.\.4

- - ! - -- £ .I.. 4fI £! .I:.8+.I..

- - :ff:8 - l ! \..=\

- I=f\ ! 84f.4

.aaNYMRg 7 =bRPRYJT =OO&CRdN 0_cN /JTLeTJdR_Y :JYeJT AJPN )' _O ), DNbV_Yd IJYSNN ;eLTNJb A_fNb CdJdR_Y -==0:/1D 3 ~.YVcPVdML"

DA3C1- CI TDOIC ~ DURRNNUT 4 :: _IlllIII\

: :

: lI_\

\:I

i4_IIi4 \4 _IIl4 4 : - . -. \I ~£JM £a !MJM«;i ,Mdi;f£y -\I . _I:_II_ - \I _I:fI_-4 /M«l£y -.: 4 _:f = \lI =: 4 l_ =:

_:I

\I _I:_II_4 ! 4! 4 4 + :

fI4 \4 i4\£: \4 \4 \l4_III4 _£4 _II\: 4 4 : -\. -_. -f. = -i. : 4 : = _:f : + i4 _IIi4 -::4 =. \lI : 4 l_ =:

= 4

-__MVLPf 3 ;aPOPVIS ;NN&APcM /YbM .ISJdSIcPYV 7IVdIS =IOM )' YN ), CMaTYVc EIVRMM :dJSMIa =YeMa AcIcPYV ,;;/7.0C 1 ~-VTbOTcLJ"

.I.

. . . 4 Ii4\ ~ !44- +4

\4:

. 4 4 . 4

4 l

=4 £

I4 £

\4 /,/~! £

_4 £

f4 4

~ . . 4 . l

=4 =4: !+ ! - 44- +£

I4 f ! +£

\4 . 4

- ~ - - 8

,YYLTJOe 1 :_ONOTER :MM&=ObL .VaL -ERIcREbOVT 3ETcER ;ENL '' VM ') AL_SVTb DETPLL 7cIRLE_ ;VdL_ =bEbOVT -==0:/1D 3 ~.YVcPVdML"

4_4

8 . 8

. I= \=8\==\. 8 + I8 - Ii== 8 + I= - \=== 8 8 ! . . 8

. . 8 . . . 8 I8I=. I8

\l ! f. \==f. 4 . . . 8

+:- +- +- +:- =8\i_ =8=£f I8=i =8fl I I i i ~ \i8_~ £8f~ \I8I~ 8f~

. \8_ : Ii= : 4 4 i\ : 4 8

-__MVLPf 3 ;aPOPVIS ;NN&APcM /YbM .ISJdSIcPYV 7IVdIS =IOM ') YN ', CMaTYVc EIVRMM :dJSMIa =YeMa AcIcPYV 7JJ=E;AO C ~:fekaelVT"

+:+ :-. \\l

\ ~ 4=. + + /.1 ! -, \i .,).,,.& l ! ! \! -

\I - £4 L) f

_I Clco -3) 8..=

7ggVeTan C Iha_aeRc IYY'MakV ;fiV :RcSlcRkafe DRelRc JR_V /0 fY /0 NVhdfek PRebVV ElScVRh JfmVh MkRkafe