BRIAN WHITE Stanford University Mathematics Department Stanford, CA 94305 Email: [email protected] Research Interests: Geomet
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chapter 11. Three Dimensional Analytic Geometry and Vectors
Chapter 11. Three dimensional analytic geometry and vectors. Section 11.5 Quadric surfaces. Curves in R2 : x2 y2 ellipse + =1 a2 b2 x2 y2 hyperbola − =1 a2 b2 parabola y = ax2 or x = by2 A quadric surface is the graph of a second degree equation in three variables. The most general such equation is Ax2 + By2 + Cz2 + Dxy + Exz + F yz + Gx + Hy + Iz + J =0, where A, B, C, ..., J are constants. By translation and rotation the equation can be brought into one of two standard forms Ax2 + By2 + Cz2 + J =0 or Ax2 + By2 + Iz =0 In order to sketch the graph of a quadric surface, it is useful to determine the curves of intersection of the surface with planes parallel to the coordinate planes. These curves are called traces of the surface. Ellipsoids The quadric surface with equation x2 y2 z2 + + =1 a2 b2 c2 is called an ellipsoid because all of its traces are ellipses. 2 1 x y 3 2 1 z ±1 ±2 ±3 ±1 ±2 The six intercepts of the ellipsoid are (±a, 0, 0), (0, ±b, 0), and (0, 0, ±c) and the ellipsoid lies in the box |x| ≤ a, |y| ≤ b, |z| ≤ c Since the ellipsoid involves only even powers of x, y, and z, the ellipsoid is symmetric with respect to each coordinate plane. Example 1. Find the traces of the surface 4x2 +9y2 + 36z2 = 36 1 in the planes x = k, y = k, and z = k. Identify the surface and sketch it. Hyperboloids Hyperboloid of one sheet. The quadric surface with equations x2 y2 z2 1. -
An Introduction to Topology the Classification Theorem for Surfaces by E
An Introduction to Topology An Introduction to Topology The Classification theorem for Surfaces By E. C. Zeeman Introduction. The classification theorem is a beautiful example of geometric topology. Although it was discovered in the last century*, yet it manages to convey the spirit of present day research. The proof that we give here is elementary, and its is hoped more intuitive than that found in most textbooks, but in none the less rigorous. It is designed for readers who have never done any topology before. It is the sort of mathematics that could be taught in schools both to foster geometric intuition, and to counteract the present day alarming tendency to drop geometry. It is profound, and yet preserves a sense of fun. In Appendix 1 we explain how a deeper result can be proved if one has available the more sophisticated tools of analytic topology and algebraic topology. Examples. Before starting the theorem let us look at a few examples of surfaces. In any branch of mathematics it is always a good thing to start with examples, because they are the source of our intuition. All the following pictures are of surfaces in 3-dimensions. In example 1 by the word “sphere” we mean just the surface of the sphere, and not the inside. In fact in all the examples we mean just the surface and not the solid inside. 1. Sphere. 2. Torus (or inner tube). 3. Knotted torus. 4. Sphere with knotted torus bored through it. * Zeeman wrote this article in the mid-twentieth century. 1 An Introduction to Topology 5. -
Section 2.6 Cylindrical and Spherical Coordinates
Section 2.6 Cylindrical and Spherical Coordinates A) Review on the Polar Coordinates The polar coordinate system consists of the origin O,the rotating ray or half line from O with unit tick. A point P in the plane can be uniquely described by its distance to the origin r = dist (P, O) and the angle µ, 0 µ < 2¼ : · Y P(x,y) r θ O X We call (r, µ) the polar coordinate of P. Suppose that P has Cartesian (stan- dard rectangular) coordinate (x, y) .Then the relation between two coordinate systems is displayed through the following conversion formula: x = r cos µ Polar Coord. to Cartesian Coord.: y = r sin µ ½ r = x2 + y2 Cartesian Coord. to Polar Coord.: y tan µ = ( p x 0 µ < ¼ if y > 0, 2¼ µ < ¼ if y 0. · · · Note that function tan µ has period ¼, and the principal value for inverse tangent function is ¼ y ¼ < arctan < . ¡ 2 x 2 1 So the angle should be determined by y arctan , if x > 0 xy 8 arctan + ¼, if x < 0 µ = > ¼ x > > , if x = 0, y > 0 < 2 ¼ , if x = 0, y < 0 > ¡ 2 > > Example 6.1. Fin:>d (a) Cartesian Coord. of P whose Polar Coord. is ¼ 2, , and (b) Polar Coord. of Q whose Cartesian Coord. is ( 1, 1) . 3 ¡ ¡ ³ So´l. (a) ¼ x = 2 cos = 1, 3 ¼ y = 2 sin = p3. 3 (b) r = p1 + 1 = p2 1 ¼ ¼ 5¼ tan µ = ¡ = 1 = µ = or µ = + ¼ = . 1 ) 4 4 4 ¡ 5¼ Since ( 1, 1) is in the third quadrant, we choose µ = so ¡ ¡ 4 5¼ p2, is Polar Coord. -
Area, Volume and Surface Area
The Improving Mathematics Education in Schools (TIMES) Project MEASUREMENT AND GEOMETRY Module 11 AREA, VOLUME AND SURFACE AREA A guide for teachers - Years 8–10 June 2011 YEARS 810 Area, Volume and Surface Area (Measurement and Geometry: Module 11) For teachers of Primary and Secondary Mathematics 510 Cover design, Layout design and Typesetting by Claire Ho The Improving Mathematics Education in Schools (TIMES) Project 2009‑2011 was funded by the Australian Government Department of Education, Employment and Workplace Relations. The views expressed here are those of the author and do not necessarily represent the views of the Australian Government Department of Education, Employment and Workplace Relations. © The University of Melbourne on behalf of the international Centre of Excellence for Education in Mathematics (ICE‑EM), the education division of the Australian Mathematical Sciences Institute (AMSI), 2010 (except where otherwise indicated). This work is licensed under the Creative Commons Attribution‑NonCommercial‑NoDerivs 3.0 Unported License. http://creativecommons.org/licenses/by‑nc‑nd/3.0/ The Improving Mathematics Education in Schools (TIMES) Project MEASUREMENT AND GEOMETRY Module 11 AREA, VOLUME AND SURFACE AREA A guide for teachers - Years 8–10 June 2011 Peter Brown Michael Evans David Hunt Janine McIntosh Bill Pender Jacqui Ramagge YEARS 810 {4} A guide for teachers AREA, VOLUME AND SURFACE AREA ASSUMED KNOWLEDGE • Knowledge of the areas of rectangles, triangles, circles and composite figures. • The definitions of a parallelogram and a rhombus. • Familiarity with the basic properties of parallel lines. • Familiarity with the volume of a rectangular prism. • Basic knowledge of congruence and similarity. • Since some formulas will be involved, the students will need some experience with substitution and also with the distributive law. -
Analytic Geometry
STATISTIC ANALYTIC GEOMETRY SESSION 3 STATISTIC SESSION 3 Session 3 Analytic Geometry Geometry is all about shapes and their properties. If you like playing with objects, or like drawing, then geometry is for you! Geometry can be divided into: Plane Geometry is about flat shapes like lines, circles and triangles ... shapes that can be drawn on a piece of paper Solid Geometry is about three dimensional objects like cubes, prisms, cylinders and spheres Point, Line, Plane and Solid A Point has no dimensions, only position A Line is one-dimensional A Plane is two dimensional (2D) A Solid is three-dimensional (3D) Plane Geometry Plane Geometry is all about shapes on a flat surface (like on an endless piece of paper). 2D Shapes Activity: Sorting Shapes Triangles Right Angled Triangles Interactive Triangles Quadrilaterals (Rhombus, Parallelogram, etc) Rectangle, Rhombus, Square, Parallelogram, Trapezoid and Kite Interactive Quadrilaterals Shapes Freeplay Perimeter Area Area of Plane Shapes Area Calculation Tool Area of Polygon by Drawing Activity: Garden Area General Drawing Tool Polygons A Polygon is a 2-dimensional shape made of straight lines. Triangles and Rectangles are polygons. Here are some more: Pentagon Pentagra m Hexagon Properties of Regular Polygons Diagonals of Polygons Interactive Polygons The Circle Circle Pi Circle Sector and Segment Circle Area by Sectors Annulus Activity: Dropping a Coin onto a Grid Circle Theorems (Advanced Topic) Symbols There are many special symbols used in Geometry. Here is a short reference for you: -
Surface Topology
2 Surface topology 2.1 Classification of surfaces In this second introductory chapter, we change direction completely. We dis- cuss the topological classification of surfaces, and outline one approach to a proof. Our treatment here is almost entirely informal; we do not even define precisely what we mean by a ‘surface’. (Definitions will be found in the following chapter.) However, with the aid of some more sophisticated technical language, it not too hard to turn our informal account into a precise proof. The reasons for including this material here are, first, that it gives a counterweight to the previous chapter: the two together illustrate two themes—complex analysis and topology—which run through the study of Riemann surfaces. And, second, that we are able to introduce some more advanced ideas that will be taken up later in the book. The statement of the classification of closed surfaces is probably well known to many readers. We write down two families of surfaces g, h for integers g ≥ 0, h ≥ 1. 2 2 The surface 0 is the 2-sphere S . The surface 1 is the 2-torus T .For g ≥ 2, we define the surface g by taking the ‘connected sum’ of g copies of the torus. In general, if X and Y are (connected) surfaces, the connected sum XY is a surface constructed as follows (Figure 2.1). We choose small discs DX in X and DY in Y and cut them out to get a pair of ‘surfaces-with- boundaries’, coresponding to the circle boundaries of DX and DY. -
Calculus Terminology
AP Calculus BC Calculus Terminology Absolute Convergence Asymptote Continued Sum Absolute Maximum Average Rate of Change Continuous Function Absolute Minimum Average Value of a Function Continuously Differentiable Function Absolutely Convergent Axis of Rotation Converge Acceleration Boundary Value Problem Converge Absolutely Alternating Series Bounded Function Converge Conditionally Alternating Series Remainder Bounded Sequence Convergence Tests Alternating Series Test Bounds of Integration Convergent Sequence Analytic Methods Calculus Convergent Series Annulus Cartesian Form Critical Number Antiderivative of a Function Cavalieri’s Principle Critical Point Approximation by Differentials Center of Mass Formula Critical Value Arc Length of a Curve Centroid Curly d Area below a Curve Chain Rule Curve Area between Curves Comparison Test Curve Sketching Area of an Ellipse Concave Cusp Area of a Parabolic Segment Concave Down Cylindrical Shell Method Area under a Curve Concave Up Decreasing Function Area Using Parametric Equations Conditional Convergence Definite Integral Area Using Polar Coordinates Constant Term Definite Integral Rules Degenerate Divergent Series Function Operations Del Operator e Fundamental Theorem of Calculus Deleted Neighborhood Ellipsoid GLB Derivative End Behavior Global Maximum Derivative of a Power Series Essential Discontinuity Global Minimum Derivative Rules Explicit Differentiation Golden Spiral Difference Quotient Explicit Function Graphic Methods Differentiable Exponential Decay Greatest Lower Bound Differential -
Rapport Annuel 2014-2015
RAPPORT ANNUEL 2014-2015 Présentation du rapport annuel 1 Programme thématique 2 Autres activités 12 Grandes Conférences et colloques 16 Les laboratoires du CRM 20 Les prix du CRM 30 Le CRM et la formation 34 Les partenariats du CRM 38 Les publications du CRM 40 Comités à la tête du CRM 41 Le CRM en chiffres 42 Luc Vinet Présentation En 2014-2015, contrairement à ce qui était le cas dans (en physique mathématique) à Charles Gale de l’Université les années récentes, le programme thématique du CRM a McGill et le prix CRM-SSC (en statistique) à Matías été consacré à un seul thème (très vaste !) : la théorie des Salibián-Barrera de l’Université de Colombie-Britannique. nombres. L’année thématique, intitulée « La théorie des Les Grandes conférences du CRM permirent au grand public nombres : de la statistique Arithmétique aux éléments Zêta », de s’initier à des sujets variés, présentés par des mathémati- a été organisée par les membres du CICMA, un laboratoire ciens chevronnés : Euler et les jets d’eau de Sans-Souci du CRM à la fine pointe de la recherche mondiale, auxquels il (par Yann Brenier), la mesure des émotions en temps réel faut ajouter Louigi Addario-Berry (du Groupe de probabilités (par Chris Danforth), le mécanisme d’Anticythère (par de Montréal). Je tiens à remercier les quatre organisateurs de James Evans) et l’optique et les solitons (par John Dudley). cette brillante année thématique : Henri Darmon de l’Univer- L’année 2014-2015 fut également importante du point de sité McGill, Chantal David de l’Université Concordia, Andrew vue de l’organisation et du financement du CRM. -
Department of Mathematics
Department of Mathematics The Department of Mathematics seeks to maintain its top ranking in mathematics research and education in the United States. The department is a key part of MIT’s educational mission at both the undergraduate and graduate levels and produces the most sought-after young researchers. Key to the department’s success is recruitment of the best faculty members, postdoctoral associates, and graduate students in an ever more competitive environment. The department strives to be diverse at all levels in terms of race, gender, and ethnicity. It continues to serve the varied needs of its graduate students, undergraduate students majoring in mathematics, and the broader MIT community. Awards and Honors The faculty received numerous distinctions this year. Professor Victor Kac received the Leroy P. Steele Prize for Lifetime Achievement, for “groundbreaking contributions to Lie Theory and its applications to Mathematics and Mathematical Physics.” Larry Guth (together with Netz Katz of the California Institute of Technology) won the Clay Mathematics Institute Research Award. Tomasz Mrowka was elected as a member of the National Academy of Sciences and William Minicozzi was elected as a fellow of the American Academy of Arts and Sciences. Alexei Borodin received the 2015 Loève Prize in Probability, given by the University of California, Berkeley, in recognition of outstanding research in mathematical probability by a young researcher. Alan Edelman received the 2015 Babbage Award, given at the IEEE International Parallel and Distributed Processing Symposium, for exceptional contributions to the field of parallel processing. Bonnie Berger was elected vice president of the International Society for Computational Biology. -
Department of Mathematics, Report to the President 2015-2016
Department of Mathematics The Department of Mathematics continues to be the top-ranked mathematics department in the United States. The department is a key part of MIT’s educational mission at both the undergraduate and graduate levels and produces top sought- after young researchers. Key to the department’s success is recruitment of the very best faculty, postdoctoral fellows, and graduate students in an ever-more competitive environment. The department aims to be diverse at all levels in terms of race, gender, and ethnicity. It continues to serve the varied needs of the department’s graduate students, mathematics majors, and the broader MIT community. Awards and Honors The faculty received numerous distinctions this year. Professor Emeritus Michael Artin was awarded the National Medal of Science. In 2016, President Barack Obama presented this honor to Artin for his outstanding contributions to mathematics. Two other emeritus professors also received distinctions: Professor Bertram Kostant was selected to receive the 2016 Wigner Medal, in recognition of “outstanding contributions to the understanding of physics through Group Theory.” Professor Alar Toomre was elected member of the American Philosophical Society. Among active faculty, Professor Larry Guth was awarded the New Horizons in Mathematics Prize for “ingenious and surprising solutions to long standing open problems in symplectic geometry, Riemannian geometry, harmonic analysis, and combinatorial geometry.” He also received a 2015 Teaching Prize for Graduate Education from the School of Science. Professor Alexei Borodin received the 2015 Henri Poincaré Prize, awarded every three years at the International Mathematical Physics Congress to recognize outstanding contributions in mathematical physics. He also received a 2016 Simons Fellowship in Mathematics. -
Differential Geometry of Curves and Surfaces 3
DIFFERENTIAL GEOMETRY OF CURVES AND SURFACES 3. Regular Surfaces 3.1. The definition of a regular surface. Examples. The notion of surface we are going to deal with in our course can be intuitively understood as the object obtained by a potter full of phantasy who takes several pieces of clay, flatten them on a table, then models of each of them arbitrarily strange looking pots, and finally glue them together and flatten the possible edges and corners. The resulting object is, formally speaking, a subset of the three dimensional space R3. Here is the rigorous definition of a surface. Definition 3.1.1. A subset S ⊂ R3 is a1 regular surface if for any point P in S one can find an open subspace U ⊂ R2 and a map ϕ : U → S of the form ϕ(u, v)=(x(u, v),y(u, v), z(u, v)), for (u, v) ∈ U with the following properties: 1. The function ϕ is differentiable, in the sense that the components x(u, v), y(u, v) and z(u, v) have partial derivatives of any order. 2 3 2. For any Q in U, the differential map d(ϕ)Q : R → R is (linear and) injective. 3. There exists an open subspace V ⊂ R3 which contains P such that ϕ(U) = V ∩ S and moreover, ϕ : U → V ∩ S is a homeomorphism2. The pair (U, ϕ) is called a local parametrization, or a chart, or a local coordinate system around P . Conditions 1 and 2 say that (U, ϕ) is a regular patch. -
Counting Essential Surfaces in 3-Manifolds
Counting essential surfaces in 3-manifolds Nathan M. Dunfield, Stavros Garoufalidis, and J. Hyam Rubinstein Abstract. We consider the natural problem of counting isotopy classes of es- sential surfaces in 3-manifolds, focusing on closed essential surfaces in a broad class of hyperbolic 3-manifolds. Our main result is that the count of (possibly disconnected) essential surfaces in terms of their Euler characteristic always has a short generating function and hence has quasi-polynomial behavior. This gives remarkably concise formulae for the number of such surfaces, as well as detailed asymptotics. We give algorithms that allow us to compute these generating func- tions and the underlying surfaces, and apply these to almost 60,000 manifolds, providing a wealth of data about them. We use this data to explore the delicate question of counting only connected essential surfaces and propose some con- jectures. Our methods involve normal and almost normal surfaces, especially the work of Tollefson and Oertel, combined with techniques pioneered by Ehrhart for counting lattice points in polyhedra with rational vertices. We also introduce arXiv:2007.10053v1 [math.GT] 20 Jul 2020 a new way of testing if a normal surface in an ideal triangulation is essential that avoids cutting the manifold open along the surface; rather, we use almost normal surfaces in the original triangulation. Contents 1 Introduction3 1.2 Main results . .4 1.5 Motivation and broader context . .5 1.7 The key ideas behind Theorem 1.3......................6 2 1.8 Making Theorem 1.3 algorithmic . .8 1.9 Ideal triangulations and almost normal surfaces . .8 1.10 Computations and patterns .