Efficient Methods to Calculate Partial Sphere Surface Areas for A

Total Page:16

File Type:pdf, Size:1020Kb

Efficient Methods to Calculate Partial Sphere Surface Areas for A Mathematical and Computational Applications Article Efficient Methods to Calculate Partial Sphere Surface Areas for a Higher Resolution Finite Volume Method for Diffusion-Reaction Systems in Biological Modeling Abigail Bowers, Jared Bunn and Myles Kim * Department of Applied Mathematics, Florida Polytechnic University, Lakeland, FL 33805, USA; abowers@floridapoly.edu (A.B.); jbunn@floridapoly.edu (J.B.) * Correspondence: mkim@floridapoly.edu Received: 14 November 2019; Accepted: 20 December 2019; Published: 23 December 2019 Abstract: Computational models for multicellular biological systems, in both in vitro and in vivo environments, require solving systems of differential equations to incorporate molecular transport and their reactions such as release, uptake, or decay. Examples can be found from drugs, growth nutrients, and signaling factors. The systems of differential equations frequently fall into the category of the diffusion-reaction system due to the nature of the spatial and temporal change. Due to the complexity of equations and complexity of the modeled systems, an analytical solution for the systems of the differential equations is not possible. Therefore, numerical calculation schemes are required and have been used for multicellular biological systems such as bacterial population dynamics or cancer cell dynamics. Finite volume methods in conjunction with agent-based models have been popular choices to simulate such reaction-diffusion systems. In such implementations, the reaction occurs within each finite volume and finite volumes interact with one another following the law of diffusion. The characteristic of the reaction can be determined by the agents in the finite volume. In the case of cancer cell growth dynamics, it is observed that cell behavior can be different by a matter of a few cell size distances because of the chemical gradient. Therefore, in the modeling of such systems, the spatial resolution must be comparable to the cell size. Such spatial resolution poses an extra challenge in the development and execution of the computational model due to the agents sitting over multiple finite volumes. In this article, a few computational methods for cell surface-based reaction for the finite volume method will be introduced and tested for their performance in terms of accuracy and computation speed. Keywords: partial sphere surface areas; finite volume method; diffusion reaction equation; mathematical model for biology 1. Introduction Agent-based models (also called single-cell based models or individual-based models) have been widely popular in various fields as tools to build computational models. They have been adopted in biological system modeling [1–3], fluid dynamics simulation [4,5], ecosystem modeling [6,7], human organizational simulation [8,9], business simulation [10], etc. In agent-based modeling, a system is modeled as a collection of autonomous self-decision-making entities called agents. Each agent individually assesses its situation and makes decisions on the basis of a set of rules. These rules can be designed to make internal decisions altering the fate of an agent or can be written to define interactions among spatially neighboring agents. The rule set can also be identical to each agent or can be designed differently for different groups of agents. Agent-based models were proven to be an effective modeling Math. Comput. Appl. 2020, 25, 2; doi:10.3390/mca25010002 www.mdpi.com/journal/mca Math. Comput. Appl. 2020, 25, 2 2 of 13 approach for complex heterogeneous systems. Though all rules are usually written for small scale, agent level or local interaction level, agent-based models are capable of showing population level emerging characteristics that are often unpredictable from the local rule sets. Due to these reasons, cancerMath. biology Comput. Appl. is one 2020 of, 25 those, x FOR PEER areas REVIEW where agent-based models have been successful [3,52, 11of 13]. In a biological system, cells interact with one another in various ways, through physical interaction and/or throughcan be chemical designed signaling. differently Cellsfor different uptake groups molecules of agents. from Agent the surrounding-based models medium,were proven and to moleculesbe an may comeeffective from modeling nearby cellsapproach because for theycomplex synthesize heterogeneous and secrete systems. molecules. Though Due all torules the are diff usiveusually nature of thewritten molecules for small in media, scale, theagent mathematical level or local model interaction for the level, biological agent-base cellsd models that consume are capable and of secrete moleculesshowing in mediapopulation would level be emerging a diffusion-reaction characteristics equation that are andoften finite unpredictable volume methodsfrom the local area rule popular sets. Due to these reasons, cancer biology is one of those areas where agent-based models have been choice for the numerical implementation [11,12]. successful [3,5,11. In a biological system, cells interact with one another in various ways, through It has been experimentally observed that cancer cells’ fates can be different by a matter of one or physical interaction and/or through chemical signaling. Cells uptake molecules from the surrounding two cellmedium, lengths and due molecules to the spatial may come nutrient from nearby concentration cells because change they [13 synthesize]. Thus, aand computational secrete molecules. model for cancerDue cells to the with diffusive physiology nature includingof the molecules consumption in media, andthe mathematical secretion of moleculesmodel for the will biological require cells a spatial resolutionthat consume of single and cell secrete length. molecules Uptake ofin moleculesmedia would by cellsbe a maydiffusion involve-reaction receptors equation on theand cell finite surface and endocytosisvolume methods process. are a Ifpopular a 3D finite choice volume for the numeric implementational implementation is designed [11,12]. with a cell surface reaction, one cell lengthIt has been spatial experimentally resolution, and observed cellsrepresented that cancer cells by’ spheres fates can (agents), be different then by a a snapshot matter of aroundone or one cell wouldtwo cell be lengths like Figure due to1 .the The spatial cell innutrient Figure concentration1 overlaps with change eight [13 finite]. Thus, volumes. a computational The contribution model of thisfor cell cancer to the cells whole with diphysiolffusion-reactionogy including system consumption needs toand be secretion divided of into molecules eight parts will require proportional a spatial resolution of single cell length. Uptake of molecules by cells may involve receptors on the cell to the cell surface area in each finite volume that the cell overlaps; S , S , , S in Figure1. In a surface and endocytosis process. If a 3D finite volume implementation is designed1 2 ··· with8 a cell surface diffusion-reaction equation like Equation (1), the reaction coefficient, λ, would depend, as a function of reaction, one cell length spatial resolution, and cells represented by spheres (agents), then a snapshot spatialaround variables, one cell on would the values be like of FigureSi’s from 1. The all cell cells in inFigure the system. 1 overlaps Thus, with it eight is important finite volumes. to calculate The the precisecontribution values of ofSi ’sthis to cell capture to the the whole correct diffusion rate- ofreaction reaction. system needs to be divided into eight parts proportional to the cell surface area in each finite volume that the cell overlaps; 푆1, 푆2, ⋯, 푆8 in @c Figure 1. In a diffusion-reaction equation like =EquationD 2c + (1),λ cthe reaction coefficient, 휆, would depend, (1) @t r as a function of spatial variables, on the values of 푆푖’s from all cells in the system. Thus, it is important to calculate the precise values of 푆 ’s to capture the correctr rate of reaction. S =푖 x q dA (2) R 휕푐2 ( )2 ( )2 r = x퐷∇2a푐 + 휆푐 y b (1) 휕푡− − − − Figure 1. Schematic diagram of an agent-based model for 3D cell proliferation (left) and a spherical Figure 1. Schematic diagram of an agent-based model for 3D cell proliferation (left) and a spherical right agentagent representing representing a cell a cell overlapping overlapping with with surroundingsurrounding finite finite volumes volumes (right ( ). There). There are more are more than than 46004600 agents agents in the in the snapshot snapshot of of a simulationa simulation ((leftleft).). A A small small zoomed zoomed-in-in view view of a of cell a cellwith with surrounding surrounding finitefinite volumes volumes (rectangular (rectangular boxes) boxes) is is shown shown inin the middle. AA further further zoomed zoomed-in-in view view of the of cell the is cell is displayeddisplayed on theon the right. right. When When thethe agent’s diameter diameter is smaller is smaller than thanthe edge the of edge the rectangular of the rectangular box, the box, the agentagent cancan overlapoverlap with up up to to eight eight finite finite volumes. volumes. 푆1,S 푆12,,S …2,, :::and, and 푆8 areS8 aresurface surface areas areas that overlap that overlap eighteight finite finite volumes. volumes. Math. Comput. Appl. 2020, 25, 2 3 of 13 Analytic formulas are not readily available for the calculation of these areas even when all geometric specifications are given. An attempt to calculate these surface areas, S ’s, can be made by q i using the function f (x, y) = r2 (x a)2 (y b)2, which results in a double integral as in Equation − − − − (2). This integral, however, is possible analytically only when the domain R is extremely simple in polar coordinates. Therefore, numerical calculation methods need to be deployed. Diffusions in biological contexts are usually fast. The stability of numerical schemes for a fast diffusion requires small time stepping. Furthermore, typical cancer cell simulations consider thousands of cells and use durations of days and weeks of their lives [3,5]. Considering all these, we need to find an efficient numerical method to calculate the cell surface area in finite volumes for thousands of cells repeatedly for the duration of simulation not to burden the overall numerical simulation.
Recommended publications
  • Chapter 11. Three Dimensional Analytic Geometry and Vectors
    Chapter 11. Three dimensional analytic geometry and vectors. Section 11.5 Quadric surfaces. Curves in R2 : x2 y2 ellipse + =1 a2 b2 x2 y2 hyperbola − =1 a2 b2 parabola y = ax2 or x = by2 A quadric surface is the graph of a second degree equation in three variables. The most general such equation is Ax2 + By2 + Cz2 + Dxy + Exz + F yz + Gx + Hy + Iz + J =0, where A, B, C, ..., J are constants. By translation and rotation the equation can be brought into one of two standard forms Ax2 + By2 + Cz2 + J =0 or Ax2 + By2 + Iz =0 In order to sketch the graph of a quadric surface, it is useful to determine the curves of intersection of the surface with planes parallel to the coordinate planes. These curves are called traces of the surface. Ellipsoids The quadric surface with equation x2 y2 z2 + + =1 a2 b2 c2 is called an ellipsoid because all of its traces are ellipses. 2 1 x y 3 2 1 z ±1 ±2 ±3 ±1 ±2 The six intercepts of the ellipsoid are (±a, 0, 0), (0, ±b, 0), and (0, 0, ±c) and the ellipsoid lies in the box |x| ≤ a, |y| ≤ b, |z| ≤ c Since the ellipsoid involves only even powers of x, y, and z, the ellipsoid is symmetric with respect to each coordinate plane. Example 1. Find the traces of the surface 4x2 +9y2 + 36z2 = 36 1 in the planes x = k, y = k, and z = k. Identify the surface and sketch it. Hyperboloids Hyperboloid of one sheet. The quadric surface with equations x2 y2 z2 1.
    [Show full text]
  • An Introduction to Topology the Classification Theorem for Surfaces by E
    An Introduction to Topology An Introduction to Topology The Classification theorem for Surfaces By E. C. Zeeman Introduction. The classification theorem is a beautiful example of geometric topology. Although it was discovered in the last century*, yet it manages to convey the spirit of present day research. The proof that we give here is elementary, and its is hoped more intuitive than that found in most textbooks, but in none the less rigorous. It is designed for readers who have never done any topology before. It is the sort of mathematics that could be taught in schools both to foster geometric intuition, and to counteract the present day alarming tendency to drop geometry. It is profound, and yet preserves a sense of fun. In Appendix 1 we explain how a deeper result can be proved if one has available the more sophisticated tools of analytic topology and algebraic topology. Examples. Before starting the theorem let us look at a few examples of surfaces. In any branch of mathematics it is always a good thing to start with examples, because they are the source of our intuition. All the following pictures are of surfaces in 3-dimensions. In example 1 by the word “sphere” we mean just the surface of the sphere, and not the inside. In fact in all the examples we mean just the surface and not the solid inside. 1. Sphere. 2. Torus (or inner tube). 3. Knotted torus. 4. Sphere with knotted torus bored through it. * Zeeman wrote this article in the mid-twentieth century. 1 An Introduction to Topology 5.
    [Show full text]
  • Section 2.6 Cylindrical and Spherical Coordinates
    Section 2.6 Cylindrical and Spherical Coordinates A) Review on the Polar Coordinates The polar coordinate system consists of the origin O,the rotating ray or half line from O with unit tick. A point P in the plane can be uniquely described by its distance to the origin r = dist (P, O) and the angle µ, 0 µ < 2¼ : · Y P(x,y) r θ O X We call (r, µ) the polar coordinate of P. Suppose that P has Cartesian (stan- dard rectangular) coordinate (x, y) .Then the relation between two coordinate systems is displayed through the following conversion formula: x = r cos µ Polar Coord. to Cartesian Coord.: y = r sin µ ½ r = x2 + y2 Cartesian Coord. to Polar Coord.: y tan µ = ( p x 0 µ < ¼ if y > 0, 2¼ µ < ¼ if y 0. · · · Note that function tan µ has period ¼, and the principal value for inverse tangent function is ¼ y ¼ < arctan < . ¡ 2 x 2 1 So the angle should be determined by y arctan , if x > 0 xy 8 arctan + ¼, if x < 0 µ = > ¼ x > > , if x = 0, y > 0 < 2 ¼ , if x = 0, y < 0 > ¡ 2 > > Example 6.1. Fin:>d (a) Cartesian Coord. of P whose Polar Coord. is ¼ 2, , and (b) Polar Coord. of Q whose Cartesian Coord. is ( 1, 1) . 3 ¡ ¡ ³ So´l. (a) ¼ x = 2 cos = 1, 3 ¼ y = 2 sin = p3. 3 (b) r = p1 + 1 = p2 1 ¼ ¼ 5¼ tan µ = ¡ = 1 = µ = or µ = + ¼ = . 1 ) 4 4 4 ¡ 5¼ Since ( 1, 1) is in the third quadrant, we choose µ = so ¡ ¡ 4 5¼ p2, is Polar Coord.
    [Show full text]
  • Surface Physics I and II
    Surface physics I and II Lectures: Mon 12-14 ,Wed 12-14 D116 Excercises: TBA Lecturer: Antti Kuronen, [email protected] Exercise assistant: Ane Lasa, [email protected] Course homepage: http://www.physics.helsinki.fi/courses/s/pintafysiikka/ Objectives ● To study properties of surfaces of solid materials. ● The relationship between the composition and morphology of the surface and its mechanical, chemical and electronic properties will be dealt with. ● Technologically important field of surface and thin film growth will also be covered. Surface physics I 2012: 1. Introduction 1 Surface physics I and II ● Course in two parts ● Surface physics I (SPI) (530202) ● Period III, 5 ECTS points ● Basics of surface physics ● Surface physics II (SPII) (530169) ● Period IV, 5 ECTS points ● 'Special' topics in surface science ● Surface and thin film growth ● Nanosystems ● Computational methods in surface science ● You can take only SPI or both SPI and SPII Surface physics I 2012: 1. Introduction 2 How to pass ● Both courses: ● Final exam 50% ● Exercises 50% ● Exercises ● Return by ● email to [email protected] or ● on paper to course box on the 2nd floor of Physicum ● Return by (TBA) Surface physics I 2012: 1. Introduction 3 Table of contents ● Surface physics I ● Introduction: What is a surface? Why is it important? Basic concepts. ● Surface structure: Thermodynamics of surfaces. Atomic and electronic structure. ● Experimental methods for surface characterization: Composition, morphology, electronic properties. ● Surface physics II ● Theoretical and computational methods in surface science: Analytical models, Monte Carlo and molecular dynamics sumilations. ● Surface growth: Adsorption, desorption, surface diffusion. ● Thin film growth: Homoepitaxy, heteroepitaxy, nanostructures.
    [Show full text]
  • Area, Volume and Surface Area
    The Improving Mathematics Education in Schools (TIMES) Project MEASUREMENT AND GEOMETRY Module 11 AREA, VOLUME AND SURFACE AREA A guide for teachers - Years 8–10 June 2011 YEARS 810 Area, Volume and Surface Area (Measurement and Geometry: Module 11) For teachers of Primary and Secondary Mathematics 510 Cover design, Layout design and Typesetting by Claire Ho The Improving Mathematics Education in Schools (TIMES) Project 2009‑2011 was funded by the Australian Government Department of Education, Employment and Workplace Relations. The views expressed here are those of the author and do not necessarily represent the views of the Australian Government Department of Education, Employment and Workplace Relations. © The University of Melbourne on behalf of the international Centre of Excellence for Education in Mathematics (ICE‑EM), the education division of the Australian Mathematical Sciences Institute (AMSI), 2010 (except where otherwise indicated). This work is licensed under the Creative Commons Attribution‑NonCommercial‑NoDerivs 3.0 Unported License. http://creativecommons.org/licenses/by‑nc‑nd/3.0/ The Improving Mathematics Education in Schools (TIMES) Project MEASUREMENT AND GEOMETRY Module 11 AREA, VOLUME AND SURFACE AREA A guide for teachers - Years 8–10 June 2011 Peter Brown Michael Evans David Hunt Janine McIntosh Bill Pender Jacqui Ramagge YEARS 810 {4} A guide for teachers AREA, VOLUME AND SURFACE AREA ASSUMED KNOWLEDGE • Knowledge of the areas of rectangles, triangles, circles and composite figures. • The definitions of a parallelogram and a rhombus. • Familiarity with the basic properties of parallel lines. • Familiarity with the volume of a rectangular prism. • Basic knowledge of congruence and similarity. • Since some formulas will be involved, the students will need some experience with substitution and also with the distributive law.
    [Show full text]
  • Surface Water
    Chapter 5 SURFACE WATER Surface water originates mostly from rainfall and is a mixture of surface run-off and ground water. It includes larges rivers, ponds and lakes, and the small upland streams which may originate from springs and collect the run-off from the watersheds. The quantity of run-off depends upon a large number of factors, the most important of which are the amount and intensity of rainfall, the climate and vegetation and, also, the geological, geographi- cal, and topographical features of the area under consideration. It varies widely, from about 20 % in arid and sandy areas where the rainfall is scarce to more than 50% in rocky regions in which the annual rainfall is heavy. Of the remaining portion of the rainfall. some of the water percolates into the ground (see "Ground water", page 57), and the rest is lost by evaporation, transpiration and absorption. The quality of surface water is governed by its content of living organisms and by the amounts of mineral and organic matter which it may have picked up in the course of its formation. As rain falls through the atmo- sphere, it collects dust and absorbs oxygen and carbon dioxide from the air. While flowing over the ground, surface water collects silt and particles of organic matter, some of which will ultimately go into solution. It also picks up more carbon dioxide from the vegetation and micro-organisms and bacteria from the topsoil and from decaying matter. On inhabited watersheds, pollution may include faecal material and pathogenic organisms, as well as other human and industrial wastes which have not been properly disposed of.
    [Show full text]
  • Riemann Surfaces
    RIEMANN SURFACES AARON LANDESMAN CONTENTS 1. Introduction 2 2. Maps of Riemann Surfaces 4 2.1. Defining the maps 4 2.2. The multiplicity of a map 4 2.3. Ramification Loci of maps 6 2.4. Applications 6 3. Properness 9 3.1. Definition of properness 9 3.2. Basic properties of proper morphisms 9 3.3. Constancy of degree of a map 10 4. Examples of Proper Maps of Riemann Surfaces 13 5. Riemann-Hurwitz 15 5.1. Statement of Riemann-Hurwitz 15 5.2. Applications 15 6. Automorphisms of Riemann Surfaces of genus ≥ 2 18 6.1. Statement of the bound 18 6.2. Proving the bound 18 6.3. We rule out g(Y) > 1 20 6.4. We rule out g(Y) = 1 20 6.5. We rule out g(Y) = 0, n ≥ 5 20 6.6. We rule out g(Y) = 0, n = 4 20 6.7. We rule out g(C0) = 0, n = 3 20 6.8. 21 7. Automorphisms in low genus 0 and 1 22 7.1. Genus 0 22 7.2. Genus 1 22 7.3. Example in Genus 3 23 Appendix A. Proof of Riemann Hurwitz 25 Appendix B. Quotients of Riemann surfaces by automorphisms 29 References 31 1 2 AARON LANDESMAN 1. INTRODUCTION In this course, we’ll discuss the theory of Riemann surfaces. Rie- mann surfaces are a beautiful breeding ground for ideas from many areas of math. In this way they connect seemingly disjoint fields, and also allow one to use tools from different areas of math to study them.
    [Show full text]
  • 3D Modeling: Surfaces
    CS 430/536 Computer Graphics I Overview • 3D model representations 3D Modeling: • Mesh formats Surfaces • Bicubic surfaces • Bezier surfaces Week 8, Lecture 16 • Normals to surfaces David Breen, William Regli and Maxim Peysakhov • Direct surface rendering Geometric and Intelligent Computing Laboratory Department of Computer Science Drexel University 1 2 http://gicl.cs.drexel.edu 1994 Foley/VanDam/Finer/Huges/Phillips ICG 3D Modeling Representing 3D Objects • 3D Representations • Exact • Approximate – Wireframe models – Surface Models – Wireframe – Facet / Mesh – Solid Models – Parametric • Just surfaces – Meshes and Polygon soups – Voxel/Volume models Surface – Voxel – Decomposition-based – Solid Model • Volume info • Octrees, voxels • CSG • Modeling in 3D – Constructive Solid Geometry (CSG), • BRep Breps and feature-based • Implicit Solid Modeling 3 4 Negatives when Representing 3D Objects Representing 3D Objects • Exact • Approximate • Exact • Approximate – Complex data structures – Lossy – Precise model of – A discretization of – Expensive algorithms – Data structure sizes can object topology the 3D object – Wide variety of formats, get HUGE, if you want each with subtle nuances good fidelity – Mathematically – Use simple – Hard to acquire data – Easy to break (i.e. cracks represent all primitives to – Translation required for can appear) rendering – Not good for certain geometry model topology applications • Lots of interpolation and and geometry guess work 5 6 1 Positives when Exact Representations Representing 3D Objects • Exact
    [Show full text]
  • Visual Cortex: Looking Into a Klein Bottle Nicholas V
    776 Dispatch Visual cortex: Looking into a Klein bottle Nicholas V. Swindale Arguments based on mathematical topology may help work which suggested that many properties of visual cortex in understanding the organization of topographic maps organization might be a consequence of mapping a five- in the cerebral cortex. dimensional stimulus space onto a two-dimensional surface as continuously as possible. Recent experimental results, Address: Department of Ophthalmology, University of British Columbia, 2550 Willow Street, Vancouver, V5Z 3N9, British which I shall discuss here, add to this complexity because Columbia, Canada. they show that a stimulus attribute not considered in the theoretical studies — direction of motion — is also syst- Current Biology 1996, Vol 6 No 7:776–779 ematically mapped on the surface of the cortex. This adds © Current Biology Ltd ISSN 0960-9822 to the evidence that continuity is an important, though not overriding, organizational principle in the cortex. I shall The English neurologist Hughlings Jackson inferred the also discuss a demonstration that certain receptive-field presence of a topographic map of the body musculature in properties, which may be indirectly related to direction the cerebral cortex more than a century ago, from his selectivity, can be represented as positions in a non- observations of the orderly progressions of seizure activity Euclidian space with a topology known to mathematicians across the body during epilepsy. Topographic maps of one as a Klein bottle. First, however, it is appropriate to cons- kind or another are now known to be a ubiquitous feature ider the experimental data. of cortical organization, at least in the primary sensory and motor areas.
    [Show full text]
  • Analytic Geometry
    STATISTIC ANALYTIC GEOMETRY SESSION 3 STATISTIC SESSION 3 Session 3 Analytic Geometry Geometry is all about shapes and their properties. If you like playing with objects, or like drawing, then geometry is for you! Geometry can be divided into: Plane Geometry is about flat shapes like lines, circles and triangles ... shapes that can be drawn on a piece of paper Solid Geometry is about three dimensional objects like cubes, prisms, cylinders and spheres Point, Line, Plane and Solid A Point has no dimensions, only position A Line is one-dimensional A Plane is two dimensional (2D) A Solid is three-dimensional (3D) Plane Geometry Plane Geometry is all about shapes on a flat surface (like on an endless piece of paper). 2D Shapes Activity: Sorting Shapes Triangles Right Angled Triangles Interactive Triangles Quadrilaterals (Rhombus, Parallelogram, etc) Rectangle, Rhombus, Square, Parallelogram, Trapezoid and Kite Interactive Quadrilaterals Shapes Freeplay Perimeter Area Area of Plane Shapes Area Calculation Tool Area of Polygon by Drawing Activity: Garden Area General Drawing Tool Polygons A Polygon is a 2-dimensional shape made of straight lines. Triangles and Rectangles are polygons. Here are some more: Pentagon Pentagra m Hexagon Properties of Regular Polygons Diagonals of Polygons Interactive Polygons The Circle Circle Pi Circle Sector and Segment Circle Area by Sectors Annulus Activity: Dropping a Coin onto a Grid Circle Theorems (Advanced Topic) Symbols There are many special symbols used in Geometry. Here is a short reference for you:
    [Show full text]
  • Motion on a Torus Kirk T
    Motion on a Torus Kirk T. McDonald Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (October 21, 2000) 1 Problem Find the frequency of small oscillations about uniform circular motion of a point mass that is constrained to move on the surface of a torus (donut) of major radius a and minor radius b whose axis is vertical. 2 Solution 2.1 Attempt at a Quick Solution Circular orbits are possible in both horizontal and vertical planes, but in the presence of gravity, motion in vertical orbits will be at a nonuniform velocity. Hence, we restrict our attention to orbits in horizontal planes. We use a cylindrical coordinate system (r; θ; z), with the origin at the center of the torus and the z axis vertically upwards, as shown below. 1 A point on the surface of the torus can also be described by two angular coordinates, one of which is the azimuth θ in the cylindrical coordinate system. The other angle we define as Á measured with respect to the plane z = 0 in a vertical plane that contains the point as well as the axis, as also shown in the figure above. We seek motion at constant angular velocity Ω about the z axis, which suggests that we consider a frame that rotates with this angular velocity. In this frame, the particle (whose mass we take to be unity) is at rest at angle Á0, and is subject to the downward force of 2 gravity g and the outward centrifugal force Ω (a + b cos Á0), as shown in the figure below.
    [Show full text]
  • Surface Topology
    2 Surface topology 2.1 Classification of surfaces In this second introductory chapter, we change direction completely. We dis- cuss the topological classification of surfaces, and outline one approach to a proof. Our treatment here is almost entirely informal; we do not even define precisely what we mean by a ‘surface’. (Definitions will be found in the following chapter.) However, with the aid of some more sophisticated technical language, it not too hard to turn our informal account into a precise proof. The reasons for including this material here are, first, that it gives a counterweight to the previous chapter: the two together illustrate two themes—complex analysis and topology—which run through the study of Riemann surfaces. And, second, that we are able to introduce some more advanced ideas that will be taken up later in the book. The statement of the classification of closed surfaces is probably well known to many readers. We write down two families of surfaces g, h for integers g ≥ 0, h ≥ 1. 2 2 The surface 0 is the 2-sphere S . The surface 1 is the 2-torus T .For g ≥ 2, we define the surface g by taking the ‘connected sum’ of g copies of the torus. In general, if X and Y are (connected) surfaces, the connected sum XY is a surface constructed as follows (Figure 2.1). We choose small discs DX in X and DY in Y and cut them out to get a pair of ‘surfaces-with- boundaries’, coresponding to the circle boundaries of DX and DY.
    [Show full text]