The Astrobiology Primer V2.0

Total Page:16

File Type:pdf, Size:1020Kb

The Astrobiology Primer V2.0 ASTROBIOLOGY Volume 16, Number 8, 2016 Education Article Mary Ann Liebert, Inc. DOI: 10.1089/ast.2015.1460 The Astrobiology Primer v2.0 Co-Lead Editors Shawn D. Domagal-Goldman and Katherine E. Wright Chapter Editors Shawn D. Domagal-Goldman (Co-Lead Editor, Co-Editor Chapter 1, and Author)1,2,* Katherine E. Wright (Co-Lead Editor, Co-Editor Chapter 1, and Author)3,4,* Katarzyna Adamala (Co-Editor Chapter 3 and Author)5 Leigh Arina de la Rubia (Editor Chapter 9 and Author)6 Jade Bond (Co-Editor Chapter 3 and Author)7 Lewis R. Dartnell (Co-Editor Chapter 7 and Author)8 Aaron D. Goldman (Editor Chapter 2 and Author)9 Kennda Lynch (Co-Editor Chapter 5 and Author)10 Marie-Eve Naud (Co-Editor Chapter 7 and Author)11 Ivan G. Paulino-Lima (Editor Chapter 8 and Author)12,13 Kelsi Singer (Co-Editor Chapter 5, Editor Chapter 6, and Author)14 Marina Walter-Antonio (Editor Chapter 4 and Author)15 Authors Ximena C. Abrevaya,16 Rika Anderson,17 Giada Arney,18 Dimitra Atri,13 Armando Azu´a-Bustos,13 Jeff S. Bowman,19 William J. Brazelton,20 Gregory A. Brennecka,21 Regina Carns,22 Aditya Chopra,23 Jesse Colangelo-Lillis,24 Christopher J. Crockett,25 Julia DeMarines,13 Elizabeth A. Frank,26 Carie Frantz,27 Eduardo de la Fuente,28 Douglas Galante,29 Jennifer Glass,30 Damhnait Gleeson,31 Christopher R. Glein,32 Colin Goldblatt,33 Rachel Horak,34 Lev Horodyskyj,35 Betu¨l Kac¸ar,36 Akos Kereszturi,37 Emily Knowles,38 Paul Mayeur,39 Shawn McGlynn,40 Yamila Miguel,41 Michelle Montgomery,42 Catherine Neish,43 Lena Noack,44 Sarah Rugheimer,45,46 Eva E. Stu¨eken,47,48 Paulina Tamez-Hidalgo,49 Sara Imari Walker,13,50 and Teresa Wong51 *These two authors contributed equally to the work. 1NASA Goddard Space Flight Center, Greenbelt, Maryland, USA. 2Virtual Planetary Laboratory, Seattle, Washington, USA. 3University of Colorado at Boulder, Colorado, USA. 4Present address: UK Space Agency, UK. 5Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA. 6Tennessee State University, Nashville, Tennessee, USA. 7Department of Physics, University of New South Wales, Sydney, Australia. 8University of Westminster, London, UK. 9Oberlin College, Oberlin, Ohio, USA. 10Division of Biological Sciences, University of Montana, Missoula, Montana, USA. 11Institute for research on exoplanets (iREx), Universite´ de Montre´al, Montre´al, Canada. 12Universities Space Research Association, Mountain View, California, USA. 13Blue Marble Space Institute of Science, Seattle, Washington, USA. 14Southwest Research Institute, Boulder, Colorado, USA. 15Mayo Clinic, Rochester, Minnesota, USA. 16Instituto de Astronomı´ayFı´sica del Espacio (IAFE), UBA—CONICET, Ciudad Auto´noma de Buenos Aires, Argentina. 17Department of Biology, Carleton College, Northfield, Minnesota, USA. 18University of Washington Astronomy Department and Astrobiology Program, Seattle, Washington, USA. 19Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, USA. 20Department of Biology, University of Utah, Salt Lake City, Utah, USA. 21Institut fu¨r Planetologie, University of Mu¨nster, Mu¨nster, Germany. 22Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, Washington, USA. 23Planetary Science Institute, Research School of Earth Sciences, Research School of Astronomy and Astrophysics, The Australian National University, Canberra, Australia. 561 562 DOMAGAL-GOLDMAN AND WRIGHT ET AL. Table of Contents Chapter 1. Introduction—What Is Astrobiology? 562 Chapter 2. What Is Life? 563 Chapter 3. How Did Earth and Its Biosphere Originate? 565 Chapter 4. How Have Earth and Its Biosphere Evolved? 582 Chapter 5. What Does Life on Earth Tell Us about Habitability? 589 Chapter 6. What Is Known about Potentially Habitable Worlds beyond Earth? 597 Chapter 7. What Are the Signs of Life (Biosignatures) That We Could Use to Look for Life beyond Earth? 613 Chapter 8. What Relevance Does Astrobiology Have to the Future of Life on This Planet? 623 Chapter 9. Resources 626 Acknowledgments 627 References 627 Abbreviations List 653 Chapter 1. Introduction—What Is Astrobiology? life in the Universe in a holistic way, astrobiology asks ques- tions that transcend all these individual scientific subjects. 1.1. What is astrobiology? Astrobiological research potentially has much broader strobiology is the science that seeks to understand the consequences than simply scientific discovery, as it includes Astory of life in our universe. Astrobiology includes inves- questions that have been of great interest to human beings tigation of the conditions that are necessary for life to emerge for millennia (e.g., are we alone?) and raises issues that and flourish, the origin of life, the ways that life has evolved and could affect the way the human race views and conducts adapted to the wide range of environmental conditions here on itself as a species (e.g., what are our ethical responsibilities Earth, the search for life beyond Earth, the habitability of ex- to any life discovered beyond Earth?). traterrestrial environments, and consideration of the future of life here on Earth and elsewhere. It therefore requires knowl- 1.2. Have we already found life beyond Earth? edge of physics, chemistry, biology, and many more specialized scientific areas including astronomy, geology, planetary sci- No. There have been many exciting discoveries that ence, microbiology, atmospheric science, and oceanography. suggest life is possible on other planets and moons, but we However, astrobiology is more than just a collection of have not yet detected any definite signs of life beyond Earth. different disciplines. In seeking to understand the full story of That does not necessarily mean life exists only on Earth, but 24Earth and Planetary Science, McGill University, and the McGill Space Institute, Montre´al, Canada. 25Society for Science & the Public, Washington, DC, USA. 26Carnegie Institute for Science, Washington, DC, USA. 27Department of Geosciences, Weber State University, Ogden, Utah, USA. 28IAM-Departamento de Fisica, CUCEI, Universidad de Guadalajara, Guadalajara, Me´xico. 29Brazilian Synchrotron Light Laboratory, Campinas, Brazil. 30School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA. 31Science Foundation Ireland, Dublin, Ireland. 32Southwest Research Institute, San Antonio, Texas, USA. 33School of Earth and Ocean Sciences, University of Victoria, Victoria, Canada. 34American Society for Microbiology, Washington, DC, USA. 35Arizona State University, Tempe, Arizona, USA. 36Harvard University, Organismic and Evolutionary Biology, Cambridge, Massachusetts, USA. 37Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, Budapest, Hungary. 38Johnson & Wales University, Denver, Colorado, USA. 39Rensselaer Polytechnic Institute, Troy, New York, USA. 40Earth Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan. 41Laboratoire Lagrange, UMR 7293, Universite´ Nice Sophia Antipolis, CNRS, Observatoire de la Coˆte d’Azur, Nice, France. 42University of Central Florida, Orlando, Florida, USA. 43Department of Earth Sciences, The University of Western Ontario, London, Canada. 44Royal Observatory of Belgium, Brussels, Belgium. 45Department of Astronomy, Harvard University, Cambridge, Massachusetts, USA. 46University of St. Andrews, St. Andrews, UK. 47University of Washington, Seattle, Washington, USA. 48University of California, Riverside, California, USA. 49Novozymes A/S, Bagsvaerd, Denmark. 50School of Earth and Space Exploration and Beyond Center for Fundamental Concepts in Science, Arizona State University, Tempe, Arizona, USA. 51Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, Missouri, USA. ª Shawn D. Domagal-Goldman and Katherine E. Wright, et al., 2016; Published by Mary Ann Liebert, Inc. This Open Access article is distributed under the terms of the Creative Commons Attribution Noncommercial License (http://creativecommons.org/licenses/by-nc/4.0/) which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited. THE ASTROBIOLOGY PRIMER 563 only that there is not yet compelling evidence for its exis- It is longer than a typical review paper but much shorter in tence elsewhere. Space missions have explored only a tiny length than a textbook, with the goal of being detailed en- portion of our solar system, and in the few years since we ough to provide a brief overview of the variety of questions first discovered planets around other stars, the number of investigated by astrobiologists. such exoplanets known has increased into the hundreds. The The Astrobiology Primer is the product of a strong, vi- search for life beyond Earth has therefore only just begun. brant, early-career astrobiology community. This is the Astrobiology is an exciting subject with new ideas that second version of the Primer, and like the first (Mix et al., can easily capture the imaginations of both scientists and 2006), it is a grassroots effort, written by graduate students nonscientists. But like all areas of science, new ideas are and postdoctoral researchers. In total, we are a group of 49 subject to detailed scrutiny by the scientific community as authors and editors from 14 different countries. This second part of the quality control process. Only ideas that are edition has been rewritten from scratch. It updates content considered to be well-supported by evidence are accepted by and is organized
Recommended publications
  • Tregloan-Reed Phd 2014.Pdf
    This work is protected by copyright and other intellectual property rights and duplication or sale of all or part is not permitted, except that material may be duplicated by you for research, private study, criticism/review or educational purposes. Electronic or print copies are for your own personal, non- commercial use and shall not be passed to any other individual. No quotation may be published without proper acknowledgement. For any other use, or to quote extensively from the work, permission must be obtained from the copyright holder/s. Starspot properties and photometric parameters of transiting planets and their host stars Jeremy Tregloan-Reed Mphys (Hons) Lancaster University Doctor of Philosophy Department of Astrophysics, University of Keele. October 2014 iii Abstract To begin understanding how the architecture of hot Jupiter planetary systems can be so radically different from that of our own solar system, requires the dynamical evolution of planets to be known. By measuring the sky-projected obliquity λ of a system it is possible to determine the dominant process in the dynamical evolution. If a transiting exoplanet that crosses the disc of its host star passes over a starspot, then the amount of received intensity from the star will change. By modelling the position of the anomaly in the lightcurve it is possible to precisely determine the position of the starspot on the stellar disc. If the position of the starspot can be found at two distinct times using two closely spaced transits, then it is possible to measure λ. Before now there was no definitive model capable of accurately modelling both a planetary transit and a starspot.
    [Show full text]
  • Open Research Online Oro.Open.Ac.Uk
    Open Research Online The Open University’s repository of research publications and other research outputs Extra-Solar Planetary Atmospheres and Interior Structure: Implications for Observational Signatures Thesis How to cite: Bending, Victoria Louise (2016). Extra-Solar Planetary Atmospheres and Interior Structure: Implications for Observational Signatures. PhD thesis The Open University. For guidance on citations see FAQs. c 2016 The Author https://creativecommons.org/licenses/by-nc-nd/4.0/ Version: Version of Record Link(s) to article on publisher’s website: http://dx.doi.org/doi:10.21954/ou.ro.0000ef7b Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page. oro.open.ac.uk Extra-Solar Planetary Atmospheres and Interior Structure: Implications for Observational Signatures Victoria Louise Bending BA (Hons) (Open University) 2004 MPhys (Durham) 2009 This thesis is submitted for the degree of Doctor of Philosophy Department of Physical Sciences The Open University Submitted: October 2015 ProQuest Number: 13834775 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 13834775 Published by ProQuest LLC(2019). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC.
    [Show full text]
  • Dynamical Measurements of the Interior Structure of Exoplanets
    The Astrophysical Journal, 778:100 (11pp), 2013 December 1 doi:10.1088/0004-637X/778/2/100 C 2013. The American Astronomical Society. All rights reserved. Printed in the U.S.A. DYNAMICAL MEASUREMENTS OF THE INTERIOR STRUCTURE OF EXOPLANETS Juliette C. Becker1 and Konstantin Batygin2 1 Cahill Center for Astronomy and Astrophysics, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA; [email protected] 2 Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA, USA Received 2013 January 3; accepted 2013 September 11; published 2013 November 8 ABSTRACT Giant gaseous planets often reside on orbits in sufficient proximity to their host stars for the planetary quadrupole gravitational field to become non-negligible. In presence of an additional planetary companion, a precise characterization of the system’s orbital state can yield meaningful constraints on the transiting planet’s interior structure. However, such methods can require a very specific type of system. This paper explores the dynamic range of applicability of these methods and shows that interior structure calculations are possible for a wide array of orbital architectures. The HAT-P-13 system is used as a case study, and the implications of perturbations arising from a third distant companion on the feasibility of an interior calculation are discussed. We find that the method discussed here is likely to be useful in studying other planetary systems, allowing the possibility of an expanded survey of the interiors of exoplanets. Key words: planets and satellites: dynamical evolution and stability – planets and satellites: interiors Online-only material: color figures 1.
    [Show full text]
  • A Precise Carbon and Oxygen Abundance Determination in a Hot Jupiter Atmosphere
    A Precise Carbon and Oxygen Abundance Determination in a Hot Jupiter Atmosphere Michael Line ( [email protected] ) Arizona State University https://orcid.org/0000-0001-6247-8323 Matteo Brogi Warwick University Jacob Bean University of Chicago Siddharth Gandhi University of Warwick Joseph Zalesky Arizona State University Viven Parmentier University of Oxford Peter Smith Arizona State University Gregory Mace University of Texas-Austin Megan Manseld University of Chicago Eliza Kempton University of Maryland https://orcid.org/0000-0002-1337-9051 Jonathan Fortney University of California, Santa Cruz Evgenya Shkolnik Arizona State University Jennifer Patience Arizona State University Emily Rauscher University of Michigan https://orcid.org/0000-0003-3963-9672 Jean-Michel Desert University of Amsterdam Jooost Wardenier University of Oxford Physical Sciences - Article Keywords: Gas Giant Planets, Atmospheric Compositions, Giant Planet Formation, Ground-based Spectroscopy, Metallicity Posted Date: June 9th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-593104/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License 1 A Precise Carbon and Oxygen Abundance Determination 2 in a Hot Jupiter Atmosphere 1,2 3,4,5 6 3,4 1 3 Michael R Line , Matteo Brogi , Jacob L. Bean , Siddharth Gandhi , Joseph Zalesky , 7 1 8 9 10 4 Vivien Parmentier , Peter Smith , Gregory N. Mace , Megan Mansfield , Eliza M.-R. Kempton , 11 1,2 1 12 5 Jonathan J. Fortney , Evgenya Shkolnik , Jennifer Patience , Emily Rauscher
    [Show full text]
  • K2-114B and K2-115B: Two Transiting Warm Jupiters
    The Astronomical Journal, 154:188 (11pp), 2017 November https://doi.org/10.3847/1538-3881/aa8bb9 © 2017. The American Astronomical Society. All rights reserved. K2-114b and K2-115b: Two Transiting Warm Jupiters Avi Shporer1 , George Zhou2 , Benjamin J. Fulton3,4,24 , Andrew Vanderburg2,24 , Nestor Espinoza5,6 , Karen Collins7 , David Ciardi8, Daniel Bayliss9 , James D. Armstrong10, Joao Bento11, Francois Bouchy9, William D. Cochran12 , Andrew Collier Cameron13, Knicole Colón14 , Ian Crossfield15, Diana Dragomir16,25 , Andrew W. Howard4 , Steve B. Howell17 , Howard Isaacson18 , John F. Kielkopf19, Felipe Murgas20,21, Ramotholo Sefako22, Evan Sinukoff3,4 , Robert Siverd23 , and Stephane Udry9 1 Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA 2 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA 3 Institute for Astronomy, University of Hawaii, Honolulu, HI 96822, USA 4 California Institute of Technology, Pasadena, CA, USA 5 Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Av.Vicuña Mackenna 4860, 782-0436 Macul, Santiago, Chile 6 Millennium Institute of Astrophysics, Av.Vicuña Mackenna 4860, 782-0436 Macul, Santiago, Chile 7 Department of Physics & Astronomy, Vanderbilt University, Nashville, TN 37235, USA 8 NASA Exoplanet Science Institute/Caltech, Pasadena, CA, USA 9 Observatoire Astronomique de l’Universit’e de Geneve, 51 ch.des Maillettes, 1290 Versoix, Switzerland 10 University of Hawaii Institute for Astronomy
    [Show full text]
  • CORELESS TERRESTRIAL EXOPLANETS Linda T
    The Astrophysical Journal, 688:628Y635, 2008 November 20 A # 2008. The American Astronomical Society. All rights reserved. Printed in U.S.A. CORELESS TERRESTRIAL EXOPLANETS Linda T. Elkins-Tanton Department Earth, Atmospheric, and Planetary Sciences, MIT, Building 54-824, 77 Massachusetts Avenue, Cambridge MA 02139; [email protected] and Sara Seager Department Earth, Atmospheric, and Planetary Sciences, Department of Physics, MIT, Building 54-1626, 77 Massachusetts Avenue, Cambridge MA 02139 Received 2008 March 8; accepted 2008 July 26 ABSTRACT Differentiation in terrestrial planets is expected to include the formation of a metallic iron core. We predict the existence of terrestrial planets that have differentiated but have no metallic core, planets that are effectively a giant silicate mantle. We discuss two paths to forming a coreless terrestrial planet, whereby the oxidation state during planetary accretion and solidification will determine the size or existence of any metallic core. Under this hypothesis, any metallic iron in the bulk accreting material is oxidized by water, binding the iron in the form of iron oxide into the silicate minerals of the planetary mantle. The existence of such silicate planets has consequences for interpreting the compositions and interior density structures of exoplanets based on their mass and radius measurements. Subject headinggs: accretion, accretion disks — planets and satellites: formation — solar system: formation Online material: color figure 1. INTRODUCTION the planet as well (Rubie et al. 2003; Terasaki et al. 2005; Jacobsen 2005). Heat is converted from the kinetic energy of Understanding the interior composition of exoplanets based on accretion and from potential energy release during differentiation. their mass and radius measurements is a growing field of study.
    [Show full text]
  • Constraining the Bulk Composition of Disintegrating Exoplanets Using
    Draft version August 19, 2020 Typeset using LATEX twocolumn style in AASTeX63 Constraining the Bulk Composition of Disintegrating Exoplanets Using Combined Transmission Spectra from JWST and SPICA Ayaka Okuya,1 Satoshi Okuzumi,1 Kazumasa Ohno,1 and Teruyuki Hirano1 1Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan ABSTRACT Disintegrating planets are ultra-short-period exoplanets that appear to have a comet-like dust tail. They are commonly interpreted as low-mass planets whose solid surface is evaporating and whose tail is made of re- condensing minerals. Transmission spectroscopy of the dust tails could thus allow us to directly probe the elementary compositions of the planets. Previous work already investigated the feasibility of such observations using the JWST mid-infrared instrument. In this study, we explore if one can obtain a strong constrain on the tail composition by adding spectroscopy at longer wavelengths using SPICA mid-infrared instrument. We use a simple model for the spatial distribution of the dust tails and produce their synthetic transmission spectra as- suming various dust compositions. We find that combined infrared spectra from JWST and SPICA will allow us to diagnose various components of the dust tails. JWST will be able to detect silicate and carbide absorption features with a feature-to-noise ratio of & 3 in the tail transmission spectrum of a disintegrating planet located within 100 pc from the Earth with a transit depth deeper than 0.5%. SPICA can distinguish between Fe- and Mg-bearing crystalline silicates for planets at .
    [Show full text]
  • From Mercury to a Coreless Terrestrial Planet
    Lunar and Planetary Science XXXIX (2008) 1366.pdf EFFECTS OF OXIDATION ON BUILDING ROCKY PLANETS: FROM MERCURY TO A CORELESS TERRESTRIAL PLANET. L. T. Elkins-Tanton and S. Seager, MIT, Dept. of Earth, Atmospheric, and Planetary Sciences, Cambridge MA, 02139, [email protected]. Introduction: Differentiation in terrestrial planets is overturn through processes of iron enrichment during expected to include the formation of a metallic core. progressive solidification from the bottom of the We suggest that oxidation state during accretion and mantle upward. The unstable material can flow in the solidification may determine the size of any metallic solid state to gravitational stability, with higher-iron core, and we predict the existence of terrestrial planets compositions at lower planetary radii. This critical step that have differentiated but have no metallic core. in planetary evolution from a magma ocean stage Under this hypothesis, any metallic iron in the bulk results in a mantle that is gravitationally stable, with accreting material is oxidized by water, binding the densest silicates lying at lowest radii, and most iron in the form of iron oxide into the silicate minerals buoyant silicates nearest the planetary surface. Thus of the planetary mantle. The planet becomes planetary differentiation includes not only separation effectively a giant silicate mantle without a metal core. of metallic from silicate stages, but also compositional In this case, planetary differentiation will involve only separation of silicates. silicates and volatiles. Conversely, unusually reducing Reducing followed by oxidizing conditions: The conditions near the Sun may have produced the large metallic cores of the terrestrial planets require that core fraction of Mercury.
    [Show full text]
  • The Example of Plate Tectonics
    EMERGING POSSIBILITIES AND INSUPERABLE LIMITATIONS OF EXOGEOPHYSICS: THE EXAMPLE OF PLATE TECTONICS The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Stamenković, Vlada, and Sara Seager. “EMERGING POSSIBILITIES AND INSUPERABLE LIMITATIONS OF EXOGEOPHYSICS: THE EXAMPLE OF PLATE TECTONICS.” The Astrophysical Journal 825, 1 (July 2016): 78 © 2016 The American Astronomical Society As Published http://dx.doi.org/10.3847/0004-637X/825/1/78 Publisher American Astronomical Society/IOP Publishing Version Final published version Citable link http://hdl.handle.net/1721.1/114223 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The Astrophysical Journal, 825:78 (18pp), 2016 July 1 doi:10.3847/0004-637X/825/1/78 © 2016. The American Astronomical Society. All rights reserved. EMERGING POSSIBILITIES AND INSUPERABLE LIMITATIONS OF EXOGEOPHYSICS: THE EXAMPLE OF PLATE TECTONICS Vlada StamenkoviĆ1,2 and Sara Seager3,4 1 California Institute of Technology, Department of Geological and Planetary Sciences, Mail Stop 100-23, Pasadena, CA91125, USA; [email protected] 2 Jet Propulsion Laboratories, 4800 Oak Grove Drive, Pasadena, CA 91109, USA 3 Massachusetts Institute of Technology,Department of Earth, Atmospheric, and Planetary Sciences, 77 Massachusetts Avenue, Cambridge, MA02139, USA; [email protected] 4 Massachusetts Institute of Technology,Department of Physics, 77 Massachusetts Avenue, Cambridge, MA02139, USA Received 2014 December 2; accepted 2016 March 7; published 2016 July 1 ABSTRACT To understand the evolution and the habitability of any rocky exoplanet demands detailed knowledge about its geophysical state and history—such as predicting the tectonic mode of a planet.
    [Show full text]
  • Formation, Structure and Habitability of Super-Earth and Sub-Neptune
    Formation, Structure and Habitability of Super-Earth and Sub-Neptune Exoplanets by Leslie Anne Rogers B.Sc., Honours Physics-Mathematics, University of Ottawa (2006) Submitted to the Department of Physics in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2012 c Massachusetts Institute of Technology 2012. All rights reserved. Author.............................................................. Department of Physics May 22, 2012 Certified by. Sara Seager Professor of Planetary Science Professor of Physics Class of 1941 Professor Thesis Supervisor Accepted by . Krishna Rajagopal Professor of Physics Associate Department Head for Education 2 Formation, Structure and Habitability of Super-Earth and Sub-Neptune Exoplanets by Leslie Anne Rogers Submitted to the Department of Physics on May 22, 2012, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract Insights into a distant exoplanet's interior are possible given a synergy between models and observations. Spectral observations of a star's radial velocity wobble induced by an orbiting planet's gravitational pull measure the planet mass. Photometric transit observations of a planet crossing the disk of its star measure the planet radius. This thesis interprets the measured masses and radii of super-Earth and sub-Neptune exoplanets, employing models to constrain the planets' bulk compositions, formation histories, and habitability. We develop a model for the internal structure of low-mass exoplanets consisting of up to four layers: an iron core, silicate mantle, ice layer, and gas layer. We quantify the span of plausible bulk compositions for low-mass transiting planets CoRoT-7b, GJ 436b, and HAT-P-11b, and describe how Bayesian analysis can be applied to rigorously account for observational, model, and inherent uncertainties.
    [Show full text]
  • Implications for Hydrogen Storage in Planetary Cores
    Superstoichiometric Alloying of H and Close-Packed FeNi under High Pressures: Implications for Hydrogen Storage in Planetary Cores Helene Piet Arizona State University https://orcid.org/0000-0003-3152-0132 Andrew Chizmeshya Arizona State University Bin Chen University of Hawaii at Manoa Stella Chariton University of Chicago Eran Greenberg University of Chicago Vitali Prakapenka University of Chicago https://orcid.org/0000-0001-9270-2330 Peter Buseck Arizona State University Sang-Heon Shim ( [email protected] ) Arizona State University Article Keywords: Superstoichiometic Close-packed Alloys, Polyhydrides, Mass-radius Relations, Massive Exoplanets Posted Date: November 19th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-103113/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License 1 Superstoichiometric Alloying of H and Close-Packed 2 FeNi under High Pressures: Implications for Hydrogen 3 Storage in Planetary Cores 1 2 3 4 4 H. Piet ∗, A. V. G. Chizmeshya , B. Chen , S. Chariton , 5 4 1,2 1 E. Greenberg , V. B. Prakapenka , P. R. Buseck , S.-H. Shim ∗ 1 School of Earth and Space Exploration, Arizona State University, Tempe, Arizona, USA. 2 School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA. 3 Hawaii Institute of Geophysics and Planetology, University of Hawaii at Manoa, Honolulu, Hawaii, USA. 4 Center for Advanced Radiation Sources, University of Chicago, Chicago, Illinois, USA. 5 Now at Soreq Nuclear Research Center, Applied Physics Department, Yavne, Israel. ∗ To whom correspondence should be addressed; E-mail: [email protected], [email protected]. 5 November 4, 2020 6 Abstract 7 Although high pressure promotes alloying between hydrogen and iron, it has been believed 8 that H/Fe is limited to 1 in the close-packed alloys.
    [Show full text]
  • A SMALLER RADIUS for the TRANSITING EXOPLANET WASP-10B∗
    The Astrophysical Journal, 692:L100–L104, 2009 February 20 doi:10.1088/0004-637X/692/2/L100 c 2009. The American Astronomical Society. All rights reserved. Printed in the U.S.A. A SMALLER RADIUS FOR THE TRANSITING EXOPLANET WASP-10b∗ John Asher Johnson1,3, Joshua N. Winn2, Nicole E. Cabrera1,4, and Joshua A. Carter2 1 Institute for Astronomy, University of Hawaii, Honolulu, HI 96822, USA; [email protected] 2 Department of Physics and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Received 2008 October 22; accepted 2009 January 12; published 2009 February 3 ABSTRACT We present the photometry of WASP-10 during a transit of its short-period Jovian planet. We employed the novel point-spread function shaping capabilities of the Orthogonal Parallel Transfer Imaging Camera mounted on the UH 2.2 m telescope to achieve a photometric precision of 4.7 × 10−4 per 1.3 minute sample. With this new light curve, in conjunction with stellar evolutionary models, we improve on existing measurements of the planetary, stellar, and orbital parameters. We find a stellar radius R = 0.698 ± 0.012 R and a planetary radius RP = 1.080 ± 0.020 RJup. The quoted errors do not include any possible systematic errors in the stellar evolutionary models. Our measurement improves the precision of the planet’s radius by a factor of 4, and revises the previous estimate downward by 16% (2.5σ, where σ is the quadrature sum of the respective confidence limits). Our measured radius of WASP-10b is consistent with previously published theoretical radii for irradiated Jovian planets.
    [Show full text]