Influence of Nutrient Enrichment on Structuring Diatom Communities in a Glacial Meltwater Stream, Mcmurdo Dry Valleys, Antarctica

Total Page:16

File Type:pdf, Size:1020Kb

Influence of Nutrient Enrichment on Structuring Diatom Communities in a Glacial Meltwater Stream, Mcmurdo Dry Valleys, Antarctica INFLUENCE OF NUTRIENT ENRICHMENT ON STRUCTURING DIATOM COMMUNITIES IN A GLACIAL MELTWATER STREAM, MCMURDO DRY VALLEYS, ANTARCTICA By Joshua Darling University of Colorado at Boulder A thesis submitted to the University of Colorado at Boulder in partial fulfillment of the requirements to receive Honors designation in Environmental Studies Defended 31 March 2015 Thesis Advisors: Diane McKnight, Civil, Environmental and Architectural Engineering, Committee Chair Dale Miller, Environmental Studies Sarah Spaulding, Institute of Arctic and Alpine Research (INSTAAR) © 2015 by Joshua Darling All Rights Reserved ABSTRACT In the arid McMurdo Dry Valleys of East Antarctica, glacial meltwater streams flow for 6-10 weeks during the austral summer. Harbored in these meltwater streambeds are diatom communities, which are part of a microbial mat matrix. These mat assemblages endure desiccating winters and become reactivated upon rehydration during the austral summer. Water is considered the major limiting resource in the dry valley stream ecosystems, and the variable flow of meltwater has been shown to regulate the biomass and growth of these algal mats. However, other environmental variables could influence the structure of these mat communities. In this thesis, the influences of nutrients are examined as a regulatory control on diatom community structure. This thesis draws from previous experimentation using Nutrient Diffusing Substrates (NDS) with nitrate and phosphate amendments that were left in Green Creek for algae to colonize. Characterization of diatom communities that grew on NDS units showed that nitrate enrichments significantly altered diatom relative abundance, with an increase in Fistulifera pelliculosa to 21% relative abundance in nitrate treatments compared to other nutrient amendments, which had less than 5% F. pelliculosa abundance. Other nutrient amendments showed only a marginal influence on diatom relative abundance. In addition, nitrate and phosphate amendments showed greater average diatom densities relative to the control treatments, with the greatest densities occurring in nitrate amendments. These results suggest that nutrients influence diatom growth and accrual, although stream hydrology and geomorphology likely have a greater influence on regulating the structure of these diatom communities within the microbial mat matrix. Moreover, the results from this thesis can help to predict the response by diatom communities to expected landscape changes in McMurdo Dry Valley streams as a function of climate change, such as increase flow and subsequent nutrient enrichment. KEYWORDS: diatoms, algae, nutrients, climate change, colonization, streams i PREFACE I want to thank Dr. Diane McKnight for providing me with many opportunities to explore aquatic ecology through hands-on learning in her lab. The advice I have received from Dr. McKnight has been particularly valuable, and I wish to extend my many thanks. In addition, I want to recognize Dr. Sarah Spaulding for her passion and expertise in the world of diatoms and algae. Further, Dale Miller has provided excellent advice and encouragement throughout the duration of this project. Tyler Kohler, who initially conceived of this project and completed the in-field portion, made the work pertaining to this thesis possible. I am very grateful for the guidance and expertise that Tyler has brought to this project. In addition, I want to thank Dr. Pat Kociolek, who allowed me to take part in his freshwater phycology class to learn more about the taxonomy of diatoms. ii CONTENTS CHAPTER 1 | INTRODUCTION .................................................................................................................. 1 PURPOSE AND SCOPE .................................................................................................................................... 1 FORMAT OF THESIS ....................................................................................................................................... 3 CHAPTER 2 | BACKGROUND ..................................................................................................................... 4 GREATER MCMURDO DRY VALLEYS ECOSYSTEM ................................................................................................ 4 MCMURDO DRY VALLEYS STREAMS ................................................................................................................. 6 ALGAL MAT COMMUNITIES: CHARACTERISTICS AND DISTRIBUTION ....................................................................... 8 DIATOMS ................................................................................................................................................... 11 MCMURDO DRY VALLEY STREAM DIATOMS .................................................................................................... 13 CHAPTER 3 | METHODS .......................................................................................................................... 19 GREEN CREEK: SITE DESCRIPTION .................................................................................................................. 19 NDS COLONIZATION .................................................................................................................................... 22 DIATOM ENUMERATION ............................................................................................................................... 24 DIATOM COMMUNITY CHARACTERIZATION AND ANALYSIS ................................................................................. 24 Species Presence ................................................................................................................................ 25 Diversity ............................................................................................................................................. 25 Density ................................................................................................................................................ 25 Relative Abundance ............................................................................................................................ 26 CHAPTER 4 | RESULTS ............................................................................................................................. 27 SPECIES PRESENCE ...................................................................................................................................... 27 DIVERSITY .................................................................................................................................................. 28 DENSITY .................................................................................................................................................... 29 RELATIVE ABUNDANCE ................................................................................................................................. 31 CHAPTER 5 | DISCUSSION ....................................................................................................................... 35 APPENDIX .................................................................................................................................................. 38 BIBLIOGRAPHY ......................................................................................................................................... 40 iii iv Chapter 1 | INTRODUCTION Purpose and Scope The purpose of this thesis is to assess how nutrient loading influences the establishment of diatom (Bacillariophyta) taxa in a glacial meltwater stream located in Taylor Valley, of the McMurdo Dry Valleys, Antarctica. Diatoms are a type of unicellular algae and are fundamental primary producers found in marine and freshwater systems the world over. The algal group is valued as a useful bio-indicator of environmental change. And, in regions sensitive to small climatic changes, such as the McMurdo Dry Valleys (MDV), diatom monitoring can be a useful tool for understanding the ecological response to chemical and physical controls in a dynamic system. This thesis addresses the response of colonizing diatom assemblages to nutrient enrichment to better understand the ecological structure and function of these diatom communities. For most aquatic systems, it can be expected that an increase in the major limiting nutrients for that system will result in increased growth. However, is not always explicitly known how diatom communities will respond to nutrient loading—especially in the context of the oligotrophic Antarctic streams, where diatom communities represent only a small portion of the microbial mat biomass, and where nutrient concentrations in the mat matrix can be significantly controlled by the pre-existing microbial mat communities. Many of the diatom taxa present in the MDV streams are considered endemic to the MDV region and have evolved in harsh environmental conditions. Furthermore, understanding how the MDV stream diatom community structure is influenced by nutrient enrichment will provide more insight into the microbial mat ecology of the MDV region. The stream of interest in this thesis, Green Creek, is nitrogen limited (Gooseff et al., 2004), 1 and so it can be hypothesized that diffused nitrate treatments will result in stimulated algal growth. Yet, it is still unknown how the community structure of these diatom assemblages will change with regard to different treatments. This thesis will examine the significance of nitrate and phosphate to the
Recommended publications
  • Outer Continental Shelf Environmental Assessment Program, Final Reports of Principal Investigators. Volume 71
    Outer Continental Shelf Environmental Assessment Program Final Reports of Principal Investigators Volume 71 November 1990 U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Ocean Service Office of Oceanography and Marine Assessment Ocean Assessments Division Alaska Office U.S. DEPARTMENT OF THE INTERIOR Minerals Management Service Alaska OCS Region OCS Study, MMS 90-0094 "Outer Continental Shelf Environmental Assessment Program Final Reports of Principal Investigators" ("OCSEAP Final Reports") continues the series entitled "Environmental Assessment of the Alaskan Continental Shelf Final Reports of Principal Investigators." It is suggested that reports in this volume be cited as follows: Horner, R. A. 1981. Bering Sea phytoplankton studies. U.S. Dep. Commer., NOAA, OCSEAP Final Rep. 71: 1-149. McGurk, M., D. Warburton, T. Parker, and M. Litke. 1990. Early life history of Pacific herring: 1989 Prince William Sound herring egg incubation experiment. U.S. Dep. Commer., NOAA, OCSEAP Final Rep. 71: 151-237. McGurk, M., D. Warburton, and V. Komori. 1990. Early life history of Pacific herring: 1989 Prince William Sound herring larvae survey. U.S. Dep. Commer., NOAA, OCSEAP Final Rep. 71: 239-347. Thorsteinson, L. K., L. E. Jarvela, and D. A. Hale. 1990. Arctic fish habitat use investi- gations: nearshore studies in the Alaskan Beaufort Sea, summer 1988. U.S. Dep. Commer., NOAA, OCSEAP Final Rep. 71: 349-485. OCSEAP Final Reports are published by the U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Ocean Service, Ocean Assessments Division, Alaska Office, Anchorage, and primarily funded by the Minerals Management Service, U.S. Department of the Interior, through interagency agreement.
    [Show full text]
  • Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016
    Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016 April 1981 Revised, May 1982 2nd revision, April 1983 3rd revision, December 1999 4th revision, May 2011 Prepared for U.S. Department of Commerce Ohio Department of Natural Resources National Oceanic and Atmospheric Administration Division of Wildlife Office of Ocean and Coastal Resource Management 2045 Morse Road, Bldg. G Estuarine Reserves Division Columbus, Ohio 1305 East West Highway 43229-6693 Silver Spring, MD 20910 This management plan has been developed in accordance with NOAA regulations, including all provisions for public involvement. It is consistent with the congressional intent of Section 315 of the Coastal Zone Management Act of 1972, as amended, and the provisions of the Ohio Coastal Management Program. OWC NERR Management Plan, 2011 - 2016 Acknowledgements This management plan was prepared by the staff and Advisory Council of the Old Woman Creek National Estuarine Research Reserve (OWC NERR), in collaboration with the Ohio Department of Natural Resources-Division of Wildlife. Participants in the planning process included: Manager, Frank Lopez; Research Coordinator, Dr. David Klarer; Coastal Training Program Coordinator, Heather Elmer; Education Coordinator, Ann Keefe; Education Specialist Phoebe Van Zoest; and Office Assistant, Gloria Pasterak. Other Reserve staff including Dick Boyer and Marje Bernhardt contributed their expertise to numerous planning meetings. The Reserve is grateful for the input and recommendations provided by members of the Old Woman Creek NERR Advisory Council. The Reserve is appreciative of the review, guidance, and council of Division of Wildlife Executive Administrator Dave Scott and the mapping expertise of Keith Lott and the late Steve Barry.
    [Show full text]
  • Biology and Systematics of Heterokont and Haptophyte Algae1
    American Journal of Botany 91(10): 1508±1522. 2004. BIOLOGY AND SYSTEMATICS OF HETEROKONT AND HAPTOPHYTE ALGAE1 ROBERT A. ANDERSEN Bigelow Laboratory for Ocean Sciences, P.O. Box 475, West Boothbay Harbor, Maine 04575 USA In this paper, I review what is currently known of phylogenetic relationships of heterokont and haptophyte algae. Heterokont algae are a monophyletic group that is classi®ed into 17 classes and represents a diverse group of marine, freshwater, and terrestrial algae. Classes are distinguished by morphology, chloroplast pigments, ultrastructural features, and gene sequence data. Electron microscopy and molecular biology have contributed signi®cantly to our understanding of their evolutionary relationships, but even today class relationships are poorly understood. Haptophyte algae are a second monophyletic group that consists of two classes of predominately marine phytoplankton. The closest relatives of the haptophytes are currently unknown, but recent evidence indicates they may be part of a large assemblage (chromalveolates) that includes heterokont algae and other stramenopiles, alveolates, and cryptophytes. Heter- okont and haptophyte algae are important primary producers in aquatic habitats, and they are probably the primary carbon source for petroleum products (crude oil, natural gas). Key words: chromalveolate; chromist; chromophyte; ¯agella; phylogeny; stramenopile; tree of life. Heterokont algae are a monophyletic group that includes all (Phaeophyceae) by Linnaeus (1753), and shortly thereafter, photosynthetic organisms with tripartite tubular hairs on the microscopic chrysophytes (currently 5 Oikomonas, Anthophy- mature ¯agellum (discussed later; also see Wetherbee et al., sa) were described by MuÈller (1773, 1786). The history of 1988, for de®nitions of mature and immature ¯agella), as well heterokont algae was recently discussed in detail (Andersen, as some nonphotosynthetic relatives and some that have sec- 2004), and four distinct periods were identi®ed.
    [Show full text]
  • Marine Plankton Diatoms of the West Coast of North America
    MARINE PLANKTON DIATOMS OF THE WEST COAST OF NORTH AMERICA BY EASTER E. CUPP UNIVERSITY OF CALIFORNIA PRESS BERKELEY AND LOS ANGELES 1943 BULLETIN OF THE SCRIPPS INSTITUTION OF OCEANOGRAPHY OF THE UNIVERSITY OF CALIFORNIA LA JOLLA, CALIFORNIA EDITORS: H. U. SVERDRUP, R. H. FLEMING, L. H. MILLER, C. E. ZoBELL Volume 5, No.1, pp. 1-238, plates 1-5, 168 text figures Submitted by editors December 26,1940 Issued March 13, 1943 Price, $2.50 UNIVERSITY OF CALIFORNIA PRESS BERKELEY, CALIFORNIA _____________ CAMBRIDGE UNIVERSITY PRESS LONDON, ENGLAND [CONTRIBUTION FROM THE SCRIPPS INSTITUTION OF OCEANOGRAPHY, NEW SERIES, No. 190] PRINTED IN THE UNITED STATES OF AMERICA Taxonomy and taxonomic names change over time. The names and taxonomic scheme used in this work have not been updated from the original date of publication. The published literature on marine diatoms should be consulted to ensure the use of current and correct taxonomic names of diatoms. CONTENTS PAGE Introduction 1 General Discussion 2 Characteristics of Diatoms and Their Relationship to Other Classes of Algae 2 Structure of Diatoms 3 Frustule 3 Protoplast 13 Biology of Diatoms 16 Reproduction 16 Colony Formation and the Secretion of Mucus 20 Movement of Diatoms 20 Adaptations for Flotation 22 Occurrence and Distribution of Diatoms in the Ocean 22 Associations of Diatoms with Other Organisms 24 Physiology of Diatoms 26 Nutrition 26 Environmental Factors Limiting Phytoplankton Production and Populations 27 Importance of Diatoms as a Source of food in the Sea 29 Collection and Preparation of Diatoms for Examination 29 Preparation for Examination 30 Methods of Illustration 33 Classification 33 Key 34 Centricae 39 Pennatae 172 Literature Cited 209 Plates 223 Index to Genera and Species 235 MARINE PLANKTON DIATOMS OF THE WEST COAST OF NORTH AMERICA BY EASTER E.
    [Show full text]
  • Impact of Accumulating Drifting Macroalgae on a Shallow-Water Sediment System: an Experimental Study
    MARINE ECOLOGY PROGRESS SERIES Published January l Mar. Ecol. Prog. Ser. 1 Impact of accumulating drifting macroalgae on a shallow-water sediment system: an experimental study Kristina Sundbackl, Benno Jonssonl**, Per ~ilsson~,*, Inger Lindstroml ' Department of Marine Botany, University of Goteborg, Car1 Skottbergs Gata 22, S-413 19 Goteborg, Sweden Department of Zoology, University of Goteborg. PO Box 25059, S-400 31 Goteborg, Sweden ABSTRACT: Using an outdoor flow-through experimental set-up consisting of twelve 30 1 containers, effect of accumulation of drifting filamentous macroalgae on a shallow-water sediment system was studied for 3 wk after the addition of 0.9 (low dose) and 1.8 kg fresh wt m-' (high dose) of filamentous red algae. Estimates of structural changes were based on relationships between numbers and biomass of bacteria, autotrophic microflora, ciliates and meiofauna and their qualitative composition. Effects on the functional level were assessed by measuring primary productivity, changes in carbon pools, as well as oxygen and nutrient flux. The low-dose treatment did not significantly alter the composition or patterns of primary productivity and nutrient fluxes when compared with the control (no addition). The high-dose addit~ondecreased the abundance of microalgae, cil~atesand me~ofauna,whereas no clear trend was seen for bacteria relative to the control. From the oxygen flux values it was apparent that the systems in control and low-dose containers were autotrophic (P > R), whereas in the high-dose treatments the oxygen concentration fell sharply, exhibiting a net oxygen consumption most of the time due to fast m~neralizationof the macroalgal biomass.
    [Show full text]
  • Periphyton, Excluding Diatoms and Desmids, from Yap, Caroline Islands
    Micronesica 23(1): 27-40, 1990 Periphyton, Excluding Diatoms and Desmids, from Yap, Caroline Islands CHRISTOPHER s. LOBBAN I The Marine Laboratory, University of Guam, Mangilao, GU 96923, U.S .A. and 2 FAY K. DAILY , WILLIAM A . DAILY\ ROBERT W . HOSHAW\ & MARIA SCHEFTER Abstract-Freshwater habitats of Yap, Federated States of Micronesia, are described, including first algal records. Periphyton and other visible algae were collected chiefly from streams and ponds. Streams were well shaded and lacked algae except in clearings; dominant algae were Schizothrix calcicola and Microcoleus spp. (Cyanophyta) and Cladophora sp. (Chlorophyta). Open ponds were dominated by blue-green algal mats, but some also had abundant Nitella and desmids. Desmids and diatoms were numerous and will be treated in other papers. The species list is short: 12 blue-green algae, 2 red algae, 2 charophytes, 7 filamentous greens, and 5 flagellates. All are new records for Yap and many for Micronesia. No endemic species were found . The freshwater algal flora of the Yap Islands does not show characteristics of the biota of "oceanic" islands. Introduction While there has been considerable study of marine algae in Micronesia (Tsuda & Wray 1977, Tsuda 1978, 1981), freshwater algae have been all but ignored throughout Micronesia, Melanesia, and Polynesia. However, studies of island freshwater algae could contribute to understanding of both tropical limnology and island biology. The distinctiveness of tropical limnology has recently been emphasized by Lewis (1987), who showed that limnological principles derived from studies of temperate lakes cannot be intuitively extrapolated to tropical lakes . The same is also true for transfer of knowledge of streams and ponds.
    [Show full text]
  • Diatoms As Environmental Indicators: a Case Study in the Bioluminescent Bays of Vieques, Puerto Rico
    Hunter, J. 2007. 20th Annual Keck Symposium; http://keck.wooster.edu/publications DIATOMS AS ENVIRONMENTAL INDICATORS: A CASE STUDY IN THE BIOLUMINESCENT BAYS OF VIEQUES, PUERTO RICO JENNA M. HUNTER Beloit College Advisors: Tim Ku; Anna Martini; Carl Mendelson INTRODUCTION Index (IDP). Although slightly different in taxonomic specificity, all indices are similar Diatoms, microscopic, unicellular, eukaryotic in that they yield a numerical value that is algae abundant in most aquatic habitats, are constrained by both a minimum and a maximum useful proxies for the ecological analysis of value. The IDP, as suggested and utilized by three bays on the island of Vieques, Puerto Rico. Levêque Prygiel in 1996, provided the most Acutely sensitive to changes in pH, salinity, straightforward guide during the analysis of temperature, hydrodynamic conditions, and diatoms in this study. The paleoecological value nutrient concentrations, marine diatoms can of the diatoms has also been well demonstrated be identified by their distinct assemblages and by Koizumi (1975). Unfortunately, diatom frustule shape. The ubiquitous distribution assessment is challenging due to the developing of diatoms, their high species diversity, and nature of a formal taxonomy and nomenclature. their siliceous frustule all enable the diatoms to function as sound environmental indicators. Diatoms (Bacillariophyta) are markedly Samples were taken from ten of twenty-seven distinguishable into two orders, the Centrales extruded cores within the three bays, Bahía and the Pennales. The Centrales, or centric Tapón (BT), Puerto Ferro (PF), and Puerto diatoms, have a radial symmetry and are Mosquito (PM), and then investigated for the successful as plankton in marine waters. Their presence and abundance of mid- and late- frustules, or shells, can also be triangular or Holocene marine diatoms.
    [Show full text]
  • Biovolumes and Size-Classes of Phytoplankton in the Baltic Sea
    Baltic Sea Environment Proceedings No.106 Biovolumes and Size-Classes of Phytoplankton in the Baltic Sea Helsinki Commission Baltic Marine Environment Protection Commission Baltic Sea Environment Proceedings No. 106 Biovolumes and size-classes of phytoplankton in the Baltic Sea Helsinki Commission Baltic Marine Environment Protection Commission Authors: Irina Olenina, Centre of Marine Research, Taikos str 26, LT-91149, Klaipeda, Lithuania Susanna Hajdu, Dept. of Systems Ecology, Stockholm University, SE-106 91 Stockholm, Sweden Lars Edler, SMHI, Ocean. Services, Nya Varvet 31, SE-426 71 V. Frölunda, Sweden Agneta Andersson, Dept of Ecology and Environmental Science, Umeå University, SE-901 87 Umeå, Sweden, Umeå Marine Sciences Centre, Umeå University, SE-910 20 Hörnefors, Sweden Norbert Wasmund, Baltic Sea Research Institute, Seestr. 15, D-18119 Warnemünde, Germany Susanne Busch, Baltic Sea Research Institute, Seestr. 15, D-18119 Warnemünde, Germany Jeanette Göbel, Environmental Protection Agency (LANU), Hamburger Chaussee 25, D-24220 Flintbek, Germany Slawomira Gromisz, Sea Fisheries Institute, Kollataja 1, 81-332, Gdynia, Poland Siv Huseby, Umeå Marine Sciences Centre, Umeå University, SE-910 20 Hörnefors, Sweden Maija Huttunen, Finnish Institute of Marine Research, Lyypekinkuja 3A, P.O. Box 33, FIN-00931 Helsinki, Finland Andres Jaanus, Estonian Marine Institute, Mäealuse 10 a, 12618 Tallinn, Estonia Pirkko Kokkonen, Finnish Environment Institute, P.O. Box 140, FIN-00251 Helsinki, Finland Iveta Ledaine, Inst. of Aquatic Ecology, Marine Monitoring Center, University of Latvia, Daugavgrivas str. 8, Latvia Elzbieta Niemkiewicz, Maritime Institute in Gdansk, Laboratory of Ecology, Dlugi Targ 41/42, 80-830, Gdansk, Poland All photographs by Finnish Institute of Marine Research (FIMR) Cover photo: Aphanizomenon flos-aquae For bibliographic purposes this document should be cited to as: Olenina, I., Hajdu, S., Edler, L., Andersson, A., Wasmund, N., Busch, S., Göbel, J., Gromisz, S., Huseby, S., Huttunen, M., Jaanus, A., Kokkonen, P., Ledaine, I.
    [Show full text]
  • Microphytobenthos and Benthic Macroalgae Determine Sediment
    EGU Journal Logos (RGB) Open Access Open Access Open Access Advances in Annales Nonlinear Processes Geosciences Geophysicae in Geophysics Open Access Open Access Natural Hazards Natural Hazards and Earth System and Earth System Sciences Sciences Discussions Open Access Open Access Atmospheric Atmospheric Chemistry Chemistry and Physics and Physics Discussions Open Access Open Access Atmospheric Atmospheric Measurement Measurement Techniques Techniques Discussions Open Access Biogeosciences, 10, 5571–5588, 2013 Open Access www.biogeosciences.net/10/5571/2013/ Biogeosciences doi:10.5194/bg-10-5571-2013 Biogeosciences Discussions © Author(s) 2013. CC Attribution 3.0 License. Open Access Open Access Climate Climate of the Past of the Past Discussions Microphytobenthos and benthic macroalgae determine sediment Open Access Open Access organic matter composition in shallow photic sedimentsEarth System Earth System Dynamics 1,* 1 1 2 3 Dynamics4 A. K. Hardison , E. A. Canuel , I. C. Anderson , C. R. Tobias , B. Veuger , and M. N. Waters Discussions 1Virginia Institute of Marine Science, College of William & Mary, P.O. Box 1346, Gloucester Point, VA 23062, USA 2Department of Marine Sciences, University of Connecticut, Groton, CT 06340, USA Open Access Open Access 3The Royal Netherlands Institute for Sea Research (NIOZ), Yerseke, the Netherlands Geoscientific Geoscientific 4Valdosta State University, Valdosta, GA 31698, USA Instrumentation Instrumentation *current address: University of Texas Marine Science Institute, 750 Channel View Dr., Port Aransas,Methods TX 78373,and USA Methods and Correspondence to: A. K. Hardison ([email protected]) Data Systems Data Systems Discussions Open Access Received: 7 January 2013 – Published in Biogeosciences Discuss.: 15 February 2013 Open Access Geoscientific Revised: 30 May 2013 – Accepted: 19 June 2013 – Published: 20 August 2013 Geoscientific Model Development Model Development Discussions Abstract.
    [Show full text]
  • Diatoms and Dinoflagellates of an Estuarine Creek in Lagos
    JournalSci. Res. Dev., 2005/2006, Vol. 10,73‐82 Diatoms and Dinoflagellates of an Estuarine Creek in Lagos. I.C. Onyema*, D.I. Nwankwo and T. Oduleye Department of Marine Sciences, University of Lagos, Akoka‐Yaba, Lagos, Nigeria. ABSTRACT The diatoms and dinoflagellates phytoplankton of an estuarine creek in Lagos was investigated at two stations between July and December, 2004. A total of 37 species centric diatom (18 species) pennate diatoms (12 species) and 7 species of dinoflagellates were recorded. Values of species diversity (1 ‐ 14), abundance (10 ‐ 800 individuals), species richness (0 ‐ 2.40) and Shannon and Weiner index (0 ‐ 2.8f) were higher in the wet period (July ‐ October) than the dry season (November ‐ December). These bio‐indices were higher in station A than Bfor most of the study period. Almost all the diatoms and dinoflagellates recorded for this investigation have been reported by earlier workers for the Lagos lagoon, associated tidal creeks and offshore Lagos. The source of recruitment of the lagoonal dinoflagellates is probably the adjacent sea as most reported species were warm water oceanic forms. Keywords: diatoms, dinoflagellates, plankton, hydrology, salinity. INTRODUCTION In Nigeria there are few studies on the diatoms and dinoflagellates of marine and coastal aquatic ecosystems. Some of these studies are Olaniyan (1957), Nwankwo (1990a), Nwankwo and Kasumu‐Iginla (1997), Nwankwo (1991) and Nwankwo (1997). Other works such as Chindah and Pudo (1991), Nwankwo (1986, 1996), Chindah (1998), Kadiri (1999), Onyema et al. (2003, 2007), Onyema (2007, 2008) have investigated phytoplankton assemblages and pointed out the dominance of diatoms. Diatoms and dinoflagellates are important components of the photosynthetic organisms that form the base of the aquatic food chain (Davis, 1955; Sverdrop et al., 2003).
    [Show full text]
  • Diatom Distribution in the Lower Save River, Mozambique
    Department of Physical Geography Diatom distribution in the lower Save River, Mozambique Taxonomy, salinity gradient and taphonomy Marie Christiansson Master’s thesis NKA 156 Physical Geography and Quaternary Geology, 60 Credits 2016 Preface This Master’s thesis is Marie Christiansson’s degree project in Physical Geography and Quaternary Geology at the Department of Physical Geography, Stockholm University. The Master’s thesis comprises 60 credits (two terms of full-time studies). Supervisor has been Jan Risberg at the Department of Physical Geography, Stockholm University. Examiner has been Stefan Wastegård at the Department of Physical Geography, Stockholm University. The author is responsible for the contents of this thesis. Stockholm, 11 September 2016 Steffen Holzkämper Director of studies Abstract In this study diatom distribution within the lower Save River, Mozambique, has been identified from surface sediments, surface water, mangrove cortex and buried sediments. Sandy units, bracketing a geographically extensive clay layer, have been dated with optical stimulated luminescence (OSL). Diatom analysis has been used to interpret the spatial salinity gradient and to discuss taphonomic processes within the delta. Previously, one study has been performed in the investigated area and it is of great importance to continue to identify diatom distributions since siliceous microfossils are widely used for paleoenvironmental research. Two diatom taxa, which were not possible to classify to species level have been identified; Cyclotella sp. and Diploneis sp. It is suggested that these represent species not earlier described; however they are assigned a brackish water affinity. Diatom analysis from surface water, surface sediments and mangrove cortex indicate a transition from ocean water to a dominance of freshwater taxa c.
    [Show full text]
  • Inconsiderable Amount of Phytoplankton Leakage by Algal Mat Peeling from a Slow Sand Filter
    179 [JapaneseJournal of Water Treatment Biology Vol.33 No.4.179-186 1997] Inconsiderable Amount of Phytoplankton Leakage by Algal Mat Peeling from a Slow Sand Filter NOBUTADA NAKAMOTO, NORIYASU IWASE1, KENTARO NOZAKI2, and MASASHI SAKAI3 Department of Applied Biology,Faculty of TextileScience and Technology,Shinshu University, /Ueda, Nagano 386,Japan 1 Nippon JogesuidoSekkei Co. Ltd., 2Center forEcological Res., Kyoto Univ., 3NiigataEnvironment . Hygene Res.Inst., Niigata Abstract Heavy algal mat of a filamentous diatom is sometimes observed in an open slow sand filter. Amount of particleleakage breaking through a slow sand filterwas measured as an indicatorof chlorophylla concentration in filtratewater during the filterrun. Chlorophyll a concentration decreased rapidly since the beginning of filteroperation. Chlorophyll a concentration after ll days of filterrun reached to inconsiderableamount of 0.005 Chl. a mg m-3. This means the particleconcentration breaking through the slow sand filterwas negligiblysmall amount. Algal mat peeling during a continuous culture condition of filamentous diatom does not cause the par ticleleak through a slow sand filter. Key words: slow sand filter, algal mat, leakage, particle, chlorophyll varians. Development of algal mats of INTRODUCTION filamentousdiatom in slow sand filtershas a Algal mat of filamentousdiatom Melosira beneficialeffect of the prevention of filter varians is observed in slow sand filters clogging, the promotion of heterotrophic during the warm period which received activityby the oxygen
    [Show full text]