High-Energy Physics and Reality

Total Page:16

File Type:pdf, Size:1020Kb

High-Energy Physics and Reality High-Energy Physics and Reality – Some Philosophical Aspects of a Science Ph.D. Thesis by Henrik Zinkernagel February 1998 Supervisor Benny Lautrup Acknowledgements This project was made possible by the Center for the Philosophy of Nature and Sci- ence Studies at the Niels Bohr Institute, University of Copenhagen. It is a pleasure to thank Jens Bang, Tian Y. Cao, Robert S. Cohen, Finn Collin, Peter Galison, Jørgen Beck Hansen, Peter Hansen, Holger Bech Nielsen, Silvan S. Schweber, Chris LLewellyn Smith, Thomas S¨oderqvistand Peter Zinkernagel for stimulating discus- sions on physics and philosophy. Moreover, I would like to thank Alfred I. Tauber for hospitality during my stay at the Center for Philosophy of Science, Boston Uni- versity. Finally, I thank Claus Emmeche, Benny Lautrup, and Svend Erik Rugh for discussions, encouragement, and support all along the way. Members of the examination committee: Prof. James T. Cushing (University of Notre Dame) Prof. Poul Olesen (University of Copenhagen) Prof. Stig A. Pedersen (Roskilde University) 1 Contents 1 Introduction 4 1.1 The method . 5 1.2 Structure of the thesis . 5 2 Reflections on Science 7 2.1 A spectrum view on realism . 7 2.1.1 In between . 8 2.2 Theory-ladenness of data . 9 2.3 The social constructivist turn . 11 2.4 Underdetermination of theories by observations . 14 2.5 Other positions on the realism issue . 16 2.5.1 A break for the scientist . 17 2.6 A historicist view on science . 18 2.7 Objectivity . 20 2.7.1 Conditions for description and objectivity . 22 2.7.2 Classical physics and objectivity . 23 3 The Structure of High-Energy Physics 26 3.1 Theories leading to HEP . 26 3.2 The Standard Model . 27 4 Experimental High-Energy Physics 31 4.1 Experimental evidence . 31 4.1.1 Studying the properties of quarks . 33 4.1.2 The reality of quarks . 35 4.2 Weak neutral currents — facts or artifacts? . 36 4.2.1 The discovery of the neutral currents . 36 4.2.2 Pickering and social constructivism . 39 4.2.3 Galison and historicism . 40 4.2.4 Miller and Bullock, and realism . 41 4.2.5 The trust in neutral currents . 42 4.3 The electron g-factor . 43 4.3.1 g 2 experiments . 45 4.4 The trust− in, and interpretation of, experimental results . 46 5 Alternative Theories of High-Energy Physics? 48 5.1 A brief history of the vacuum . 48 5.2 QFT and the vacuum . 49 5.3 The Casimir effect and the interpretation of the vacuum . 51 5.3.1 The QED vacuum as a consequence of field quantization . 52 5.3.2 Source theory approach by Schwinger . 54 5.4 QFT vs. source theory . 56 5.4.1 Ontology of QFT . 57 5.5 Other alternatives to QFT? . 59 5.6 Theory selection and reality . 60 2 6 Conclusions 62 7 List of Works 64 A Sociology of Science – Should Scientists Care? 66 B Conditions for Objectivity 78 C An interview with C. LLewellyn Smith 94 D Referential Realism and Appropriate Technology 100 E g 2 and the trust in experimental results 104 − F The Casimir effect and the interpretation of the vacuum 123 3 1 Introduction What I want to address in this thesis is the relationship between High-Energy Physics (HEP) and reality. First, however, I will have to discuss what can pos- sibly be meant by these terms. The name HEP refers to the fact that studies of the microscopic structures of matter often consist in analyzing the reaction prod- ucts of high energy particle collisons1. Questions about reality (e.g. what reality consists of), and their relations to the notions of truth and objectivity, have been discussed throughout intellectual history, and not least in connection with science. Consider for example the statement: ”The goal of physics is to understand nature at the most fundamental level.” In first approximation this amounts to saying that the goal of physics is to understand reality — simply by equating ‘nature’ with ‘reality’. An impressive arsenal of philosophical arguments is raised against such an interpretation immediately. For instance: ”Are you making claims of reality in itself or as it appears to you”, ”Is this distinction possible in the first place?”, ”Does ‘understand’ mean that the theories of physics are true, and if so, in what sense?”, ”How will physicists ever know if the goal has been obtained?”, and ”In what sense does physics deal with the most fundamental level?”. These questions involve issues such as the conditions for obtaining knowledge, the possibility of reducing different branches of science to others and the meaning of concepts. Traditionally, philosophy distinguishes between epistemological and ontological, or metaphysical, questions. Epistemology addresses the nature of acquisition and justification of knowledge whereas ontology is about what lies behind our experiences of the world — what the world is really like. Sometimes ontology, or metaphysics, has been ridiculed as unnecessary and speculative, but the ontological aspects of questions such as ”is it possible to reduce biology to physics or is there a genuine division between the physical and the mental?”, or ”what are the causes or expla- nations for the phenomena we see” continue to attract interest from philosophers and scientists alike. Though the distinction between epistemology and ontology is useful, it is not always sharp. For instance, if one embraces the epistemological idea that scientific knowledge ultimately corresponds one-to-one with reality, then some ontological questions about what really exists are naturally answered. An investigation of the philosophical aspects of HEP must necessarily, within the scope of this work, be selective regarding aspects of the HEP-reality relation- ship. A hint of such selectiveness, or focus, is provided by the philosophy of science. Specifically, the two topics ‘theory-ladenness of experiments’ and ‘underdetermina- tion of theories by observations’ serve well to illuminate some epistemic aspects of HEP with ontological consequences. Very crudely, the content of the first is that experiments are always seen in a certain theoretical light, so that data are never pure. Underdetermination means that there is, in principle, always more than one theory capable of explaining the same set of observations. The ideas of theory-ladenness and underdetermination will provide the starting point for the philosophical discussions of HEP to follow. But first I will review and comment upon some of the recent approaches to the philosophical understanding 1Sometimes this branch of science is referred to as elementary particle physics or simply particle physics. In a chapter 3, I will discuss the structure of HEP in more detail. 4 of science in general. In addition, I will address a more semantic aspect of science which suggests certain constraints on the epistemology of science. Indeed, Niels Bohr is often quoted as saying that science aims not to understand nature but what we can meaningfully say about it. This has lead others to analyze the language we use for a scientific description and the conditions which govern this activity. Such a project has been pursued by the philosopher Peter Zinkernagel with whom I have been discussing physics, epistemology and his theories on these matters for many years. Despite my efforts to narrow the scope of study, I initially cut across a large number of issues related to the philosophy of science tradition. While this necessarily leads to some loss of details, it is my hope that the broad range of philosophical issues mentioned will put specific discussions of HEP in a proper context. 1.1 The method Coming from a physics background, the method in this work has primarily been learning and applying. More specifically, I have used my background to analyze parts of HEP in light of the philosophical discussions and positions which I have continually studied. At the same time, I have attempted to keep a critical eye on the philosophical underpinnings of the conclusions about the relationship between science and reality which have been given in the literature. The emphasis in this project is both on original case-studies of HEP and case- studies done by other scholars. It is well known that strict generalizations from single events, or even classes of events, are impossible. This is the philosophical problem of induction. On the other hand, if one is to understand science, or at least obtain some kind of overview, it is necessary to draw lessons from case-studies. By pointing to some of the problems raised by case-studies, one can illuminate the HEP-reality relationship from different perspectives. Except for many stimulating discussions with physicists and philosophers alike, the main input to the original case-studies presented in this work has come from the published literature. 1.2 Structure of the thesis Although the discussion at times will be technical, I have tried to keep this thesis readable for all who have a general knowledge of science and philosophy. While the following can be read on its own, I will make explicit reference to the appendices which contain a substantial part of the actual research I was involved in during the course of my studies (see chapter 7 for an overview). I begin in chapter 2 with a discussion of various philosophical positions on the relations between science and reality. Short introductions will be given to the ideas of incommensurable paradigms, theory-ladenness, and the underdetermination of theories by observations. Recently, these philosophical ideas have provided fuel for the social constructivists who have argued for a strong context-ladenness of science. I give a brief introduction to this branch of science studies and discuss how it is related to epistemology and ontology.
Recommended publications
  • Chaos, Scaling and Existence of a Continuum Limit in Classical Non-Abelian Lattice Gauge Theory
    LA-UR- 9 6 " 4 43"6" Los Alamos National Laboratory is operated by the University of Caiifomia for the United States Department of Energy under contract W-7405-ENG-36 TITLE: CHAOS, SCALING AND EXISTENCE OF A CONTINUUM Q&TJ LIMIT IN CLASSICAL NON-ABELIAN LATTICE GAUGE THEORY AUTHOR(S): Holger Nielsen, Niels Bohr Institute Hans Rugh, Universty of Warwick Svend Rugh, T-6 SUBMITTED TO: 28TH INTERNATIONAL CONFERENCE ON HIGH ENERGY PHYSICS, WARSAW POLAND, JULY 1996 By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. The Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory L< Los Alamos, New Mexico 87545 FORM NO. 836 R4 ST. NO. 2629 5/81 DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or use- fulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.
    [Show full text]
  • Pos(CORFU2019)049 ∗ -Ray Excess
    Several degenerate vacua and a model for Dark Matter in the pure Standard Model PoS(CORFU2019)049 Holger Bech Nielsen∗ Niels Bohr Institute, Blegdamsvej 15 -21, Copenhagen E-mail: [email protected] Colin D. Froggatt Glasgow University E-mail: [email protected] We return to a model of ours for what the dark matter can be with the property that it is compatible with the Standard Model alone. The only genuine new physics is a principle imposing restrictions on the parameters/couplings in the Standard Model. They are required to lead to several vacua being degenerate in energy density with each other. We especially look for some of the signals from the dark matter, which are not just gravitational: The 3.55 keV X-ray radiation, the positron excess and further g-ray excess. The picture of ours for dark matter has it being cm-size pearls of 100000 ton mass in order of magnitude. Corfu Summer Institute 2019 "School and Workshops on Elementary Particle Physics and Gravity" (CORFU2019) 31 August - 25 September 2019 Corfu, Greece ∗Speaker. ⃝c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/ Dark matter, pure S.M. Holger Bech Nielsen 1. Introduction Several degenerate vacua and a model for Dark Matter in the pure Standard Model We believe in the pure Standard Model further up in energy than most physicists, except for see-saw neutrinos and the baryon number excess for which we accept the need for new physics: • No new fundamental particles, except see-saw neutrinos and possibly particles almost at the Planck scale; but we shall not talk about such high energies today.
    [Show full text]
  • Classical String Theory
    PROSEMINAR IN THEORETICAL PHYSICS Classical String Theory ETH ZÜRICH APRIL 28, 2013 written by: DAVID REUTTER Tutor: DR.KEWANG JIN Abstract The following report is based on my talk about classical string theory given at April 15, 2013 in the course of the proseminar ’conformal field theory and string theory’. In this report a short historical and theoretical introduction to string theory is given. This is fol- lowed by a discussion of the point particle action, leading to the postulation of the Nambu-Goto and Polyakov action for the classical bosonic string. The equations of motion from these actions are derived, simplified and generally solved. Subsequently the Virasoro modes appearing in the solution are discussed and their algebra under the Poisson bracket is examined. 1 Contents 1 Introduction 3 2 The Relativistic String4 2.1 The Action of a Classical Point Particle..........................4 2.2 The General p-Brane Action................................6 2.3 The Nambu Goto Action..................................7 2.4 The Polyakov Action....................................9 2.5 Symmetries of the Action.................................. 11 3 Wave Equation and Solutions 13 3.1 Conformal Gauge...................................... 13 3.2 Equations of Motion and Boundary Terms......................... 14 3.3 Light Cone Coordinates................................... 15 3.4 General Solution and Oscillator Expansion......................... 16 3.5 The Virasoro Constraints.................................. 19 3.6 The Witt Algebra in Classical String Theory........................ 22 2 1 Introduction In 1969 the physicists Yoichiro Nambu, Holger Bech Nielsen and Leonard Susskind proposed a model for the strong interaction between quarks, in which the quarks were connected by one-dimensional strings holding them together. However, this model - known as string theory - did not really succeded in de- scribing the interaction.
    [Show full text]
  • Pos(CORFU2016)050
    F(750), We Miss You as a Bound State of 6 Top and 6 Antitop Quarks, Multiple Point Principle PoS(CORFU2016)050 Holger F. Bech Nielsen∗ y Niels Bohr Institute, Blegdamvej 15-21, DK 2100 Copenhagen Ø, Denmark D.L. Bennett Brooks Institute, Copenhagen, Denmark C.R. Das z BLTP, JINR, Dubna, Moscow, Russia C.D. Froggatt § Glasgow University, Glasgow, UK L.V. Laperashvili { ITEP, National Research Center “Kurchatov Institute”, Moscow, Russia We review our speculation, that in the pure Standard Model the exchange of Higgses, including also the ones “eaten by W ± and Z”, and of gluons together make a bound state of 6 top plus 6 anti top quarks bind so strongly that its mass gets down to about 1/3 of the mass of the collective mass 12 mt of the 12 constituent quarks. The true importance of this speculated bound state is that it makes it possible to uphold, even inside the Standard Mode, our proposal for what is really a new law of nature saying that there are several phases of empty space, vacua, all having very small energy densities (of the order of the present energy density in the universe). The reason suggested for believing in this new law called the “Multiple (Criticality) Point Principle” is, that estimating the mass of the speculated bound state using the “Multiple Point Principle” leads to two consistent mass-values; and they even agree with a crude bag-model like estimate of the mass of this bound state. Very unfortunately the statistical fluctuation so popular last year when interpreted as the digamma resonance F(750) turned out not to be a real resonance, because our estimated bound state mass is just around the mass of 750 GeV.
    [Show full text]
  • “Objects”, and Attempt Generalization to P-Adic Theory
    Instructive Review of Novel SFT with Non-interacting consituents “objects”, and attempt Generalization to p-adic theory Holger Bech Nielsen∗ Niels Bohr Institute, Copenhagen University E-mail: [email protected] Masao Ninomiya Yukawa Institute for Theoretical Physics , Kyoto University, Kyoto 606-0105, Japan and Yuji Sugawara Lab., Science and Engineering , Department of Physics Sciences, Ritsumeikan university E-mail: [email protected] We have constructed a new formalism for describing a situation with several (dual) strings present at a time, a string field theory, by means of a constituent / a strings from objects picture similar to, but importantly different from the “bits” by Charles Thorn[1]. Our "objects" (essentially the bits) represent rather a making a lattice in the light cone variables on the string. The remarkable feature and simplicity of our formalism is, that the "objects" do NOT interact, basically just run or sit trivially fixed. Scattering is a fake in our formalism. This opens also up for hoping for generalizations inspired by hadrons with their partons all having Bjorken variable x = 0, and thus infinitely many constituents. The p-adic string is an example. Corfu Summer Institute 2019 "School and Workshops on Elementary Particle Physics and Gravity" (CORFU2019) 31 August - 25 September 2019 Corfu, Greece ∗Speaker. c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/ Generalizing Novel SFT Holger Bech Nielsen 1. Introduction We have worked since long on a formalism for a string field theory with the possibility of de- scribing an arbitrary number of strings, in other words a string field theory, which we called a Novel SFT.[3] Our “Novel SFT” has same spirit as the before ours developped string from bits reformu- lation of string theory by Charles Thorn [1].
    [Show full text]
  • What Comes Beyond the Standard Models Bled, July 11–19, 2016
    i i “proc16” — 2016/12/12 — 10:17 — page I — #1 i i BLEJSKE DELAVNICE IZ FIZIKE LETNIK 17, STˇ . 2 BLED WORKSHOPS IN PHYSICS VOL. 17, NO. 2 ISSN 1580-4992 Proceedings to the 19th Workshop What Comes Beyond the Standard Models Bled, July 11–19, 2016 Edited by Norma Susana MankoˇcBorˇstnik Holger Bech Nielsen Dragan Lukman DMFA – ZALOZNIˇ STVOˇ LJUBLJANA, DECEMBER 2016 i i i i i i “proc16” — 2016/12/12 — 10:17 — page II — #2 i i The 19th Workshop What Comes Beyond the Standard Models, 11.– 19. July 2016, Bled was organized by Society of Mathematicians, Physicists and Astronomers of Slovenia and sponsored by Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana Society of Mathematicians, Physicists and Astronomers of Slovenia Beyond Semiconductor (MatjaˇzBreskvar) Scientific Committee John Ellis, CERN Roman Jackiw, MIT Masao Ninomiya, Okayama Institute for Quantum Physics Organizing Committee Norma Susana MankoˇcBorˇstnik Holger Bech Nielsen Maxim Yu. Khlopov The Members of the Organizing Committee of the International Workshop “What Comes Beyond the Standard Models”, Bled, Slovenia, state that the articles published in the Proceedings to the 19th Workshop “What Comes Beyond the Standard Models”, Bled, Slovenia are refereed at the Workshop in intense in-depth discussions. i i i i i i “proc16” — 2016/12/12 — 10:17 — page III — #3 i i Workshops organized at Bled . What Comes Beyond the Standard Models (June 29–July 9, 1998), Vol. 0 (1999) No. 1 (July 22–31, 1999) (July 17–31, 2000) (July 16–28, 2001), Vol. 2 (2001) No. 2 (July 14–25, 2002), Vol.
    [Show full text]
  • A Symmetries of the QCD Phase Transition Using Chiral Lattice Fermions
    The Chiral and U(1)A Symmetries of the QCD Phase Transition using Chiral Lattice Fermions Zhongjie Lin Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2014 ©2014 Zhongjie Lin All Rights Reserved Abstract The Chiral and U(1)A Symmetries of the QCD Phase Transition using Chiral Lattice Fermions Zhongjie Lin With regard to the nature of the finite-temperature QCD phase transition and the fate of the chiral and anomalous axial symmetries associated with it, we present in this thesis two parallel sets of investigations into the QCD phase transition region between 139 and 195 MeV. Both studies adopt the Iwasaki gauge action augmented with the dislocation suppression determinant ratio with 2+1 flavors of chiral fermions. This choice of lattice action accurately reproduces the SU(2)L × SU(2)R and U(1)A symmtries of the continuum. The first study simulates QCD thermodynamics on a line of constant physics that rep- resents 200 MeV pions and physical kaons using domain wall fermions (DWF) at three space-time volumes: 163 × 8, 243 × 8, and 323 × 8, where the largest volume varies in linear size between 5.6 fm (at T = 139 MeV) and 4.0 fm (at T = 195 MeV). The chiral condensates, connected and disconnected susceptibilities and the Dirac eigenvalue spectrum are reported and compared between different volumes as well as with the staggered results. We find a pseudo-critical temperature, Tc, of approximately 165 MeV and strong finite volume depen- dence below Tc.
    [Show full text]
  • What Comes Beyond the Standard Models, 19.– 29
    BLEJSKE DELAVNICE IZ FIZIKE LETNIK 6, STˇ .2 BLED WORKSHOPS IN PHYSICS VOL.6,NO. 2 ISSN 1580–4992 Proceedings to the 8th Workshop What Comes Beyond the Standard Models Bled, July 19–29, 2005 Edited by Norma MankoˇcBorˇstnik Holger Bech Nielsen Colin D. Froggatt Dragan Lukman arXiv:hep-ph/0512061v1 5 Dec 2005 DMFA – ZALOZNIˇ STVOˇ LJUBLJANA, DECEMBER 2005 The 8th Workshop What Comes Beyond the Standard Models, 19.– 29. July 2005, Bled was organized by Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana and sponsored by Slovenian Research Agency Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana Society of Mathematicians, Physicists and Astronomers of Slovenia Organizing Committee Norma MankoˇcBorˇstnik Colin D. Froggatt Holger Bech Nielsen Contents Preface ................................................... .......... V 1 Can MPP Together with Weinberg-Salam Higgs Provide Cosmological Inflation? D.L. Bennett and H.B. Nielsen ......................................... 1 2 Conserved Charges in 3d Gravity With Torsion M. Blagojevi´cand B. Cvetkovi´c ........................................ 8 3 Mass Matrices of Quarks and Leptons in the Approach Unifying Spins and Charges A. Borˇstnik Braˇciˇcand S.N. MankoˇcBorˇstnik ............................ 17 4 Dark Matter From Encapsulated Atoms C.D. Froggatt and H.B. Nielsen ........................................ 32 5 Dirac Sea for Bosons Also and SUSY for Single Particles Y. Habara, H.B. Nielsen and M. Ninomiya .............................. 40 6 Searching for Boundary Conditions in Kaluza-Klein-likeTheories D. Lukman, N. S. MankoˇcBorˇstnik and H. B. Nielsen ..................... 56 7 Second Quantization of Spinors and Clifford Algebra Objects N.S. MankoˇcBorˇstnik and H. B. Nielsen ................................ 63 8 Are there Interesting Problems That Could Increase Understanding of Physics and Mathematics? R.
    [Show full text]
  • Predicted the Higgs Mass
    PREdicted the Higgs Mass H.B. Nielsen ∗ The Niels Bohr Institute, Copenhagen, Denmark This article is one of the contributions of Holger Bech Nielsen to the conference of “What Comes Beyond the Standard Models” in Bled 2012. Abstract We like to investigate the idea of taking as non-accidental a remarkably good agreement of our (C.D. Froggatt and myself, and also with Yasutaka Takanishi[4]) prediction[1] of the Higgs mass. Our modernized most simple “multiple point prin- ciple” prediction 129:4 ± 2 GeV[7] versus the recently[2][3] observed 126 ± 1 GeV agrees well. The PREdicted Higgs mass is essentially the smallest value, that would not make our present vacuum unstable. There are two slightly different versions in as far as we can either use absolute stability by the alternative vacuum being required to have higher energy density than the present one or just metastability requiring that our vacuum should not have decayed in the early time just after big bang (or later if that should be easier). This is of course provided we suppose that the Standard Model would function almost all the way up to the scale relevant for the alternative vacuum (which as we shall see is close to the Planck energy scale for the Higgs field expectation value). This is very close to the suggestion of Akhani-Hamed et al., which though rather than the past stability discuss the future[6]. Also Shaposhnikov et al have predicted the Higgs mass. If this coincidence shows up with higher accuracy, so that we indeed had to take it as not being just an accident, we would have to conclude that there should in fact not be any disturbing “new physics” all the way up of such a strength, that it could disturb the coincidence.
    [Show full text]
  • What Comes Beyond the Standard Models Bled, July 9–17, 2017
    i i “proc17” — 2017/12/11 — 19:44 — page I — #1 i i BLEJSKE DELAVNICE IZ FIZIKE LETNIK 18, STˇ . 2 BLED WORKSHOPS IN PHYSICS VOL. 18, NO. 2 ISSN 1580-4992 Proceedings to the 20th Workshop What Comes Beyond the Standard Models Bled, July 9–17, 2017 Edited by Norma Susana MankoˇcBorˇstnik Holger Bech Nielsen Dragan Lukman DMFA – ZALOZNIˇ STVOˇ LJUBLJANA, DECEMBER 2017 i i i i i i “proc17” — 2017/12/11 — 19:44 — page II — #2 i i The 20th Workshop What Comes Beyond the Standard Models, 9.– 17. July 2017, Bled was organized by Society of Mathematicians, Physicists and Astronomers of Slovenia and sponsored by Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana Society of Mathematicians, Physicists and Astronomers of Slovenia Beyond Semiconductor (MatjaˇzBreskvar) Scientific Committee John Ellis, CERN Roman Jackiw, MIT Masao Ninomiya, Yukawa Institute for Theoretical Physics, Kyoto University and Mathematical Institute, Osaka-city University Organizing Committee Norma Susana MankoˇcBorˇstnik Holger Bech Nielsen Maxim Yu. Khlopov The Members of the Organizing Committee of the International Workshop “What Comes Beyond the Standard Models”, Bled, Slovenia, state that the articles published in the Proceedings to the 20th Workshop “What Comes Beyond the Standard Models”, Bled, Slovenia are refereed at the Workshop in intense in-depth discussions. i i i i i i “proc17” — 2017/12/11 — 19:44 — page III — #3 i i Workshops organized at Bled . What Comes Beyond the Standard Models (June 29–July 9, 1998), Vol. 0 (1999) No. 1 (July 22–31, 1999) (July 17–31, 2000) (July 16–28, 2001), Vol.
    [Show full text]
  • Neutrino Mass Matrix Suppression by Abelian Charges with See-Saw Mechanism
    CERN-TH/2000-119 NBI-HE-00-18 hep-ph/0004137 Neutrino mass matrix suppression by Abelian charges with see-saw mechanism H. B. Nielsena;b;‡ and Y. Takanishib;§ aTheory Division, CERN, CH-1211 Geneva 23, Switzerland bThe Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen Ø, Denmark Abstract We have investigated a neutrino mass matrix model without supersymmetry including three see-saw right-handed neutrinos around order 1012 GeV masses, aiming at a picture with all small numbers explained as being due to approximately conserved gauge charges. 2 +3 −2 The prediction of the solar neutrino mixing angle is given by sin 2θ =3−2 × 10 ;in fact, the solar mixing angle is, apart from detailed order unity corrections, equal to the Cabibbo angle. Furthermore the ratio of the solar neutrino mass square difference to that +11 −4 for the atmospheric neutrino oscillation is predicted to 6 −4 ×10 and is given by the same Cabibbo angle related parameter ξ as 6 ξ4. April 2000 ‡E-mail: [email protected]; [email protected] §E-mail: [email protected] 1 Introduction 1.1 Neutrino data According to several experiments [1, 2, 3, 4, 5] it now seems that neutrino oscillations have to be taken seriously, and in all likelihood we should interpret such neutrino oscillations as being due to neutrino masses. We consider it relatively hopeless to incorporate the neutrino oscillations observed by LSDN [6] which are partly excluded by Karmen 2 [7], especially insofar as in the present article we adopt the philosophy that only particles which are mass protected by the Standard Model (SM) gauge symmetries are sufficiently light to be observed at present.
    [Show full text]
  • CV Klavs Hansen April 2, 2020
    CV Klavs Hansen April 2, 2020 Present position: Professor of Physics, Tianjin University, P.R. China email: [email protected] Website http://physics.gu.se/∼klavs/ Date and place of birth: August 3rd 1958, Odense, Denmark Citizenship: Danish. Research Research interests: Nanoscale particles in the gas phase; nanoparticles and large molecules, including fullerenes, metal and molecular clusters, and polycyclic aro- matic hydrocarbon (PAH) molecules. Main topics: Finite size effects of quantum and thermal phenomena. Tools: Electrostatic storage rings, mass spectrometers. Publications: 155 peer-reviewed; H-index = 37; citations 4000+ (Database: Web of Science); Monograph 'Statistical Physics of Nanoparticles in the Gas Phase' (2nd edition published 2018). Education and degrees Undergraduate studies in physics, chemistry and mathematics at the University of Copenhagen 9/1978 - 6/1983. Masters degree work 9/1983 - 11/1986 in theoretical high energy physics at the Niels Bohr Institute, Copenhagen, Denmark, supervised by Holger Bech Nielsen. Cand. Scient. degree (= Masters degree) 11/1986. Graduate studies at the Niels Bohr Institute, Roskilde, Denmark, from 10/1987. Thesis adviser Sven Bjørnholm. Collaboration with Physics Nobel laureate B. Mot- telson. Ph.D. degree 4/1991 with the project title 'An Experimental Study of Electronic Shell Structure in Large Sodium Clusters'. Docent degree1 5/2000 at the Physics Department, University of Jyv¨askyl¨a,Finland. Previous positions Postdoc, Department of Chemistry, University of California, Los Angeles, 8/1991- 8/1992, with R.L.Whetten group. 1Swedish and Finnish academic degree beyond Ph.D. degree Research Assistant Professor (non-tenure track), Niels Bohr Institute, University of Copenhagen, 8/1992-1/1995.
    [Show full text]