AdS/CFT Correspondence GEORGE SIOPSIS Department of Physics and Astronomy The University of Tennessee Knoxville, TN 37996-1200 U.S.A. e-mail:
[email protected] Notes by James Kettner Fall 2010 ii Contents 1 Path Integral 1 1.1 Quantum Mechanics ........................ 1 1.2 Statistical Mechanics ........................ 3 1.3 Thermodynamics .......................... 4 1.3.1 Canonical ensemble . 4 1.3.2 Microcanonical ensemble . 4 1.4 Field Theory ............................. 4 2 Schwarzschild Black Hole 7 3 Reissner-Nordstrom¨ Black Holes 11 3.1 The holes . 11 3.2 Extremal limit . 13 3.3 Generalizations . 15 3.3.1 Multi-center solution . 15 3.3.2 Arbitrary dimension . 16 3.3.3 Kaluza-Klein reduction . 17 4 Black Branes from String Theory 19 5 Microscopic calculation of Entropy and Hawking Radiation 23 5.1 The hole . 23 5.2 Entropy . 25 5.3 Finite temperature . 27 5.4 Scattering and Hawking radiation . 29 iii iv CONTENTS LECTURE 1 Path Integral 1.1 Quantum Mechanics Set ~ = 1. Given a particle described by coordinates (q, t) with initial and final coor- dinates of (qi, ti) and (qf , tf ), the amplitude of the transition is ∗ hqi, ti | qf , tf i = hψ |qf , tf i = ψ (qf , tf ) . where ψ satisfies the Schrodinger¨ equation ∂ψ 1 ∂2ψ i = − . ∂t 2m ∂q2 Feynman introduced the path integral formalism Z −iS hqi, ti | qf , tf i = [dq] e q(ti)=qi,q(tf )=qf R where S = dtL is the action and L = L(q, q˙) is the Lagrangian, e.g., 1 L = mq˙2 − V (q) 2 We convert to imaginary time via the Wick rotation τ = it so 1 L → − mq˙2 − V (q) ≡ −L 2 E where the derivative is with respect to τ, LE is the total energy (which is bounded Rbelow), and the subscript E stands for Euclidean.