Lectures on Quantum Field Theory

Total Page:16

File Type:pdf, Size:1020Kb

Lectures on Quantum Field Theory Lectures on Quantum Field Theory Aleksandar R. Bogojevi´c1 Institute of Physics P. O. Box 57 11000 Belgrade, Yugoslavia March, 1998 1Email: [email protected] ii Contents 1 Linearity and Combinatorics 1 1.1 Schwinger–DysonEquations. 1 1.2 GeneratingFunctionals. 3 1.3 FreeFieldTheory ........................... 6 2 Further Combinatoric Structure 7 2.1 ClassicalFieldTheory ......................... 7 2.2 TheEffectiveAction .......................... 8 2.3 PathIntegrals.............................. 10 3 Using the Path Integral 15 3.1 Semi-ClassicalExpansion . 15 3.2 WardIdentities ............................. 18 4 Fermions 21 4.1 GrassmannNumbers.......................... 21 5 Euclidean Field Theory 27 5.1 Thermodynamics ............................ 30 5.2 WickRotation ............................. 31 6 Ferromagnets and Phase Transitions 33 6.1 ModelsofFerromagnets . 33 6.2 TheMeanFieldApproximation. 34 6.3 TransferMatrices............................ 35 6.4 Landau–Ginsburg Theory . 36 6.5 TowardsLoopExpansion . 38 7 The Propagator 41 7.1 ScalarPropagator ........................... 41 7.2 RandomWalk.............................. 43 iii iv CONTENTS 8 The Propagator Continued 47 8.1 The Yukawa Potential . 47 8.2 VirtualParticles ............................ 49 9 From Operators to Path Integrals 53 9.1 HamiltonianPathIntegral. 53 9.2 LagrangianPathIntegral . 55 9.3 QuantumFieldTheory. 57 10 Path Integral Surprises 59 10.1 Paths that don’t Contribute . 59 10.2 Lagrangian Measure from SD Equations . 62 11 Classical Symmetry 67 11.1 NoetherTechnique . 67 11.2 Energy-Momentum Tensors Galore . 70 12 Symmetry Breaking 73 12.1 GoldstoneBosons............................ 73 12.2 TheHiggsMechanism . 77 13 Effective Action to One Loop 81 13.1 TheEffectivePotential. 81 13.2 The O(N)Model............................ 86 14 Solitons 89 14.1 Perturbative vs. Semi-Classical . 89 14.2 ClassicalSolitons ............................ 90 14.3 The φ4 Kink .............................. 94 14.4 TheSine-GordonKink. 95 15 Solitons Continued 99 15.1 BogomolyniDecomposition . 99 15.2 Derrick’sTheorem . 102 16 Quantization of Solitons 105 16.1Stability................................. 105 16.2 PathIntegralFormalism . 107 17 Instanton Preliminaries 111 17.1 ClassicalSolutions . 111 17.2 TheDeterminant . 113 CONTENTS v 18 Instantons 117 18.1 DoubleWellPotential . 117 18.2 PeriodicPotential. 123 18.3 DecayoftheFalseVacuum . 124 19 Gauge Theories 127 19.1 GaugeTheoriesonaLattice. 127 19.2 TheContinuumLimit . 130 19.3 Electrodynamics . 132 20 Differential Geometry and Gauge Fields 137 20.1 DifferentialForms . 137 20.2 GaugeFieldsasForms . 140 21 Euclidian Yang-Mills and Topology 145 21.1 ThePontryaginIndex . 145 21.2 The Chern-Simons Action . 147 21.3 The Wess-Zumino Functional . 148 22 The Axial Anomaly 151 22.1 SchwingerModel ............................ 151 22.2 Current Correlators in d =2...................... 156 22.3 Axial Anomaly via Point-Splitting . 156 23 Gauge Anomalies 159 23.1 Cochains, Cocycles and the Coboundary Operator . 159 23.2 Chern Forms and the Descent Equations . 162 23.3 Atiyah-SingerIndexTheorem . 164 23.4 The Wess-Zumino-Witten Model . 168 24 Vacuum Polarization 171 24.1 Schwinger’sSolution . 171 24.2 PerturbativeSolution . 175 25 Perturbative vs. Exact 177 25.1 BorelSummation. 177 25.2 Theories that are not Borel Summable . 179 25.3 Getting Around Instantons . 180 26 Quantizing Gauge Theories 183 26.1 Faddeev-Popov Quantization . 183 26.2 BRSTSymmetry ............................ 186 26.3Examples ................................ 189 26.4 The U(1) Antisymmetric Tensor Model . 191 vi CONTENTS 27 Background Field Method 195 27.1 OneLoopCounterterms . 195 27.2 AnAuxilliaryGaugeSymmetry. 199 Preface These lecture notes form the material for the graduate course QFT 2, the second of three quantum field theory courses in the graduate program in High Energy Theory at the Institute of Physics in Belgrade. The course presents the functional for- malism of Schwinger-Dyson equations, generating functionals and Feynman path integrals. The topics covered include: perturbation theory, loop expansion, Eu- clidean field theory, solitons, instantons, vacuum polarization, geometry of gauge theories, quantization of gauge theories, anomalies, the background field method, renormalization, the renorm group, Borel summation, large N expansion and quan- tum field theory at non zero temperature. These general tools are presented on a host of models including: The Schwinger model, ’t Hooft model, sine-Gordon model, Liouville field theory, CPN model, Ising model, Landau-Ginsburg model, Heisenberg model, Wilson model, and the Kogut-Susskind model. vii Lecture 1 Linearity and Combinatorics 1.1 Schwinger–Dyson Equations We look at a given quantum field theory (QFT) with one-particle states φi. The theory is completely known if we are given all the n-particle transition amplitudes (Green’s functions) G ,G ,G We shall diagramaticaly depict these as the i ij ijk ··· following set of blobs: Gi = i Gi j = i j k G = i j k i j Instead of knowing an infinity of Green’s functons we seek a smaller set of basic amplitudes out of which we may build all the Green’s functions. For the moment let us suppose that we are given these basic amplitudes — also known as Feynman rules. k γ i J = ii j k = i i i jj i∆ = i j i j l k γ ii j k l = i jj The basic one-point amplitude is often called a source or external field. The 1 2 LECTURE 1. LINEARITY AND COMBINATORICS corresponding two-point amplitude is the propagator, while all the higher am- plitudes designate interaction vertices. The reasons for these names will become evident later. We are usualy going to be interested in dynamics without external fields, however, as we shall soon see, many of our calculations will be simplified if we keep the sources till the very end. Green’s functions are total amplitudes for a given process and they represent a sum of the amplitudes for all distinct ways in which this process can happen. This additive property is the central property of all quantum theories, and is mathematicaly stated in terms of the Schwinger–Dyson (SD) equations. To write down the SD equation for a given Green’s function we follow a simple rule: Pick any leg, follow it into the blob and list all possible outcomes consistent with the Feynman rules. For example, let us write the appropriate SD equation for Gijk for a model with only cubic and quartic interactions and no sources. k G = = i j k i + + j 1 1 + 2! + 3! If we were keeping sources we would have an additional piece On the other hand, if we also had an n-particle vertex we would in addition have 1 (!n-1) The numerical factors multiplying a given blob are just symmetry factors. The n-vertex has (n 1) internal legs which can be permuted (n 1)! times. To avoid − 1 − over-counting we multiply by (n 1)! as above. The SD equations are easily− seen to represent an infinite set of coupled equa- tions, and are extremely difficult to solve. We shall first present a systematic approximation scheme called perturbation theory. If the interaction aplitudes γ are small, then one can perform an expansion in powers of γ, i.e. in numbers 1.2. GENERATING FUNCTIONALS 3 of vertices. We, therefore, iterate the SD equations and disregard diagrams with more than a certain number of vertices. For example, we will calculate the two- point Green’s function to two vertices in a model with a purely cubic interaction and no source terms. We have 1 = + 2 2 1 Now the 3-point Green’s function obeys = + + 1 2 1 1 1 0 To proceed further we need the tadpole to one vertex 1 = 1 = 2 2 1 0 as well as the 4-point function to no vertices = + + = 0 0 0 0 = + + Putting this back into the expression for the two-point amplitude we get = ( + 1 + 2 4 + 1 + 1 2 2 ) 1.2 Generating Functionals Now we will present a compact way to write all the SD equations at once. To do this we introduce the generating functional ∞ im Z[J]= Gi1i2 im Ji1 Ji2 Jim = (1.1) m! ··· ··· m=0 X 4 LECTURE 1. LINEARITY AND COMBINATORICS = + + 1 +1 + ... = 2! 3! J Note that this is just the vacuum diagram in the presence of sources. Through its derivatives Z[J] generates all the Green’s functions, for example 1 ∂ ∂ ∂ G = Z[J] . (1.2) ijk i3 ∂J ∂J ∂J i j k J=0 If we do not set J = 0 at the end we get the corresponding Green’s function in the presence of an external field. Now we return to the SD equations. For simplicity let us look at a model with a purely cubic interaction. The tadpole SD equation with sources is just = + 1 J 2 J J In terms of Z[J] this is simply the differential equation 1 ∂ 1 1 ∂ 1 ∂ Z[J]= i iJ + iγ Z[J] . (1.3) i ∂J 4ij i 2 jkl i ∂J i ∂J i k l 1 We multiply both sides with − and the SD equation may then be compactly 4ij written as 1 ∂S + Ji Z[J] = 0 , (1.4) ∂φi φ= 1 ∂ i ∂J where we have introduced the quantum action functional 1 1 1 S[φ]= φ − φ + γ φ φ φ . (1.5) 2 i 4ij j 3! ijk i j k For a general theory the SD equation retains the same form, while the appropriate quantum action becomes 1 1 1 1 S[φ]= φ − φ + γ φ φ φ + γ φ φ φ φ + ... (1.6) 2 i 4ij j 3! ijk i j k 4! ijkl i j k l As we see S[φ] is the generating functional for the Feynman rules. Later we will see that it is strongly related to the classical action I[φ], hence its name. Note that 1.4 is just the tadpole SD equation. It is a homogenous linear differential equation. In the next lecture we shall find its formal solution. What is important for us now is that equation 1.4 completely determines Z[J], and hence our whole QFT.
Recommended publications
  • The Second Quantized Approach to the Study of Model Hamiltonians in Quantum Hall Regime
    Washington University in St. Louis Washington University Open Scholarship Arts & Sciences Electronic Theses and Dissertations Arts & Sciences Winter 12-15-2016 The Second Quantized Approach to the Study of Model Hamiltonians in Quantum Hall Regime Li Chen Washington University in St. Louis Follow this and additional works at: https://openscholarship.wustl.edu/art_sci_etds Recommended Citation Chen, Li, "The Second Quantized Approach to the Study of Model Hamiltonians in Quantum Hall Regime" (2016). Arts & Sciences Electronic Theses and Dissertations. 985. https://openscholarship.wustl.edu/art_sci_etds/985 This Dissertation is brought to you for free and open access by the Arts & Sciences at Washington University Open Scholarship. It has been accepted for inclusion in Arts & Sciences Electronic Theses and Dissertations by an authorized administrator of Washington University Open Scholarship. For more information, please contact [email protected]. WASHINGTON UNIVERSITY IN ST. LOUIS Department of Physics Dissertation Examination Committee: Alexander Seidel, Chair Zohar Nussinov Michael Ogilvie Xiang Tang Li Yang The Second Quantized Approach to the Study of Model Hamiltonians in Quantum Hall Regime by Li Chen A dissertation presented to The Graduate School of Washington University in partial fulfillment of the requirements for the degree of Doctor of Philosophy December 2016 Saint Louis, Missouri c 2016, Li Chen ii Contents List of Figures v Acknowledgements vii Abstract viii 1 Introduction to Quantum Hall Effect 1 1.1 The classical Hall effect . .1 1.2 The integer quantum Hall effect . .3 1.3 The fractional quantum Hall effect . .7 1.4 Theoretical explanations of the fractional quantum Hall effect . .9 1.5 Laughlin's gedanken experiment .
    [Show full text]
  • Path Integrals in Quantum Mechanics
    Path Integrals in Quantum Mechanics Dennis V. Perepelitsa MIT Department of Physics 70 Amherst Ave. Cambridge, MA 02142 Abstract We present the path integral formulation of quantum mechanics and demon- strate its equivalence to the Schr¨odinger picture. We apply the method to the free particle and quantum harmonic oscillator, investigate the Euclidean path integral, and discuss other applications. 1 Introduction A fundamental question in quantum mechanics is how does the state of a particle evolve with time? That is, the determination the time-evolution ψ(t) of some initial | i state ψ(t ) . Quantum mechanics is fully predictive [3] in the sense that initial | 0 i conditions and knowledge of the potential occupied by the particle is enough to fully specify the state of the particle for all future times.1 In the early twentieth century, Erwin Schr¨odinger derived an equation specifies how the instantaneous change in the wavefunction d ψ(t) depends on the system dt | i inhabited by the state in the form of the Hamiltonian. In this formulation, the eigenstates of the Hamiltonian play an important role, since their time-evolution is easy to calculate (i.e. they are stationary). A well-established method of solution, after the entire eigenspectrum of Hˆ is known, is to decompose the initial state into this eigenbasis, apply time evolution to each and then reassemble the eigenstates. That is, 1In the analysis below, we consider only the position of a particle, and not any other quantum property such as spin. 2 D.V. Perepelitsa n=∞ ψ(t) = exp [ iE t/~] n ψ(t ) n (1) | i − n h | 0 i| i n=0 X This (Hamiltonian) formulation works in many cases.
    [Show full text]
  • Canonical Quantization of Two-Dimensional Gravity S
    Journal of Experimental and Theoretical Physics, Vol. 90, No. 1, 2000, pp. 1–16. Translated from Zhurnal Éksperimental’noœ i Teoreticheskoœ Fiziki, Vol. 117, No. 1, 2000, pp. 5–21. Original Russian Text Copyright © 2000 by Vergeles. GRAVITATION, ASTROPHYSICS Canonical Quantization of Two-Dimensional Gravity S. N. Vergeles Landau Institute of Theoretical Physics, Russian Academy of Sciences, Chernogolovka, Moscow oblast, 142432 Russia; e-mail: [email protected] Received March 23, 1999 Abstract—A canonical quantization of two-dimensional gravity minimally coupled to real scalar and spinor Majorana fields is presented. The physical state space of the theory is completely described and calculations are also made of the average values of the metric tensor relative to states close to the ground state. © 2000 MAIK “Nauka/Interperiodica”. 1. INTRODUCTION quantization) for observables in the highest orders, will The quantum theory of gravity in four-dimensional serve as a criterion for the correctness of the selected space–time encounters fundamental difficulties which quantization route. have not yet been surmounted. These difficulties can be The progress achieved in the construction of a two- arbitrarily divided into conceptual and computational. dimensional quantum theory of gravity is associated The main conceptual problem is that the Hamiltonian is with two ideas. These ideas will be formulated below a linear combination of first-class constraints. This fact after the necessary notation has been introduced. makes the role of time in gravity unclear. The main computational problem is the nonrenormalizability of We shall postulate that space–time is topologically gravity theory. These difficulties are closely inter- equivalent to a two-dimensional cylinder.
    [Show full text]
  • Effective Quantum Field Theories Thomas Mannel Theoretical Physics I (Particle Physics) University of Siegen, Siegen, Germany
    Generating Functionals Functional Integration Renormalization Introduction to Effective Quantum Field Theories Thomas Mannel Theoretical Physics I (Particle Physics) University of Siegen, Siegen, Germany 2nd Autumn School on High Energy Physics and Quantum Field Theory Yerevan, Armenia, 6-10 October, 2014 T. Mannel, Siegen University Effective Quantum Field Theories: Lecture 1 Generating Functionals Functional Integration Renormalization Overview Lecture 1: Basics of Quantum Field Theory Generating Functionals Functional Integration Perturbation Theory Renormalization Lecture 2: Effective Field Thoeries Effective Actions Effective Lagrangians Identifying relevant degrees of freedom Renormalization and Renormalization Group T. Mannel, Siegen University Effective Quantum Field Theories: Lecture 1 Generating Functionals Functional Integration Renormalization Lecture 3: Examples @ work From Standard Model to Fermi Theory From QCD to Heavy Quark Effective Theory From QCD to Chiral Perturbation Theory From New Physics to the Standard Model Lecture 4: Limitations: When Effective Field Theories become ineffective Dispersion theory and effective field theory Bound Systems of Quarks and anomalous thresholds When quarks are needed in QCD É. T. Mannel, Siegen University Effective Quantum Field Theories: Lecture 1 Generating Functionals Functional Integration Renormalization Lecture 1: Basics of Quantum Field Theory Thomas Mannel Theoretische Physik I, Universität Siegen f q f et Yerevan, October 2014 T. Mannel, Siegen University Effective Quantum
    [Show full text]
  • Radiative Corrections in Curved Spacetime and Physical Implications to the Power Spectrum and Trispectrum for Different Inflationary Models
    Radiative Corrections in Curved Spacetime and Physical Implications to the Power Spectrum and Trispectrum for different Inflationary Models Dissertation zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades Doctor rerum naturalium der Georg-August-Universit¨atG¨ottingen Im Promotionsprogramm PROPHYS der Georg-August University School of Science (GAUSS) vorgelegt von Simone Dresti aus Locarno G¨ottingen,2018 Betreuungsausschuss: Prof. Dr. Laura Covi, Institut f¨urTheoretische Physik, Universit¨atG¨ottingen Prof. Dr. Karl-Henning Rehren, Institut f¨urTheoretische Physik, Universit¨atG¨ottingen Prof. Dr. Dorothea Bahns, Mathematisches Institut, Universit¨atG¨ottingen Miglieder der Prufungskommission:¨ Referentin: Prof. Dr. Laura Covi, Institut f¨urTheoretische Physik, Universit¨atG¨ottingen Korreferentin: Prof. Dr. Dorothea Bahns, Mathematisches Institut, Universit¨atG¨ottingen Weitere Mitglieder der Prufungskommission:¨ Prof. Dr. Karl-Henning Rehren, Institut f¨urTheoretische Physik, Universit¨atG¨ottingen Prof. Dr. Stefan Kehrein, Institut f¨urTheoretische Physik, Universit¨atG¨ottingen Prof. Dr. Jens Niemeyer, Institut f¨urAstrophysik, Universit¨atG¨ottingen Prof. Dr. Ariane Frey, II. Physikalisches Institut, Universit¨atG¨ottingen Tag der mundlichen¨ Prufung:¨ Mittwoch, 23. Mai 2018 Ai miei nonni Marina, Palmira e Pierino iv ABSTRACT In a quantum field theory with a time-dependent background, as in an expanding uni- verse, the time-translational symmetry is broken. We therefore expect loop corrections to cosmological observables to be time-dependent after renormalization for interacting fields. In this thesis we compute and discuss such radiative corrections to the primordial spectrum and higher order spectra in simple inflationary models. We investigate both massless and massive virtual fields, and we disentangle the time dependence caused by the background and by the initial state that is set to the Bunch-Davies vacuum at the beginning of inflation.
    [Show full text]
  • Introduction to Quantum Field Theory
    Utrecht Lecture Notes Masters Program Theoretical Physics September 2006 INTRODUCTION TO QUANTUM FIELD THEORY by B. de Wit Institute for Theoretical Physics Utrecht University Contents 1 Introduction 4 2 Path integrals and quantum mechanics 5 3 The classical limit 10 4 Continuous systems 18 5 Field theory 23 6 Correlation functions 36 6.1 Harmonic oscillator correlation functions; operators . 37 6.2 Harmonic oscillator correlation functions; path integrals . 39 6.2.1 Evaluating G0 ............................... 41 6.2.2 The integral over qn ............................ 42 6.2.3 The integrals over q1 and q2 ....................... 43 6.3 Conclusion . 44 7 Euclidean Theory 46 8 Tunneling and instantons 55 8.1 The double-well potential . 57 8.2 The periodic potential . 66 9 Perturbation theory 71 10 More on Feynman diagrams 80 11 Fermionic harmonic oscillator states 87 12 Anticommuting c-numbers 90 13 Phase space with commuting and anticommuting coordinates and quanti- zation 96 14 Path integrals for fermions 108 15 Feynman diagrams for fermions 114 2 16 Regularization and renormalization 117 17 Further reading 127 3 1 Introduction Physical systems that involve an infinite number of degrees of freedom are usually described by some sort of field theory. Almost all systems in nature involve an extremely large number of degrees of freedom. A droplet of water contains of the order of 1026 molecules and while each water molecule can in many applications be described as a point particle, each molecule has itself a complicated structure which reveals itself at molecular length scales. To deal with this large number of degrees of freedom, which for all practical purposes is infinite, we often regard a system as continuous, in spite of the fact that, at certain distance scales, it is discrete.
    [Show full text]
  • Scalar Quantum Electrodynamics
    A complex system that works is invariably found to have evolved from a simple system that works. John Gall 17 Scalar Quantum Electrodynamics In nature, there exist scalar particles which are charged and are therefore coupled to the electromagnetic field. In three spatial dimensions, an important nonrelativistic example is provided by superconductors. The phenomenon of zero resistance at low temperature can be explained by the formation of so-called Cooper pairs of electrons of opposite momentum and spin. These behave like bosons of spin zero and charge q =2e, which are held together in some metals by the electron-phonon interaction. Many important predictions of experimental data can be derived from the Ginzburg- Landau theory of superconductivity [1]. The relativistic generalization of this theory to four spacetime dimensions is of great importance in elementary particle physics. In that form it is known as scalar quantum electrodynamics (scalar QED). 17.1 Action and Generating Functional The Ginzburg-Landau theory is a three-dimensional euclidean quantum field theory containing a complex scalar field ϕ(x)= ϕ1(x)+ iϕ2(x) (17.1) coupled to a magnetic vector potential A. The scalar field describes bound states of pairs of electrons, which arise in a superconductor at low temperatures due to an attraction coming from elastic forces. The detailed mechanism will not be of interest here; we only note that the pairs are bound in an s-wave and a spin singlet state of charge q =2e. Ignoring for a moment the magnetic interactions, the ensemble of these bound states may be described, in the neighborhood of the superconductive 4 transition temperature Tc, by a complex scalar field theory of the ϕ -type, by a euclidean action 2 3 1 m g 2 E = d x ∇ϕ∗∇ϕ + ϕ∗ϕ + (ϕ∗ϕ) .
    [Show full text]
  • Large-Deviation Principles, Stochastic Effective Actions, Path Entropies
    Large-deviation principles, stochastic effective actions, path entropies, and the structure and meaning of thermodynamic descriptions Eric Smith Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA (Dated: February 18, 2011) The meaning of thermodynamic descriptions is found in large-deviations scaling [1, 2] of the prob- abilities for fluctuations of averaged quantities. The central function expressing large-deviations scaling is the entropy, which is the basis for both fluctuation theorems and for characterizing the thermodynamic interactions of systems. Freidlin-Wentzell theory [3] provides a quite general for- mulation of large-deviations scaling for non-equilibrium stochastic processes, through a remarkable representation in terms of a Hamiltonian dynamical system. A number of related methods now exist to construct the Freidlin-Wentzell Hamiltonian for many kinds of stochastic processes; one method due to Doi [4, 5] and Peliti [6, 7], appropriate to integer counting statistics, is widely used in reaction-diffusion theory. Using these tools together with a path-entropy method due to Jaynes [8], this review shows how to construct entropy functions that both express large-deviations scaling of fluctuations, and describe system-environment interactions, for discrete stochastic processes either at or away from equilibrium. A collection of variational methods familiar within quantum field theory, but less commonly applied to the Doi-Peliti construction, is used to define a “stochastic effective action”, which is the large-deviations rate function for arbitrary non-equilibrium paths. We show how common principles of entropy maximization, applied to different ensembles of states or of histories, lead to different entropy functions and different sets of thermodynamic state variables.
    [Show full text]
  • Basics of Thermal Field Theory
    September 2021 Basics of Thermal Field Theory A Tutorial on Perturbative Computations 1 Mikko Lainea and Aleksi Vuorinenb aAEC, Institute for Theoretical Physics, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland bDepartment of Physics, University of Helsinki, P.O. Box 64, FI-00014 University of Helsinki, Finland Abstract These lecture notes, suitable for a two-semester introductory course or self-study, offer an elemen- tary and self-contained exposition of the basic tools and concepts that are encountered in practical computations in perturbative thermal field theory. Selected applications to heavy ion collision physics and cosmology are outlined in the last chapter. 1An earlier version of these notes is available as an ebook (Springer Lecture Notes in Physics 925) at dx.doi.org/10.1007/978-3-319-31933-9; a citable eprint can be found at arxiv.org/abs/1701.01554; the very latest version is kept up to date at www.laine.itp.unibe.ch/basics.pdf. Contents Foreword ........................................... i Notation............................................ ii Generaloutline....................................... iii 1 Quantummechanics ................................... 1 1.1 Path integral representation of the partition function . ....... 1 1.2 Evaluation of the path integral for the harmonic oscillator . ..... 6 2 Freescalarfields ..................................... 13 2.1 Path integral for the partition function . ... 13 2.2 Evaluation of thermal sums and their low-temperature limit . .... 16 2.3 High-temperatureexpansion. 23 3 Interactingscalarfields............................... ... 30 3.1 Principles of the weak-coupling expansion . 30 3.2 Problems of the naive weak-coupling expansion . .. 38 3.3 Proper free energy density to (λ): ultraviolet renormalization . 40 O 3 3.4 Proper free energy density to (λ 2 ): infraredresummation .
    [Show full text]
  • Asymptotically Flat, Spherical, Self-Interacting Scalar, Dirac and Proca Stars
    S S symmetry Article Asymptotically Flat, Spherical, Self-Interacting Scalar, Dirac and Proca Stars Carlos A. R. Herdeiro and Eugen Radu * Departamento de Matemática da Universidade de Aveiro and Centre for Research and Development in Mathematics and Applications (CIDMA), Campus de Santiago, 3810-183 Aveiro, Portugal; [email protected] * Correspondence: [email protected] Received: 14 November 2020; Accepted: 1 December 2020; Published: 8 December 2020 Abstract: We present a comparative analysis of the self-gravitating solitons that arise in the Einstein–Klein–Gordon, Einstein–Dirac, and Einstein–Proca models, for the particular case of static, spherically symmetric spacetimes. Differently from the previous study by Herdeiro, Pombo and Radu in 2017, the matter fields possess suitable self-interacting terms in the Lagrangians, which allow for the existence of Q-ball-type solutions for these models in the flat spacetime limit. In spite of this important difference, our analysis shows that the high degree of universality that was observed by Herdeiro, Pombo and Radu remains, and various spin-independent common patterns are observed. Keywords: solitons; boson stars; Dirac stars 1. Introduction and Motivation 1.1. General Remarks The (modern) idea of solitons, as extended particle-like configurations, can be traced back (at least) to Lord Kelvin, around one and half centuries ago, who proposed that atoms are made of vortex knots [1]. However, the first explicit example of solitons in a relativistic field theory was found by Skyrme [2,3], (almost) one hundred years later. The latter, dubbed Skyrmions, exist in a model with four (real) scalars that are subject to a constraint.
    [Show full text]
  • Quantum Droplets in Dipolar Ring-Shaped Bose-Einstein Condensates
    UNIVERSITY OF BELGRADE FACULTY OF PHYSICS MASTER THESIS Quantum Droplets in Dipolar Ring-shaped Bose-Einstein Condensates Author: Supervisor: Marija Šindik Dr. Antun Balaž September, 2020 UNIVERZITET U BEOGRADU FIZICKIˇ FAKULTET MASTER TEZA Kvantne kapljice u dipolnim prstenastim Boze-Ajnštajn kondenzatima Autor: Mentor: Marija Šindik Dr Antun Balaž Septembar, 2020. Acknowledgments I would like to express my sincerest gratitude to my advisor Dr. Antun Balaž, for his guidance, patience, useful suggestions and for the time and effort he invested in the making of this thesis. I would also like to thank my family and friends for the emotional support and encouragement. This thesis is written in the Scientific Computing Laboratory, Center for the Study of Complex Systems of the Institute of Physics Belgrade. Numerical simulations were run on the PARADOX supercomputing facility at the Scientific Computing Laboratory of the Institute of Physics Belgrade. iii Contents Chapter 1 – Introduction 1 Chapter 2 – Theoretical description of ultracold Bose gases 3 2.1 Contact interaction..............................4 2.2 The Gross-Pitaevskii equation........................5 2.3 Dipole-dipole interaction...........................8 2.4 Beyond-mean-field approximation......................9 2.5 Quantum droplets............................... 13 Chapter 3 – Numerical methods 15 3.1 Rescaling of the effective GP equation................... 15 3.2 Split-step Crank-Nicolson method...................... 17 3.3 Calculation of the ground state....................... 20 3.4 Calculation of relevant physical quantities................. 21 Chapter 4 – Results 24 4.1 System parameters.............................. 24 4.2 Ground state................................. 25 4.3 Droplet formation............................... 26 4.4 Critical strength of the contact interaction................. 28 4.5 The number of droplets...........................
    [Show full text]
  • A Solvable Tensor Field Theory Arxiv:1903.02907V2 [Math-Ph]
    A Solvable Tensor Field Theory R. Pascalie∗ Universit´ede Bordeaux, LaBRI, CNRS UMR 5800, Talence, France, EU Mathematisches Institut der Westf¨alischen Wilhelms-Universit¨at,M¨unster,Germany, EU August 3, 2020 Abstract We solve the closed Schwinger-Dyson equation for the 2-point function of a tensor field theory with a quartic melonic interaction, in terms of Lambert's W-function, using a perturbative expansion and Lagrange-B¨urmannresummation. Higher-point functions are then obtained recursively. 1 Introduction Tensor models have regained a considerable interest since the discovery of their large N limit (see [1], [2], [3] or the book [4]). Recently, tensor models have been related in [5] and [6], to the Sachdev-Ye-Kitaev model [7], [8], [9], [10], which is a promising toy-model for understanding black holes through holography (see also [11], [12], the lectures [13] and the review [14]). In this paper we study a specific type of tensor field theory (TFT) 1. More precisely, we consider a U(N)-invariant tensor models whose kinetic part is modified to include a Laplacian- like operator (this operator is a discrete Laplacian in the Fourier transformed space of the tensor index space). This type of tensor model has originally been used to implement renormalization techniques for tensor models (see [16], the review [17] or the thesis [18] and references within) and has also been studied as an SYK-like TFT [19]. Recently, the functional Renormalization Group (FRG) as been used in [20] to investigate the existence of a universal continuum limit in tensor models, see also the review [21].
    [Show full text]