The Scrib1 Interactome and Its Relevance for Synaptic Plasticity & Neurodevelopmental Disorders Vera Margarido Pinheiro

Total Page:16

File Type:pdf, Size:1020Kb

The Scrib1 Interactome and Its Relevance for Synaptic Plasticity & Neurodevelopmental Disorders Vera Margarido Pinheiro The Scrib1 Interactome and its relevance for synaptic plasticity & neurodevelopmental disorders Vera Margarido Pinheiro To cite this version: Vera Margarido Pinheiro. The Scrib1 Interactome and its relevance for synaptic plasticity & neurode- velopmental disorders. Neurons and Cognition [q-bio.NC]. Université de Bordeaux, 2014. English. NNT : 2014BORD0318. tel-01435921 HAL Id: tel-01435921 https://tel.archives-ouvertes.fr/tel-01435921 Submitted on 16 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE PRÉSENTÉE POUR OBTENIR LE GRADE DE DOCTEUR DE L’UNIVERSITÉ DE BORDEAUX ÉCOLE DOCTORALE: SCIENCES DE LA VIE ET DE LA SANTE SPÉCIALITÉ: NEUROSCIENCES Par Vera PINHEIRO L’interactome de Scrib1 et son importance pour la plasticitè synaptique & les troubles de neurodéveloppement Sous la direction de : Nathalie SANS Soutenue le 4 Décembre 2014 Membres du jury : M. GARRET, Maurice CNRS, Bordeaux Président Mme CARVALHO, Ana Luisa Uni. Coimbra, Portugal rapporteur M. HENLEY, Jeremy Uni. Bristol, Royaume Uni rapporteur M. THOUMINE, Olivier CNRS, Bordeaux Examinateur M. BORG, Jean-Paul INSERM, Marseille Examinateur 2 Bordeaux University THESIS For the Doctorate of Bordeaux University Mention: Sciences, Technologies, Santé Option: Neurosciences Presented and defended publically on December 4th 2014 Vera PINHEIRO Born on 13th February 1987 at Portalegre, Portugal ______________________________________________________________________________________ 3 The Scrib1 Interactome and its relevance for synaptic plasticity & neurodevelopmental disorders ______________________________________________________________________________________ Jury members Dr. Maurice GARRET - Bordeaux, France- Chairman Prof. Ana Luisa CARVALHO - Coimbra, Portugal - Reviewer Prof. Jeremy HENLEY - Bristol, United Kingdom - Reviewer Dr. Olivier THOUMINE - Bordeaux, France - Examiner Prof. Jean Paul BORG - Marseille, France - Examiner Dr. Nathalie SANS - Bordeaux, France - Thesis supervisor Não há regresso. Há viagens sem regresso nem repetição. 4 Miguel Sousa Tavares, No teu deserto Acknowledgements First of all, I thank the jury members that accepted to evaluate the present work, honnouring me by their presence: Dr. Maurice Garret, Prof. Ana Luisa Carvalho, Prof. Jeremy Henley, Prof. Jean Paul Borg and Dr. Olivier Thoumine. I would like to thank SyMBAD (Marie Curie International Research and Training Program), Neurocentre Ma- gendie, Institut National de la Santé et de la Recherche Médicale, Conseil Regionel d’Aquitaine, Fondation pour la Recherche Médicale, Labex Brain and Association Schizo Oui for financial and/or logistical support. A special thank you to Pauline Lafenetre, Antonella Camitini, Poun Chea and Dania Prendin. A special thank you to Dr. Nathalie Sans and Dr. Mireille Montcouquiol for hosting me in the “Planar Cell Polarity and Plasticity”. I specially thank Dr. Nathalie Sans for your guide, patience and support throughout this last four years. Thank you as well to the past and present team members: Arnaud Giese, Elodie Richard, Christelle Durand, Miki Shimbo, Cédric Landmann, Aysegul Gezer, Tamrat Mamo, Lea Lasvaux, Maureen Decroo, Ronan Peyroutou, Benjamin Robert, Steve Carvalho dos Santos and Jerome Ezan. Lastly, an un- measurable thank you to Chantal Medina, Nicolas Piguel, Jean-Michel Blanc, Hortense Fanet, Muna Hilal- Larrieu and Maite Moreau, with whom I had the privilege to work aside and discuss with. Thank you as well to Amine Mehidi and Grégory Giannone, the Bordeaux Imaging Center, BioXtal and Giovanni Marsicano’s team, for sharing your knowledge and patience with me. 5 To all that I ran to across Europe before coming to Bordeaux (Universidade Nova de Lisboa, Universidade de Coimbra, Universittà degli Studi de Trieste). Antonio Laires, Palmira Costa, Cesar Fonseca, Carlos Du- arte, Enrico Tongiorgi and Gabriele Baj, thank you all for your guidance and helpful advices. To all those I had the chance to share a life-time experience with in the last four years: Philipp Bethge, Ber- nart Llinares i Gonzalez, Rihab Abdalhafiz, Ronan Chereau, Ciaran Murphy-Royal, Laurie Argaud, Ilaria Belluomo, Michele Colavita, Jimmy George, Laurent Ladepeche, Thomas Larrieu, Anael, Leslie & Julia Chazeau, Mikael Garcia, Lasani Wijetunge, Edgar Soria, Tiffany Desprez, José Cruz, Thomas Pfeiffer, Mar- tin Lenz, Caro & Serge. I hope to find you all somewhere, some day. And to those who, despite time and distance setting us apart, are always present: Frederike Lenz, Serra Yurur, Valentina Vaghi, Alessandro Fedele, Stefania Zulian, Giovanni Ferrati, Giacomo Benvenuti, Mehdi Bhouri, Elena Blanco, Boris, Vegas, Ana Quitéria, Guilherme Cardoso, Fabia Gomes, Joana Flores, Hélio Tomas, Claudia Correia, André Ferreria, Catarina Veiga, Liliana & Gonçalo Alexandre, Joao, Fernanda & José Lourenço, Felicia, Carlos & Lurdes Amador and last, but not the least, to my family. An exceptional thank you to an exceptional woman - my heroine, friend and mother, for your unconditional love and support. Finalement, à Désiré Mbida & Luca, merci de faire partie de ma nouvelle vie. Il ne me reste donc plus qu’un devoir, tourner la page et écrire un nouveau chapitre à votre côté. The Scrib1 Interactome and its relevance for synaptic plasticity & neurodevelopmental disorders The brain is made up of billions of nerve cells, or neurons, which can communicate with each other through functionally distinct structures - the axon and the dendrite. We focused our study on the development and maintenance of dendritic spines, whose changes in morphology are intimately correlated with synaptic plas- ticity, or the ability to respond to synaptic activity. Dendritic spines originate from motile dendritic filopodia, which mature into spines following axonal contact. However, the spatial and temporal coordination of all the molecular components throughout the formation and maturation of a synapse remains unclear. Scribble1 is planar cell polarity protein (PCP) classically implicated in the homeostasis of epithelial tissues and tumour growth. In the mammalian brain, Scrib1 is a critical scaffold protein in brain development and function. The main goal of this work was to investigate the molecular mechanisms underlying Scrib1 role in synapse formation and maintenance. Firstly, we depict the importance of Scrib1 PDZ-dependent interactions on glutamate receptors trafficking as well as bidirectional plasticity signalling pathway underying spatial memory. Secondly, we focus on the functional consequences of a recently identified autism spectrum disor- der (ASD) mutation of Scrib1 on neuronal morpholgy and function. We demonstrated that Scrib1 regulates dendritic arborization, spine formation and functional maintenance via an actin-dependent mechanism. Taken altogether, this thesis highlights the PCP protein Scrib1 as key scaffold protein in brain development and function, playing a plethora of roles from the subcelular to the cognitive level. 6 Keywords: Scrib1, autism spectrum disorders, hippocampal neurons, synaptic plasticity, dendritic spine, glutamate receptors traffic, actin dynamics. L’interactome de Scrib1 et son importance pour la plasticitè synaptique & les troubles de neurodéve- loppement Le cerveau contient environ cent milliards de neurones, qui communiquent entre eux par des structures fonc- tionnellement distinctes – l’axone et la dendrite Notre étude s’est intéressée au développement et au main- tien des épines dendritiques, dont les changements morphologiques sont intimement liés à la plasticité sy- naptique. Ces épines ont pour origine les filopodes qui évoluent en épines lors du contact axonal. Cette tran- sition implique une myriade de molécules, dont la coordination spatiale et temporelle reste largement mé- connue. Scribble1 est une protéine de polarité cellulaire classiquement impliquée dans l’homéostasie de tissues épi- théliaux, la croissance et progression des tumeurs. Scrib1 est aussi une protéine d’échafaudage critique pour le développement et le bon fonctionnement du cerveau. Notre objectif c’est été l’étude des mécanismes moléculaires sous-jacents à un rôle potentiel de Scrib1 dans la formation et le maintien des synapses. On a décrit l’importance d’interactions dépendantes des domaines PDZ sur le trafic des récepteurs glutamater- giques et sur la voie de signalisation de plasticité synaptique. Ensuite, nous avons évalué les conséquences fonctionnelles d’une mutation de Scrib1 récemment identifiée chez un patient humain atteint des troubles du spectre autistique dans la morphologie et fonction des neurones. L’ensemble de ce travail demontre que Scrib1, protéine d’échafaudage clé dans le développement et la fonction du cerveau, joue une multitude de rôle du niveau subcellulaire au niveau cognitif. 7 Mots clés: Scrib1, troubles du spectre autistique, neurones hippocampiques, plasticité synaptique, épine dendritique, trafic des récepteurs glutamatergiques, dynamique du cytosquelette d'actine. Physiopathologie de la plasticité neuronale Neurocentre Magendie INSERM U862 Université Bordeaux
Recommended publications
  • Supplementary Materials: Evaluation of Cytotoxicity and Α-Glucosidase Inhibitory Activity of Amide and Polyamino-Derivatives of Lupane Triterpenoids
    Supplementary Materials: Evaluation of cytotoxicity and α-glucosidase inhibitory activity of amide and polyamino-derivatives of lupane triterpenoids Oxana B. Kazakova1*, Gul'nara V. Giniyatullina1, Akhat G. Mustafin1, Denis A. Babkov2, Elena V. Sokolova2, Alexander A. Spasov2* 1Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences, 71, pr. Oktyabrya, 450054 Ufa, Russian Federation 2Scientific Center for Innovative Drugs, Volgograd State Medical University, Novorossiyskaya st. 39, Volgograd 400087, Russian Federation Correspondence Prof. Dr. Oxana B. Kazakova Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences 71 Prospeсt Oktyabrya Ufa, 450054 Russian Federation E-mail: [email protected] Prof. Dr. Alexander A. Spasov Scientific Center for Innovative Drugs of the Volgograd State Medical University 39 Novorossiyskaya st. Volgograd, 400087 Russian Federation E-mail: [email protected] Figure S1. 1H and 13C of compound 2. H NH N H O H O H 2 2 Figure S2. 1H and 13C of compound 4. NH2 O H O H CH3 O O H H3C O H 4 3 Figure S3. Anticancer screening data of compound 2 at single dose assay 4 Figure S4. Anticancer screening data of compound 7 at single dose assay 5 Figure S5. Anticancer screening data of compound 8 at single dose assay 6 Figure S6. Anticancer screening data of compound 9 at single dose assay 7 Figure S7. Anticancer screening data of compound 12 at single dose assay 8 Figure S8. Anticancer screening data of compound 13 at single dose assay 9 Figure S9. Anticancer screening data of compound 14 at single dose assay 10 Figure S10.
    [Show full text]
  • Analysis of Trans Esnps Infers Regulatory Network Architecture
    Analysis of trans eSNPs infers regulatory network architecture Anat Kreimer Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2014 © 2014 Anat Kreimer All rights reserved ABSTRACT Analysis of trans eSNPs infers regulatory network architecture Anat Kreimer eSNPs are genetic variants associated with transcript expression levels. The characteristics of such variants highlight their importance and present a unique opportunity for studying gene regulation. eSNPs affect most genes and their cell type specificity can shed light on different processes that are activated in each cell. They can identify functional variants by connecting SNPs that are implicated in disease to a molecular mechanism. Examining eSNPs that are associated with distal genes can provide insights regarding the inference of regulatory networks but also presents challenges due to the high statistical burden of multiple testing. Such association studies allow: simultaneous investigation of many gene expression phenotypes without assuming any prior knowledge and identification of unknown regulators of gene expression while uncovering directionality. This thesis will focus on such distal eSNPs to map regulatory interactions between different loci and expose the architecture of the regulatory network defined by such interactions. We develop novel computational approaches and apply them to genetics-genomics data in human. We go beyond pairwise interactions to define network motifs, including regulatory modules and bi-fan structures, showing them to be prevalent in real data and exposing distinct attributes of such arrangements. We project eSNP associations onto a protein-protein interaction network to expose topological properties of eSNPs and their targets and highlight different modes of distal regulation.
    [Show full text]
  • The Global Architecture Shaping the Heterogeneity and Tissue-Dependency of the MHC Class I Immunopeptidome Is Evolutionarily Conserved
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.28.317750; this version posted September 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The Global Architecture Shaping the Heterogeneity and Tissue-Dependency of the MHC Class I Immunopeptidome is Evolutionarily Conserved Authors Peter Kubiniok†1, Ana Marcu†2,3, Leon Bichmann†2,4, Leon Kuchenbecker4, Heiko Schuster1,5, David Hamelin1, Jérome Despault1, Kevin Kovalchik1, Laura Wessling1, Oliver Kohlbacher4,7,8,9,10 Stefan Stevanovic2,3,6, Hans-Georg Rammensee2,3,6, Marian C. Neidert11, Isabelle Sirois1, Etienne Caron1,12* Affiliations *Corresponding and Leading author: Etienne Caron ([email protected]) †Equal contribution to this work 1CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada 2Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Baden-Württemberg, 72076, Germany. 3Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Baden-Württemberg, 72076, Germany. 4Applied Bioinformatics, Dept. of Computer Science, University of Tübingen, Tübingen, Baden- Württemberg, 72074, Germany. 5Immatics Biotechnologies GmbH, Tübingen, 72076, Baden-Württemberg, Germany. 6DKFZ Partner Site Tübingen, German Cancer Consortium (DKTK), Tübingen, Baden- Württemberg, 72076, Germany. 7Institute for Bioinformatics and Medical Informatics,
    [Show full text]
  • Defining Functional Interactions During Biogenesis of Epithelial Junctions
    ARTICLE Received 11 Dec 2015 | Accepted 13 Oct 2016 | Published 6 Dec 2016 | Updated 5 Jan 2017 DOI: 10.1038/ncomms13542 OPEN Defining functional interactions during biogenesis of epithelial junctions J.C. Erasmus1,*, S. Bruche1,*,w, L. Pizarro1,2,*, N. Maimari1,3,*, T. Poggioli1,w, C. Tomlinson4,J.Lees5, I. Zalivina1,w, A. Wheeler1,w, A. Alberts6, A. Russo2 & V.M.M. Braga1 In spite of extensive recent progress, a comprehensive understanding of how actin cytoskeleton remodelling supports stable junctions remains to be established. Here we design a platform that integrates actin functions with optimized phenotypic clustering and identify new cytoskeletal proteins, their functional hierarchy and pathways that modulate E-cadherin adhesion. Depletion of EEF1A, an actin bundling protein, increases E-cadherin levels at junctions without a corresponding reinforcement of cell–cell contacts. This unexpected result reflects a more dynamic and mobile junctional actin in EEF1A-depleted cells. A partner for EEF1A in cadherin contact maintenance is the formin DIAPH2, which interacts with EEF1A. In contrast, depletion of either the endocytic regulator TRIP10 or the Rho GTPase activator VAV2 reduces E-cadherin levels at junctions. TRIP10 binds to and requires VAV2 function for its junctional localization. Overall, we present new conceptual insights on junction stabilization, which integrate known and novel pathways with impact for epithelial morphogenesis, homeostasis and diseases. 1 National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK. 2 Computing Department, Imperial College London, London SW7 2AZ, UK. 3 Bioengineering Department, Faculty of Engineering, Imperial College London, London SW7 2AZ, UK. 4 Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK.
    [Show full text]
  • Use of Genomic Tools to Discover the Cause of Champagne Dilution Coat Color in Horses and to Map the Genetic Cause of Extreme Lordosis in American Saddlebred Horses
    University of Kentucky UKnowledge Theses and Dissertations--Veterinary Science Veterinary Science 2014 USE OF GENOMIC TOOLS TO DISCOVER THE CAUSE OF CHAMPAGNE DILUTION COAT COLOR IN HORSES AND TO MAP THE GENETIC CAUSE OF EXTREME LORDOSIS IN AMERICAN SADDLEBRED HORSES Deborah G. Cook University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Cook, Deborah G., "USE OF GENOMIC TOOLS TO DISCOVER THE CAUSE OF CHAMPAGNE DILUTION COAT COLOR IN HORSES AND TO MAP THE GENETIC CAUSE OF EXTREME LORDOSIS IN AMERICAN SADDLEBRED HORSES" (2014). Theses and Dissertations--Veterinary Science. 15. https://uknowledge.uky.edu/gluck_etds/15 This Doctoral Dissertation is brought to you for free and open access by the Veterinary Science at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Veterinary Science by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • 4-6 Weeks Old Female C57BL/6 Mice Obtained from Jackson Labs Were Used for Cell Isolation
    Methods Mice: 4-6 weeks old female C57BL/6 mice obtained from Jackson labs were used for cell isolation. Female Foxp3-IRES-GFP reporter mice (1), backcrossed to B6/C57 background for 10 generations, were used for the isolation of naïve CD4 and naïve CD8 cells for the RNAseq experiments. The mice were housed in pathogen-free animal facility in the La Jolla Institute for Allergy and Immunology and were used according to protocols approved by the Institutional Animal Care and use Committee. Preparation of cells: Subsets of thymocytes were isolated by cell sorting as previously described (2), after cell surface staining using CD4 (GK1.5), CD8 (53-6.7), CD3ε (145- 2C11), CD24 (M1/69) (all from Biolegend). DP cells: CD4+CD8 int/hi; CD4 SP cells: CD4CD3 hi, CD24 int/lo; CD8 SP cells: CD8 int/hi CD4 CD3 hi, CD24 int/lo (Fig S2). Peripheral subsets were isolated after pooling spleen and lymph nodes. T cells were enriched by negative isolation using Dynabeads (Dynabeads untouched mouse T cells, 11413D, Invitrogen). After surface staining for CD4 (GK1.5), CD8 (53-6.7), CD62L (MEL-14), CD25 (PC61) and CD44 (IM7), naïve CD4+CD62L hiCD25-CD44lo and naïve CD8+CD62L hiCD25-CD44lo were obtained by sorting (BD FACS Aria). Additionally, for the RNAseq experiments, CD4 and CD8 naïve cells were isolated by sorting T cells from the Foxp3- IRES-GFP mice: CD4+CD62LhiCD25–CD44lo GFP(FOXP3)– and CD8+CD62LhiCD25– CD44lo GFP(FOXP3)– (antibodies were from Biolegend). In some cases, naïve CD4 cells were cultured in vitro under Th1 or Th2 polarizing conditions (3, 4).
    [Show full text]
  • UHMK1 Dependent Phosphorylation of Cajal Body Protein Coilin Altered 5-FU Sensitivity in Colon Cancer Cells
    UHMK1 Dependent Phosphorylation of Cajal Body Protein Coilin Altered 5-FU Sensitivity in Colon Cancer Cells Huan Niu Capital Medical University Meng Zhao Capital Medical University Jing Huang Capital Medical University Jing Wang Capital Medical University Yang Si Capital Medical University Shan Cheng ( [email protected] ) Capital Medical University https://orcid.org/0000-0002-8658-6916 Wei Ding Capital Medical University Research Keywords: Cajal body, coilin, UHMK1, 5-FU resistance, colon cancer Posted Date: August 2nd, 2021 DOI: https://doi.org/10.21203/rs.3.rs-753268/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/23 Abstract Background: Resistance to 5-uorouracil (5-FU) in chemotherapy and recurrence of colorectal tumors is a serious problem to be resolved for the improvement of clinical outcomes. Methods: In the present study, the effects of conditioned medium (CM) derived from 5-FU-resistant HCT- 8/FU on cell functions were evaluated. The methods of immunouorescence and RNA-seq analyses were used to investigate the molecular mechanism underlining the roles of CM from resistant cells. Results: we found that CM derived from 5-FU-resistant HCT-8/FU was able to reduce 5-FU chemosensitivity of HCT-8 colon cancer cells, with correlating changes in the number and morphology of the Cajal bodies (CBs) as observable nuclear structures. We identied UHMK1 was able to change the disassembly and reassembly of CBs regulated by the phosphorylation of coilin, a major component of CBs, and subsequently resulted in a large number of variations of RNA alternative splicing, affecting the cell survival following 5-FU treatment through changes in intracellular phenotype and transmitted preadaptive signals to adjacent cells in tumor microenvironment (TME).
    [Show full text]
  • Supplemental Information
    Supplemental information Dissection of the genomic structure of the miR-183/96/182 gene. Previously, we showed that the miR-183/96/182 cluster is an intergenic miRNA cluster, located in a ~60-kb interval between the genes encoding nuclear respiratory factor-1 (Nrf1) and ubiquitin-conjugating enzyme E2H (Ube2h) on mouse chr6qA3.3 (1). To start to uncover the genomic structure of the miR- 183/96/182 gene, we first studied genomic features around miR-183/96/182 in the UCSC genome browser (http://genome.UCSC.edu/), and identified two CpG islands 3.4-6.5 kb 5’ of pre-miR-183, the most 5’ miRNA of the cluster (Fig. 1A; Fig. S1 and Seq. S1). A cDNA clone, AK044220, located at 3.2-4.6 kb 5’ to pre-miR-183, encompasses the second CpG island (Fig. 1A; Fig. S1). We hypothesized that this cDNA clone was derived from 5’ exon(s) of the primary transcript of the miR-183/96/182 gene, as CpG islands are often associated with promoters (2). Supporting this hypothesis, multiple expressed sequences detected by gene-trap clones, including clone D016D06 (3, 4), were co-localized with the cDNA clone AK044220 (Fig. 1A; Fig. S1). Clone D016D06, deposited by the German GeneTrap Consortium (GGTC) (http://tikus.gsf.de) (3, 4), was derived from insertion of a retroviral construct, rFlpROSAβgeo in 129S2 ES cells (Fig. 1A and C). The rFlpROSAβgeo construct carries a promoterless reporter gene, the β−geo cassette - an in-frame fusion of the β-galactosidase and neomycin resistance (Neor) gene (5), with a splicing acceptor (SA) immediately upstream, and a polyA signal downstream of the β−geo cassette (Fig.
    [Show full text]
  • Accurate Characterization of the IFITM Locus Using Miseq and Pacbio Sequencing Shows Genetic Variation in Galliformes
    Bassano et al. BMC Genomics (2017) 18:419 DOI 10.1186/s12864-017-3801-8 RESEARCH ARTICLE Open Access Accurate characterization of the IFITM locus using MiSeq and PacBio sequencing shows genetic variation in Galliformes Irene Bassano1,2, Swee Hoe Ong1, Nathan Lawless3, Thomas Whitehead3, Mark Fife3 and Paul Kellam1,2* Abstract Background: Interferon inducible transmembrane (IFITM) proteins are effectors of the immune system widely characterized for their role in restricting infection by diverse enveloped and non-enveloped viruses. The chicken IFITM (chIFITM)genesareclusteredonchromosome5andtodate four genes have been annotated, namely chIFITM1, chIFITM3, chIFITM5 and chIFITM10. However, due to poor assembly of this locus in the Gallus Gallus v4 genome, accurate characterization has so far proven problematic. Recently, a new chicken reference genome assembly Gallus Gallus v5 was generated using Sanger, 454, Illumina and PacBio sequencing technologies identifying considerable differences in the chIFITM locus over the previous genome releases. Methods: We re-sequenced the locus using both Illumina MiSeq and PacBio RS II sequencing technologies and we mapped RNA-seq data from the European Nucleotide Archive (ENA) to this finalized chIFITM locus. Using SureSelect probes capture probes designed to the finalized chIFITM locus, we sequenced the locus of a different chicken breed, namely a White Leghorn, and a turkey. Results: We confirmed the Gallus Gallus v5 consensus except for two insertions of 5 and 1 base pair within the chIFITM3 and B4GALNT4 genes, respectively, and a single base pair deletion within the B4GALNT4 gene. The pull down revealed a singleaminoacidsubstitutionofA63VintheCILdomainofIFITM2comparedtoRedJunglefowland13,13and11 differences between IFITM1, 2 and 3 of chickens and turkeys, respectively.
    [Show full text]
  • Association of Gene Ontology Categories with Decay Rate for Hepg2 Experiments These Tables Show Details for All Gene Ontology Categories
    Supplementary Table 1: Association of Gene Ontology Categories with Decay Rate for HepG2 Experiments These tables show details for all Gene Ontology categories. Inferences for manual classification scheme shown at the bottom. Those categories used in Figure 1A are highlighted in bold. Standard Deviations are shown in parentheses. P-values less than 1E-20 are indicated with a "0". Rate r (hour^-1) Half-life < 2hr. Decay % GO Number Category Name Probe Sets Group Non-Group Distribution p-value In-Group Non-Group Representation p-value GO:0006350 transcription 1523 0.221 (0.009) 0.127 (0.002) FASTER 0 13.1 (0.4) 4.5 (0.1) OVER 0 GO:0006351 transcription, DNA-dependent 1498 0.220 (0.009) 0.127 (0.002) FASTER 0 13.0 (0.4) 4.5 (0.1) OVER 0 GO:0006355 regulation of transcription, DNA-dependent 1163 0.230 (0.011) 0.128 (0.002) FASTER 5.00E-21 14.2 (0.5) 4.6 (0.1) OVER 0 GO:0006366 transcription from Pol II promoter 845 0.225 (0.012) 0.130 (0.002) FASTER 1.88E-14 13.0 (0.5) 4.8 (0.1) OVER 0 GO:0006139 nucleobase, nucleoside, nucleotide and nucleic acid metabolism3004 0.173 (0.006) 0.127 (0.002) FASTER 1.28E-12 8.4 (0.2) 4.5 (0.1) OVER 0 GO:0006357 regulation of transcription from Pol II promoter 487 0.231 (0.016) 0.132 (0.002) FASTER 6.05E-10 13.5 (0.6) 4.9 (0.1) OVER 0 GO:0008283 cell proliferation 625 0.189 (0.014) 0.132 (0.002) FASTER 1.95E-05 10.1 (0.6) 5.0 (0.1) OVER 1.50E-20 GO:0006513 monoubiquitination 36 0.305 (0.049) 0.134 (0.002) FASTER 2.69E-04 25.4 (4.4) 5.1 (0.1) OVER 2.04E-06 GO:0007050 cell cycle arrest 57 0.311 (0.054) 0.133 (0.002)
    [Show full text]
  • Large Meta-Analysis of Genome-Wide Association Studies
    medRxiv preprint doi: https://doi.org/10.1101/2020.10.01.20200659; this version posted October 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . Large meta-analysis of genome-wide association studies expands knowledge of the genetic etiology of Alzheimer’s disease and highlights potential translational opportunities Céline Bellenguez1,*,#, Fahri Küçükali2,3,4*, Iris Jansen5,6*, Victor Andrade7,8*, Sonia Morenau- Grau9,10,*, Najaf Amin11,12, Benjamin Grenier-Boley1, Anne Boland13, Luca Kleineidam7,8, Peter Holmans14, Pablo Garcia9,10, Rafael Campos Martin7, Adam Naj15,16, Yang Qiong17, Joshua C. Bis18, Vincent Damotte1, Sven Van der Lee5,6,19, Marcos Costa1, Julien Chapuis1, Vilmentas Giedraitis20, María Jesús Bullido10,21, Adolfo López de Munáin10,22, Jordi Pérez- Tur10,23, Pascual Sánchez-Juan10,24, Raquel Sánchez-Valle25, Victoria Álvarez26, Pau Pastor27, Miguel Medina10,28, Jasper Van Dongen2,3,4, Christine Van Broeckhoven2,3,4, Rik Vandenberghe29,30, Sebastiaan Engelborghs31,32, Gael Nicolas33, Florence Pasquier34, Olivier Hanon35, Carole Dufouil36, Claudine Berr37, Stéphanie Debette36, Jean-François Dartigues36, Gianfranco Spalletta38, Benedetta Nacmias39,40, Vincenzo Solfrezzi41, Barbara Borroni42, Lucio Tremolizzo43, Davide Seripa44, Paolo Caffarra45, Antonio Daniele46,47, Daniela Galimberti48,49, Innocenzo Rainero50, Luisa Benussi51, Alesio Squassina52, Patrizia Mecoci53, Lucilla Parnetti54, Carlo Masullo55, Beatrice Arosio56, John Hardy57, Simon Mead58, Kevin Morgan59, Clive Holmes60, Patrick Kehoe61, Bob Woods62, EADB, Charge, ADGC, Jin Sha15,16, Yi Zhao15,63, Chien-Yueh Lee15,63, Pavel P.
    [Show full text]