Erik Brynjolfsson and Andrew Mcafee MIT Center for Digital Business

Total Page:16

File Type:pdf, Size:1020Kb

Erik Brynjolfsson and Andrew Mcafee MIT Center for Digital Business An interview with Erik Brynjolfsson and Andrew McAfee MIT Center for Digital Business The Second Machine Age: An Industrial Revolution Powered by Digital Technologies Transform to the power of digital Erik Brynjolfsson and Andrew McAfee The third characteristic is the combinatorial nature of innovation. The Second Machine Digital innovations can be combined and recombined to create even more Age is the time when value. And that’s a very encouraging machines are now able thing; a larger base of inventions means an even larger set of raw materials for to take over a lot of the next wave of innovations. This is very unlike traditional inputs that yield cognitive tasks that diminishing returns. humans can do. New Digital Erik Andrew Technologies, the Capgemini Consulting: What are Brynjolfsson McAfee the defining characteristics of this Industry and the Second Machine Age? Director of the Principal Research Neglect of Operations MIT Center for Scientist at MIT Erik Brynjolfsson and Andrew Digital Business Center for Digital McAfee: We see three defining trends Capgemini Consulting: From Business in the Second Machine Age. an industry perspective, what are the key technologies that The first is an exponential improvement in organizations should keep a close computational power,communications eye on? technologies, data storage and even Technology in software. Some technologies are even Erik Brynjolfsson and Andrew Top Gear improving faster than Moore’s law McAfee: We believe companies should (Moore’s law is the observation that, pay close attention to two areas when over the history of computing hardware, it comes to technology development Capgemini Consulting: What is the the number of transistors on integrated – machine intelligence and the global core premise of the “The Second circuits doubles approximately every network of people and machines. Machine Age”? two years). Machine intelligence is the idea that Erik Brynjolfsson and Andrew by including different combinations of McAfee: There have been two big The second characteristic of this age is digital technologies, we can now allow turning points in human history. The the digital nature of core technologies. machines to do cognitive tasks that first was the industrial revolution, where Digital technologies have unusual they could never have done before. machines replaced muscle power. The economics compared to the economics Take language and voice recognition. Second Machine Age is the time when of atoms – they can be copied at For the very first time in history, we machines are now able to take over a lot virtually zero cost, transmitted almost can talk to our machines and have of cognitive tasks that humans can do. instantaneously and resultant copies them understand what we are saying It started roughly around the time IBM’s are perfect, identical copies of the and carry out our instructions. People Deep Blue computer in 1997 beat Gary original. The idea that you can perfectly have been working on language, Kasparov in a chess match. That year replicate goods for free, obviously motor control and problem solving for also witnessed median incomes peak leads to some very unusual economics decades. However, very little progress in the United States, and a subsequent compared to the “textbook” perception. had been made until just the past 5 or rise in productivity. The Second Machine An increasing number of industries have 10 years, which is when things started Age will be a bigger transformation and software at their core and, therefore, are picking up very rapidly. And part of that have greater impact than even the first characterized by these economics of is due to the exponential improvement industrial revolution. digitization. in technologies, in particular the power of Big Data. Erik Brynjolfsson and Andrew McAfee problems. In the past, only a relatively to ignore. However, we cannot brush small share of humanity was engaged in it under the carpet anymore. When a The Second Machine Age problem solving. In the coming decades, technology increases wealth, there is almost all of humanity can be partners no guarantee that this abundance will will have greater impact in this problem-solving enterprise. And be shared evenly (or even that people than even the first that will multiply the opportunities for will secure any share of it). It’s possible invention and innovation and creativity, that some people would be made worse industrial revolution. disproportionately, and will also lead to a off, not just in relative terms, but even big acceleration in the rate of inventions. in absolute terms. And, unfortunately, Organizations need to tap into this since about the late 1990s, that’s what’s massive source of brainpower. happened, not just in the United States, Similarly, robotics has greatly improved in but in almost every OECD country: To summarize, we believe organizations recent times and robots today are good in France, in Japan, even in Sweden. should focus on leveraging technologies with both gross and fine motor control. Inequality has grown significantly and around machine intelligence, big data Take the example of Baxter – a two- the median worker has not kept up, and connected networks. armed robot that operates at an hourly and in many cases has fallen behind. rate of just $4! Or consider Google’s Capgemini Consulting: From While there are many causes, three of self-driven car. A few years ago, it our research, we found very the most important ones are the way would have been impossible to imagine few companies are exploiting technology creates winners and losers, that machines could even accomplish new digital technologies in their between high skill vs. low skill workers, operations. What is your take on something like this. But today, we have between capital and labor, and between this? crossed that threshold. And finally, superstars and everyone else. Increased machines have become remarkably Erik Brynjolfsson and Andrew inequality is not an inevitable outcome good at solving unstructured problems. McAfee: Indeed, we think that is the of technology, but a combination of An example of that is what IBM’s Watson most important challenge before us technology and the state of our current did with the TV show “Jeopardy”. The – despite technology rushing ahead, institutions. The challenge ahead of us supercomputer defeated two of the our organizations, societies and is to rethink our institutions so that we show’s greatest champions. Watson is governments are not adapting rapidly. get more people participating. We’re now being applied at call centers, for One of the key issues is that CXOs optimistic that this can be done, but it’s legal advice, investment advice, medical don’t fully appreciate and understand not going to happen automatically. diagnosis, and many other kinds of the power of these new technologies. unstructured problems. Many don’t even realize that they are in the midst of this tidal wave of change. There are some who realize it though. However, they don’t know what to do CXOs don’t fully We believe next. And finally, for those that initiate change, the big challenge is in making appreciate and organizations should that change. So, for all those reasons, we’re faced with lagging organizations understand the power of focus on leveraging and institutions. these new technologies. technologies around Many don’t even realize machine intelligence, Jobs, Skills and that they are in the big data and connected Wealth in the Second Machine Age midst of this tidal wave networks. of change. Capgemini Consulting: Looking forward, what is your view on the The other key area that we believe holds impact of digital technology on great potential for both organizations the economy? and the society at large is the networking of all people on the globe. Erik Brynjolfsson and Andrew For the first time in history, we are McAfee: If you look at society as networking together billions of brains, a whole, there is a secret about all the humans on the planet, to solve economics that people used to prefer Erik Brynjolfsson and Andrew McAfee We cannot stop technology from destroying jobs. The solution is to harness technology to simultaneously create new and different jobs. about the example of Chess and how Capgemini Consulting: In “Race Deep Blue defeated Gary Kasparov in Against the Machine”, you argued The education industry the World Chess Championship. The that digital technologies were World Chess Champion today is not destroying a sizeable chunk of has been one of the a machine. And it’s not a human. The jobs. Do you still share this view? slowest ones to best chess player is a team of humans Erik Brynjolfsson and Andrew and computers working together. A McAfee: As we’ve said, and shown, incorporate technology. team of humans and computers can in our first book, digital technologies defeat any computer or any human are going to automate and eliminate working alone. And that underscores millions of jobs, even as digital creates Capgemini Consulting: How can the point that humans and computers other jobs. And this trend will continue. individual and organizational skills have complementary and distinct skills be upgraded to compete in the In fact, technology has always been and capabilities that, when they work Second Machine Age? destroying jobs and has always been together, can be more powerful than creating jobs. The solution is not to try Erik Brynjolfsson and Andrew they are individually. to stop technology from destroying jobs. McAfee: We have to transform our skills as we always did in the past, but we have The solution is to harness technology to Capgemini Consulting: What are simultaneously create new and different to do it even faster. We have to start with some areas where technology can jobs. In the year 1800, over 90% of education.
Recommended publications
  • Work in and Beyond the Second Machine Age: the Politics of Production and Digital Technologies
    This is a repository copy of Work in and beyond the Second Machine Age: the politics of production and digital technologies. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/97294/ Version: Accepted Version Article: Spencer, D (2017) Work in and beyond the Second Machine Age: the politics of production and digital technologies. Work, Employment and Society, 31 (1). pp. 142-152. ISSN 0950-0170 https://doi.org/10.1177/0950017016645716 (c) 2016, The Author. This is an author produced version of a paper published in Work, Employment and Society. Uploaded in accordance with the publisher's self-archiving policy. Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Work in and beyond the Second Machine Age: the politics of production and digital technologies David Spencer University of Leeds Forthcoming in Work, Employment, and Society Abstract Erik Brynjolfsson and Andrew McAfee, in their widely read and politically impactful book, The Second Machine Age (2014), highlight the costs and benefits of digital technologies for the volume and quality of work and identify reforms designed to ensure that digital technologies deliver net advantages to workers and society more generally.
    [Show full text]
  • The Impacts of Technological Invention on Economic Growth – a Review of the Literature Andrew Reamer1 February 28, 2014
    THE GEORGE WASHINGTON INSTITUTE OF PUBLIC POLICY The Impacts of Technological Invention on Economic Growth – A Review of the Literature Andrew Reamer1 February 28, 2014 I. Introduction In their recently published book, The Second Machine Age, Erik Brynjolfsson and Andrew McAfee rely on economist Paul Krugman to explain the connection between invention and growth: Paul Krugman speaks for many, if not most, economists when he says, “Productivity isn’t everything, but in the long run it’s almost everything.” Why? Because, he explains, “A country’s ability to improve its standard of living over time depends almost entirely on its ability to raise its output per worker”—in other words, the number of hours of labor it takes to produce everything, from automobiles to zippers, that we produce. Most countries don’t have extensive mineral wealth or oil reserves, and thus can’t get rich by exporting them. So the only viable way for societies to become wealthier—to improve the standard of living available to its people—is for their companies and workers to keep getting more output from the same number of inputs, in other words more goods and services from the same number of people. Innovation is how this productivity growth happens.2 For decades, economists and economic historians have sought to improve their understanding of the role of technological invention in economic growth. As in many fields of inventive endeavor, their efforts required time to develop and mature. In the last five years, these efforts have reached a point where they are generating robust, substantive, and intellectually interesting findings, to the benefit of those interested in promoting growth-enhancing invention in the U.S.
    [Show full text]
  • Machine-Age Exposition, Catalogue
    MAY MAY NEW YORK 119 WEST 57th _ t Special Design No. 257 HE hi^h quality and finish of Cast Ferro- Tcraft, as compared with other metals, and the ability of our craftsmen to execute the most exacting requirements, have won wide The Villa recognition in the Architectural field. Let us submit details of the Ferrocraft Line UTTLE V BAILEY allmetal R;« diator Cabinets are the ultimate in for all heating and ventilating purposes; or T design, construction and finish. Selec­ send us specifications of your special needs. tion of models in finishes to match in­ terior. Full particulars upon request. •i J TUTTLE & BAILEY MFG. CO. Makers of Registers and Grilles for Eighty-one Tears 441 LEXINGTON AVENUE NEW YORK CITY THE PROVINCETOWN PLAYHOUSE W 25 (< THE PLAYWRIGHTS THEATRE 1 I 72 U ADVENTUROUS" TO J I- CO "COURAGEOUS II 00 "EXPERIM ENTAL n H o HERE—Eugene O'Neill's "Emperor Jones" and "Hairy Ape" were first produced o u HERE—Hasenclever's "Beyond" and Strindberg's "Dream Play" were given for first time in America HERE—"Fashion" and "Patience" were revived > HERE—"In Abraham's Bosom" by Paul Green, won the Pulitzer Prize C w 2^ro SUBSCRIPTION SEASON 1927-28 FIVE PLAYS $11.00 o CATALOGUE ORGANIZED BY LITTLE REVIEW, NEW YORK JANE HEAP SOCIETE DES URBANISTES. BRUS­ SELS LOUIS VAN DER SWAELMEN M. GASPARD » U. S. S. R. SOCIETY OF CULTURAL RELATIONS WITH FOREIGN COUN­ TRIES AMERICA BRANCH KUNSTGEWERBESCHULE, VIENNA PROF. JOSEF FRANK CZLONKOWIE GROUP "PRAESENG", WARSAW SZYMON SYRKUS ARCHITECTS D. P. L. G., PARIS ANDRE LURCAT.
    [Show full text]
  • Introduction: De-Industrialization and Globalization
    IRSH 47 (2002), pp. 3–33 DOI: 10.1017/S0020859002000767 # 2002 Internationaal Instituut voor Sociale Geschiedenis Introduction: De-industrialization and Globalization Christopher H. Johnson THE RELATION BETWEEN DE-INDUSTRIALIZATION AND GLOBALIZATION The problem of de-industrialization has undergone a decisive transmuta- tion in the past two decades, roughly from the moment when it was linked to proto-industrialization at the Budapest Economic History Conference in 1981.1 Also interacting with the remarkable efforts of Immanuel Wallerstein and his colleagues who dated the formation of a ‘‘world economic system’’ from the expansion of European conquest and trade in the fifteenth and sixteenth centuries, its place in historical and sociological analysis rapidly transcended local concerns (such as the warmly received 1982 study by Bluestone and Harrison of the American ‘‘rust belt’’) and has become an element in the overall problematique of global capitalism.2 Only very recently, however, have the necessary studies (and hence theoretical perspectives) formed an appropriate critical mass to integrate the concept of de-industrialization fully into the long-term history of economic globalism. We are coming to understand that the phenomenon at the tip of the tongue of every head of state and the source of massive (and lethal) protest that came to be termed ‘‘globalization’’ in ordinary 1. See Franklin Mendels, ‘‘General Report, Eighth International Economic History Congress, Section A.2: Proto-industrialization: Theory and Reality’’, Budapest, August 1982, and attached papers (photocopied reproductions). An excellent collection of articles selected from these papers appeared as Carlo Poni (ed.) Protoindustria, a special issue of Quaderni strorici, 52 (1983).
    [Show full text]
  • Second Machine Age Or Fifth Technological Revolution? Different
    Second Machine Age or Fifth Technological Revolution? Different interpretations lead to different recommendations – Reflections on Erik Brynjolfsson and Andrew McAfee’s book The Second Machine Age (2014). Part 1 Introduction: the pitfalls of historical periodization Carlota Perez January 2017 Blog post: http://beyondthetechrevolution.com/blog/second-machine-age-or-fifth-technological- revolution/ This is the first instalment in a series of posts (and a Working Paper in progress) that reflect on aspects of Erik Brynjolfsson and Andrew McAfee’s influential book, The Second Machine Age (2014), in order to examine how different historical understandings of technological revolutions can influence policy recommendations in the present. Over the next few weeks, we will discuss the various criteria used for identifying a technological revolution, the nature of the current moment, and the different implications that stem from taking either the ‘machine ages’ or my ‘great surges’ point of view. We will look at what we see as the virtues and limits of Brynjolfsson and McAfee’s policy proposals, and why implementing policies appropriate to the stage of development of any technological revolution have been crucial to unleashing ‘Golden Ages’ in the past. 1 Introduction: the pitfalls of historical periodization Information technology has been such an obvious disrupter and game changer across our societies and economies that the past few years have seen a great revival of the notion of ‘technological revolutions’. Preparing for the next industrial revolution was the theme of the World Economic Forum at Davos in 2016; the European Union (EU) has strategies in place to cope with the changes that the current ‘revolution’ is bringing.
    [Show full text]
  • Platform Economics in the Second Machine Age
    1 Platform Economics in the Second Machine Age Michael Spence Long Chen In any economy, there are two interconnected layers. In the more physical or tangible one, goods are produced (using tangible capital and labor and other inputs like energy and natural capital), people are employed, goods moved around, and are bought and sold on markets, or used by companies to invest in the capital. The second layer, which is much less tangible, is where information and knowledge are generated and exchanged, relationships are built (coordination), and decisions are made. Hereafter we will call the information, coordination, and decision layer the ICD layer. At a slight risk of overstatement, most of economic theory (meaning economic models) deals with the first layer. The second layer is there of course. Nothing works in the tangible layer without it, but it is largely unmodelled. There are important exceptions: there is an important body of economic theory dealing with various aspects of the ICD layer: innovation, search in several dimensions, informational asymmetries, with credible communication, and contracts, the role of intermediaries, the theory or organizations and the coordination of activity via non-market processes, and so forth. But in much basic economic theory, the ICD layer is implicit and taken for granted. In the first industrial revolution, energy was harnessed to augment, and to some extent replace, human physical activity. The steam engine, electricity, and fossil fuels and machines powered by them, ushered in centuries of innovation and mechanization. Machine augmentation produced a sustained rise in the productivity of people and economies, enabling historically unprecedented growth in incomes, output, new products, and material well-being.
    [Show full text]
  • Cubism Futurism Art Deco
    20TH Century Art Early 20th Century styles based on SHAPE and FORM: Cubism Futurism Art Deco to show the ‘concept’ of an object rather than creating a detail of the real thing to show different views of an object at once, emphasizing time, space & the Machine age to simplify objects to their most basic, primitive terms 20TH CENTURY ART & ARCHITECTURE Cubism & Picasso Pablo Picasso 1881-1973 Considered most influential artist of 20th Century Blue Period Rose Period Analytical Cubism Synthetic Cubism 20TH CENTURY ART & ARCHITECTURE Cubism & Picasso Early works by a young Picasso Girl Wearing Large Hat, 1901. Lola, the artist’s sister, 1901. 20TH CENTURY ART & ARCHITECTURE Cubism & Picasso Picasso’s Blue Period Blue Period (1901-1904) Moves to Paris in his late teens Coping with suicide of friend Paintings were lonely, depressing Major color was BLUE! 20TH CENTURY ART & ARCHITECTURE Cubism & Picasso Picasso’s Blue Period Pablo Picasso, Blue Nude, 1902. BLUE PERIOD 20TH CENTURY ART & ARCHITECTURE Cubism & Picasso Picasso’s Blue Period Pablo Picasso, Self Portrait, 1901. BLUE PERIOD 20TH CENTURY ART & ARCHITECTURE Cubism & Picasso Picasso’s Blue Period Pablo Picasso, Tragedy, 1903. BLUE PERIOD 20TH CENTURY ART & ARCHITECTURE Cubism & Picasso Picasso’s Blue Period Pablo Picasso, Le Gourmet, 1901. BLUE PERIOD 20TH CENTURY ART & ARCHITECTURE Cubism & Picasso Picasso’s work at the National Gallery (DC) 20TH CENTURY ART & ARCHITECTURE Cubism & Picasso Picasso’s Rose Period Rose Period (1904-1906) Much happier art than before Circus people as subjects Reds and warmer colors Pablo Picasso, Harlequin Family, 1905. ROSE PERIOD 20TH CENTURY ART & ARCHITECTURE Cubism & Picasso Picasso’s Rose Period Pablo Picasso, La Familia de Saltimbanques, 1905.
    [Show full text]
  • 1 Choosing a Future in the Platform Economy
    Choosing a Future in the Platform Economy: The Implications and Consequences of Digital Platforms Kauffman Foundation New Entrepreneurial Growth Conference, Discussion Paper Amelia Island Florida – June 18/19, 2015 Martin Kenney Professor Community and Regional Development University of California, Davis And Berkeley Roundtable on the International Economy [email protected] and John Zysman Co-director Berkeley Roundtable on the International Economy And Professor, Political Science University of California, Berkeley [email protected] Comments Welcome: Please cite as a draft. Each author contributed equally to the formulation and development of the ideas in this paper and the authorship is alphabetical. Thanks to Ruth Collier, Lilly Irani, Bryan Pon, and Anne Visser for their comments on earlier work and contributions to the discussion from which this paper emerged. 1 We are entering a Platform Economy; one in which tools and frameworks based upon the power of the internet will frame and channel our economic and social lives. The algorithmic revolution, an application of an array of computable algorithms to a myriad of activities from consumption and leisure to services and manufacturing, is the foundation of this digital transformation. i Now algorithms live in the cloud and form the basis of digital “platforms”. For our purposes, “platforms” are “frameworks that permit collaborators – users, peers, providers -- to undertake a range of activities, often creating de facto standards, forming entire ecosystems for value creation and capture.”ii The Cloud is at once infrastructure, marketplace, and ecosystem. iii The variety of platforms nearly defies categorization. To illustrate, Google and Facebook are digital platforms providing search and social media, but also platforms on which other platforms are in turn built.
    [Show full text]
  • Call for Papers the Future of Work
    [GRAB YOUR READER’S ATTENTION WITH A GREAT QUOTE FROM THE DOCUMENT OR USE Call for Papers The Future of Work: Implications and challenges of contemporary demographic, technological and social trends Editors: John Burgess; Julia Connell; Alan Nankervis John Burgess Professor of HRM at RMIT University, Melbourne. Previous professorial appointments at the University of Newcastle and Curtin University. Recent research has addressed transitional labour markets (graduation to employment); working patterns and health; employment conditions in the aged care sector; and employment practices of multinational enterprises. Julia Connell Professor and Assistant Dean, Research Training, University of Newcastle, Australia; Visiting Professor, Graduate Research School, University of Technology Sydney. Research projects/ interests largely focus on individual and organisational capacity building including: quality of work, education and training systems, human resource policies and practices, SMEs, gender and empowerment. Alan Nankervis Adjunct Professor of HRM at Curtin and RMIT universities. Previous appointments at Western Sydney University, together with shorter-term positions at York University (Canada), Strathclyde University (UK) and several universities in Thailand, Malaysia and Indonesia. Recent research has included transitional labour markets, HRM and organisational effectiveness in the Asia Pacific, and new HRM models in China and India. The Future of Work The Fourth Industrial Revolution (4IR) concerns the digital transformation currently
    [Show full text]
  • Second Machine Age Or Fifth Technological Revolution? (Part 1)
    Second machine age or fifth technological revolution? (Part 1) medium.com/iipp-blog/second-machine-age-or-fifth-technological-revolution-part-1-ed66b81a9352 UCL IIPP September 11, 2018 Carlota Perez This is the first instalment in a series of posts that reflect on aspects of Erik Brynjolfsson and Andrew McAfee’s influential book, The Second Machine Age, in order to examine how different historical understandings of technological revolutions can influence policy recommendations in the present. Introduction: the pitfalls of historical periodisation Information technology has been such an obvious disrupter and game changer across our societies and economies that the past few years have seen a great revival of the notion of ‘technological revolutions’. Preparing for the next industrial revolution was the theme of the World Economic Forum at Davos in 2016; the European Union (EU) has strategies in place to cope with the changes that the current ‘revolution’ is bringing. Yet between these two institutions, as amongst academics, there is disagreement: on the number of revolutions; on when one has ended and another begun; on what have been the drivers and the immediate and long-term consequences. The most common classification identifies three revolutions to date, often focusing on the dominant technologies-as-inventions: the steam engine that powered the nineteenth century; electricity and the automobile in the twentieth; and ICT at present. More multi-faceted analyses recognise ‘technological revolutions’, as I do, not as dependent on single entities or energy sources but as interconnected clusters of new and dynamic inputs, processes, products and industries. Such analyses also include organisational and institutional innovation, in an attempt to understand how and by what means the new technologies diffuse and profoundly change our economies and societies.
    [Show full text]
  • Commercial Standards Monthly, S
    COMMERCIALfAAR 2 7 1933 STANDARDS vV^ , ,v\ V' ^MONTHLY A Review of Progress in Commercial Standardisation and Simplification I’hotoKraphiMl l>y Army Air Corps AIRPLANE VIEW OF BUREAU OF STANDARDS (LOOKING SOUTH) ISSUED BY THE BUREAU OF STANDARDS OF THE UNITED STATES DEPARTMENT OF COMMERCE, WASHINGTON, D. C., U. S. A. Vol. 9, No. 9 March, 1933 For sale by the Superinten Jcnt of Documents, W'ashington, D, C. $1.00 annually ($1.60 lorcign i ; single copy, 1 0 cents U. S. DEPARTMENT OF COMMERCE BUREAU OF STANDARDS ROY D. CHAPIN, Secretary LYMAN J. BRIGGS, Acting Director COMMERCIAL STANDARDS MONTHLY, S. F. Tillman, Editor The Commercial Standardization Group A. S. McAllister, Assistant Director DIVISION OF SIMPLIFIED PRACTICE DIVISION OF SPECIFICATIONS Edwin W. Ely A. S. 'McAllister The division of simplified pradlice cooperates with indus- The duties of the division of specifications are to promote trial and commercial groups to reduce wa^te, usually through and facilitate the use and unification of specifications. In eliminating unnecessary variety of product, method, or doing so it carries on activities involving cooperation with practice. Its fundfion is to bring together all parties inter- technical societies; trade associations; Federal, State, and ested in a projedt of this charadter, and to coordinate their municipal Government specifications making and using work in developing a simplified pradtice recommendation. agencies; producers, distributors, and consumers; and teSting Such work includes surveys of current pradtice, formula- and research laboratories. It ascertains the standardization tion of a simplified pradtice program, and presentation of and specifications promoting activities of the associations that program for adtion by a general conference representing and societies, and brings to their attention the work being all interests.
    [Show full text]
  • Challenges and Opportunities of Digital Production Technologies for Developing Countries Department of Policy, Research and Statistics Working Paper 7/2019
    Inclusive and Sustainable Industrial Development Working Paper Series WP 7 | 2019 A REVOLUTION IN THE MAKING? CHALLENGES AND OPPORTUNITIES OF DIGITAL PRODUCTION TECHNOLOGIES FOR DEVELOPING COUNTRIES DEPARTMENT OF POLICY, RESEARCH AND STATISTICS WORKING PAPER 7/2019 A revolution in the making? Challenges and opportunities of digital production technologies for developing countries Antonio Andreoni UCL Institute for Innovation and Public Purpose Guendalina Anzolin University of Urbino UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION Vienna, 2019 This is a Background Paper for the UNIDO Industrial Development Report 2020: Industrializing in the Digital Age The designations employed, descriptions and classifications of countries, and the presentation of the material in this report do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. The views expressed in this paper do not necessarily reflect the views of the Secretariat of the UNIDO. The responsibility for opinions expressed rests solely with the authors, and publication does not constitute an endorsement by UNIDO. Although great care has been taken to maintain the accuracy of information herein, neither UNIDO nor its member States assume any responsibility for consequences which may arise from the use of the material. Terms such as “developed”, “industrialized” and “developing” are intended for statistical convenience and do not necessarily express a judgment. Any indication of, or reference to, a country, institution or other legal entity does not constitute an endorsement.
    [Show full text]