Gromov-Witten Invariants of Hypersurfaces

Total Page:16

File Type:pdf, Size:1020Kb

Gromov-Witten Invariants of Hypersurfaces Gromov-Witten invariants of hypersurfaces Dem Fachbereich Mathematik der Technischen Universitat¨ Kaiserslautern zur Erlangung der venia legendi vorgelegte Habilitationsschrift von Andreas Gathmann geboren am 9.4.1970 in Hannover 2003 Contents Preface 1 Chapter 1. Gromov-Witten invariants of projective spaces 9 1.1. Stable curves and stable maps 12 1.2. Gromov-Witten invariants 18 1.3. Basic relations among Gromov-Witten invariants 21 1.4. The Virasoro relations 28 1.5. Proof of the Virasoro algorithm 32 1.6. Numerical examples and applications 39 Chapter 2. Relative Gromov-Witten invariants in genus zero 45 2.1. Moduli spaces of stable relative maps 47 2.2. Raising the multiplicities 56 N 2.3. Proof of the main theorem for hyperplanes in P 59 2.4. Proof of the main theorem for very ample hypersurfaces 64 2.5. Enumerative applications 69 Chapter 3. The mirror theorem 81 3.1. The mirror transformation 85 3.2. Examples 94 3.3. Proof of the main technical lemmas 97 Chapter 4. The number of plane conics 5-fold tangent to a given curve 101 4.1. The Gromov-Witten approach 103 4.2. The components of M¯ (2;2;2;2;2) 108 4.3. Computation of the virtual fundamental classes 111 4.4. Application to rational curves on K3 surfaces 117 Chapter 5. Relative Gromov-Witten invariants in higher genus 121 5.1. Stable relative and non-rigid maps 123 5.2. The virtual push-forward theorem 132 5.3. Push-forwards in codimension 0 145 5.4. Push-forwards in codimension 1 155 5.5. Elliptic Gromov-Witten invariants of the quintic threefold 164 Bibliography 169 Preface Over the last decade Gromov-Witten invariants have become an invaluable tool in modern enumerative geometry. The goal of the theory is to count curves with some given conditions in a complex projective manifold, where the conditions are chosen so that the expected number of curves satisfying them is finite and non-zero. The most famous example of an enumerative problem has in fact been inspired by physics: let X be a quintic threefold, i.e. a smooth hypersurface of degree 5 in complex projective 4-space P4. For any g ≥ 0 and d > 0 a na¨ıve dimension count shows that one expects a finite number Ng;d of curves of genus g and degree d on X. In 1991 the string theorists Candelas et al. encountered this problem in their study of conformal field theories, and their computations led them to predictions for the numbers N0;d in genus zero [COGP]. Their main tool was a certain equivalence of topological field theories that is known to physicists as “mirror symmetry”. The discovery of this relation between physics and algebraic geometry was the starting point of modern enumerative geometry. The analysis of Candelas et al. showed already that in order to count curves embed- ded in X it is actually more natural to study maps from a (varying) source curve to the target X. These two notions are of course very much related as every map from a curve to X determines an image curve, and conversely every curve in X arises as the image of some map from a curve to X. There are subtle differences however: the map could e.g. be a k-fold cover onto its image, in which case the degree of the map is k times the degree of the set-theoretic image curve. In fact, the physicists’ mirror symmetry computations first led to a different set of numbers n0;d that are supposed to count maps of degree d from a source curve of genus g = 0 to X. These numbers are called the Gromov-Witten invariants. They are the coefficients of a generating function that can be obtained from a certain hypergeometric series by an explicit variable transformation. The enumerative numbers N0;d are then related to the Gromov-Witten invariants n0;d by a correction formula that takes care of the contributions from multiple covers. The precise form of this correction formula was simply guessed by the time the paper by Candelas et al. was written. 1 2 PREFACE In the following years physicists have vastly generalized the above results. Ber- shadsky et al. considered the case of higher genus. They conjectured a generating function for the Gromov-Witten invariants n1;d in genus 1 [BCOV1] and an al- gorithm that can in principle compute the invariants ng;d in any genus [BCOV2]. Gopakumar and Vafa have conjectured the general form of the transformation that relates the Gromov-Witten invariants ng;d to the enumerative numbers Ng;d for any g [GoV1, GoV2]. A non-trivial check for these conjectures is that the resulting numbers Ng;d actually turned out to be positive integers as far as they have been computed numerically — a statement that is far from being obvious from the arith- metic of the algorithms. In the meantime mathematicians were (and to a large extent still are) just puzzled by the physicists’ results. To start from the very basics of the problem, it has not even been proven yet that the enumerative number of genus-0 curves in a general quintic threefold X is at all finite. For higher genus the numbers are most definitely not finite since e.g. intersections of X with planes in P4 lead to infinite families of curves. Neither are the numbers of maps from curves to X of given genus and degree finite, not even in genus 0: multiple covers have ramification points whose position on the curve can vary continuously. So before mathematicians could try to compute the numbers ng;d or Ng;d their first problem was simply to define them rigorously. The problem of defining Gromov-Witten invariants mathematically has been solved around 1995 by the theory of stable maps initiated by Kontsevich [K2]. For any projective manifold X, genus g ≥ 0, and homology class b of a curve in X, Behrend and Manin have constructed a “nice” moduli space (read: separated and proper Deligne-Mumford stack) that parametrizes curves of genus g together with a map of class b to X [BM]. The dimension one would expect such a moduli space to have by a na¨ıve dimension count is called its virtual dimension; it is zero for the quintic threefold for any g and b. The actual dimension of the moduli space may in general well be bigger. But in any case one can construct a so-called virtual fundamental class of the moduli space: a cycle of the virtual dimension that replaces the ordi- nary fundamental class in homology [BF, B, LT1]. The virtual fundamental class thus makes the moduli space appear to have the virtual dimension for intersection- theoretic purposes. The idea is roughly the same as that of an excess intersection product: if Y and Z are subvarieties of X then the dimension of the intersection Y \ Z may be bigger than the expected (virtual) dimension dimY + dimZ − dimX, but in any case there is an intersection product Y ·Z: a homology class of the virtual dimension in Y \ Z. PREFACE 3 The Gromov-Witten invariants ng;d of a quintic threefold can now simply be defined to be the degrees of the (zero-dimensional) virtual fundamental classes of the mod- uli spaces of stable maps of genus g and degree d to the quintic. More generally, let X be any projective manifold and pick a genus g and homology class b such that the corresponding moduli space M of stable maps has non-negative virtual dimension. Moreover, choose a cohomology class on M whose codimension is equal to the vir- tual dimension of M. Usually this cohomology class is chosen so that it describes the condition that the curves in X (or more precisely: stable maps to X) pass through some fixed given subvarieties of X. Evaluating it on the virtual fundamental class gives a zero-dimensional cycle whose degree we call again a Gromov-Witten in- variant. It can be interpreted geometrically as the number of curves in X satisfying the given conditions. (Note that this count may be virtual though in the cases when the virtual fundamental class of M is not equal to the ordinary one.) Having defined the Gromov-Witten invariants of a projective manifold X the next questions are of course what their structure is and how they can be computed. In general this question is very difficult however and far from being solved. The goal of this thesis is to attack this problem in the case of hypersurfaces. More precisely, our main question can be posed as follows: Let Y be a smooth hypersurface of a complex projective manifold X. Can we compute the Gromov-Witten invariants of Y from those of X? This will mean two things: in a first step, we would like to find an algorithm that can be programmed on a computer and that enables us to compute every possible Gromov-Witten invariant of Y numerically if we know the invariants of X. A sec- ond question is whether the relation between the invariants of X and Y can then be phrased in some “nice” way, e.g. in the form of an explicit relation between the generating functions of the invariants for the two spaces. Moreover, we will com- pute all Gromov-Witten invariants of projective spaces directly. This way every relation between the invariants of a hypersurface and the ambient space that we get can be applied immediately to compute Gromov-Witten invariants of hypersurfaces in projective spaces, including the most interesting case of the quintic threefold.
Recommended publications
  • Schubert Calculus According to Schubert
    Schubert Calculus according to Schubert Felice Ronga February 16, 2006 Abstract We try to understand and justify Schubert calculus the way Schubert did it. 1 Introduction In his famous book [7] “Kalk¨ulder abz¨ahlende Geometrie”, published in 1879, Dr. Hermann C. H. Schubert has developed a method for solving problems of enumerative geometry, called Schubert Calculus today, and has applied it to a great number of cases. This book is self-contained : given some aptitude to the mathematical reasoning, a little geometric intuition and a good knowledge of the german language, one can enjoy the many enumerative problems that are presented and solved. Hilbert’s 15th problems asks to give a rigourous foundation to Schubert’s method. This has been largely accomplished using intersection theory (see [4],[5], [2]), and most of Schubert’s calculations have been con- firmed. Our purpose is to understand and justify the very method that Schubert has used. We will also step through his calculations in some simple cases, in order to illustrate Schubert’s way of proceeding. Here is roughly in what Schubert’s method consists. First of all, we distinguish basic elements in the complex projective space : points, planes, lines. We shall represent by symbols, say x, y, conditions (in german : Bedingungen) that some geometric objects have to satisfy; the product x · y of two conditions represents the condition that x and y are satisfied, the sum x + y represents the condition that x or y is satisfied. The conditions on the basic elements that can be expressed using other basic elements (for example : the lines in space that must go through a given point) satisfy a number of formulas that can be determined rather easily by geometric reasoning.
    [Show full text]
  • 1 Lecture 1 2 Lecture 2
    1 Lecture 1 Possible Topics: 1. Hodge Conjecture. Probably about 5 lectures. 2. Geometric Langlands. Perhaps 5 lectures, and might contain geometry of derived categories 3. Geometry of Derived Categories 4. Grothendieck-Riemann-Roch? Maybe 2 lectures 5. Mirror Symmetry/Calabi-Yau's. As many lectures as needed. 2 Lecture 2 Geometric Langlands Program. Rather than describe the program right out, we will discuss examples first. This is essentially a nonabelian phenomenon. Input: A curve (smooth, compact, genus g) C and G a reductive group. Examples of reductive groups are GL(n); SL(n); SO(n); Sp(n), products, etc. Baby case: Abelian Geometric Langlands Conjecture. We have G = (C∗)r, and will take r = 1. This will roughly correspond to Class Field Theory in Number Theory, and the full GLC corresponds to nonabelian class field theory. Roughly we have objects G-bundles versus G local systems. In the case G = GL(n), we have that a G-bundle is a rank n vector bundle and a G-local system is a homomorphism π1(C) ! G which is the same as a rank n vector bundle with a flat connection. (All connections are flat, because curvature is a 2-form, and we are on a 1-dimensional object) 1 The moduli of rank n vector bundles is H (C; GLn(O)) = Bun and the 1 moduli space of G-local systems is H (C; GLn(C)) = Loc. 1 We know both that TV Bun = H (C; EndO (V )) and that T(V;r)Loc = 1 H (C; EndC(V )). We want to compute these dimensions, and we will use Riemann-Roch: h0 − h1(V ⊗ V ∗) = deg −rank(g − 1).
    [Show full text]
  • Enumerative Geometry of Rational Space Curves
    ENUMERATIVE GEOMETRY OF RATIONAL SPACE CURVES DANIEL F. CORAY [Received 5 November 1981] Contents 1. Introduction A. Rational space curves through a given set of points 263 B. Curves on quadrics 265 2. The two modes of degeneration A. Incidence correspondences 267 B. Preliminary study of the degenerations 270 3. Multiplicities A. Transversality of the fibres 273 B. A conjecture 278 4. Determination of A2,3 A. The Jacobian curve of the associated net 282 B. The curve of moduli 283 References 287 1. Introduction A. Rational space curves through a given set of points It is a classical result of enumerative geometry that there is precisely one twisted cubic through a set of six points in general position in P3. Several proofs are available in the literature; see, for example [15, §11, Exercise 4; or 12, p. 186, Example 11]. The present paper is devoted to the generalization of this result to rational curves of higher degrees. < Let m be a positive integer; we denote by €m the Chow variety of all curves with ( degree m in PQ. As is well-known (cf. Lemma 2.4), €m has an irreducible component 0im, of dimension Am, whose general element is the Chow point of a smooth rational curve. Moreover, the Chow point of any irreducible space curve with degree m and geometric genus zero belongs to 0tm. Except for m = 1 or 2, very little is known on the geometry of this variety. So we may also say that the object of this paper is to undertake an enumerative study of the variety $%m.
    [Show full text]
  • 3264 Conics in a Second
    3264 Conics in a Second Paul Breiding, Bernd Sturmfels, and Sascha Timme This article and its accompanying web interface present infinity, provided 퐴 and 푈 are irreducible and not multi- Steiner’s conic problem and a discussion on how enumerative ples of each other. This is the content of B´ezout’s theorem. and numerical algebraic geometry complement each other. To take into account the points of intersection at infinity, The intended audience is students at an advanced under- algebraic geometers like to replace the affine plane ℂ2 with 2 grad level. Our readers can see current computational the complex projective plane ℙℂ. In the following, when tools in action on a geometry problem that has inspired we write “count,” we always mean counting solutions in scholars for two centuries. The take-home message is that projective space. Nevertheless, for our exposition we work numerical methods in algebraic geometry are fast and reli- with ℂ2. able. A solution (푥, 푦) of the system 퐴 = 푈 = 0 has multiplic- We begin by recalling the statement of Steiner’s conic ity ≥ 2 if it is a zero of the Jacobian determinant 2 problem. A conic in the plane ℝ is the set of solutions to 휕퐴 휕푈 휕퐴 휕푈 2 ⋅ − ⋅ = 2(푎1푢2 − 푎2푢1)푥 a quadratic equation 퐴(푥, 푦) = 0, where 휕푥 휕푦 휕푦 휕푥 (3) 2 2 +4(푎1푢3 − 푎3푢1)푥푦 + ⋯ + (푎4푢5 − 푎5푢4). 퐴(푥, 푦) = 푎1푥 + 푎2푥푦 + 푎3푦 + 푎4푥 + 푎5푦 + 푎6. (1) Geometrically, the conic 푈 is tangent to the conic 퐴 if (1), If there is a second conic (2), and (3) are zero for some (푥, 푦) ∈ ℂ2.
    [Show full text]
  • Enumerative Geometry
    Lecture 1 Renzo Cavalieri Enumerative Geometry Enumerative geometry is an ancient branch of mathematics that is concerned with counting geometric objects that satisfy a certain number of geometric con- ditions. Here are a few examples of typical enumerative geometry questions: Q1: How many lines pass through 2 points in the plane? Q2: How many conics pass through 5 points in the plane? 1 Q3: How many rational cubics (i.e. having one node) pass through 8 points in the plane? Qd: How many rational curves of degree d pass through 3d − 1 points in the plane? OK, well, these are all part of one big family...here is one of a slightly different flavor: Ql: How many lines pass through 4 lines in three dimensional space? Some Observations: 1. I’ve deliberately left somewhat vague what the ambient space of our geo- metric objects: for one, I don’t want to worry too much about it; second, if you like, for example, to work over funky number fields, then by all means these can still be interesting questions. In order to get nice answers we will be working over the complex numbers (where we have the fundamental theorem of algebra working for us). Also, when most algebraic geometers say things like “plane”, what they really mean is an appropriate com- pactification of it...there’s a lot of reasons to prefer working on compact spaces...but this is a slightly different story... 2. You might complain that the questions may have different answers, be- cause I said nothing about how the points are distributed on the plane.
    [Show full text]
  • Lines, Conics, and All That Ciro Ciliberto, M Zaidenberg
    Lines, conics, and all that Ciro Ciliberto, M Zaidenberg To cite this version: Ciro Ciliberto, M Zaidenberg. Lines, conics, and all that. 2020. hal-02318018v3 HAL Id: hal-02318018 https://hal.archives-ouvertes.fr/hal-02318018v3 Preprint submitted on 5 Jul 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. LINES, CONICS, AND ALL THAT C. CILIBERTO, M. ZAIDENBERG To Bernard Shiffman on occasion of his seventy fifths birthday Abstract. This is a survey on the Fano schemes of linear spaces, conics, rational curves, and curves of higher genera in smooth projective hypersurfaces, complete intersections, Fano threefolds, on the related Abel-Jacobi mappings, etc. Contents Introduction 1 1. Counting lines on surfaces 2 2. The numerology of Fano schemes 3 3. Geometry of the Fano scheme 6 4. Counting conics in complete intersection 8 5. Lines and conics on Fano threefolds and the Abel-Jacobi mapping 11 5.1. The Fano-Iskovskikh classification 11 5.2. Lines and conics on Fano threefolds 12 5.3. The Abel-Jacobi mapping 14 5.4. The cylinder homomorphism 16 6. Counting rational curves 17 6.1. Varieties of rational curves in hypersurfaces 17 6.2.
    [Show full text]
  • Enumerative Geometry and Geometric Representation Theory
    Enumerative geometry and geometric representation theory Andrei Okounkov Abstract This is an introduction to: (1) the enumerative geometry of rational curves in equivariant symplectic resolutions, and (2) its relation to the structures of geometric representation theory. Written for the 2015 Algebraic Geometry Summer Institute. 1 Introduction 1.1 These notes are written to accompany my lectures given in Salt Lake City in 2015. With modern technology, one should be able to access the materials from those lectures from anywhere in the world, so a text transcribing them is not really needed. Instead, I will try to spend more time on points that perhaps require too much notation for a broadly aimed series of talks, but which should ease the transition to reading detailed lecture notes like [90]. The fields from the title are vast and they intersect in many different ways. Here we will talk about a particular meeting point, the progress at which in the time since Seattle I find exciting enough to report in Salt Lake City. The advances both in the subject matter itself, and in my personal understanding of it, owe a lot to M. Aganagic, R. Bezrukavnikov, P. Etingof, D. Maulik, N. Nekrasov, and others, as will be clear from the narrative. 1.2 The basic question in representation theory is to describe the homomorphisms arXiv:1701.00713v1 [math.AG] 3 Jan 2017 some algebra A matrices , (1) Ñ and the geometric representation theory aims to describe the source, the target, the map itself, or all of the above, geometrically. For example, matrices may be replaced by correspondences, by which we mean cycles in X X, where X is an algebraic variety, or K-theory classes on X X et cetera.
    [Show full text]
  • Gromov-Witten Theory of Blowups of Toric Threefolds Dhruv Ranganathan Harvey Mudd College
    Claremont Colleges Scholarship @ Claremont HMC Senior Theses HMC Student Scholarship 2012 Gromov-Witten Theory of Blowups of Toric Threefolds Dhruv Ranganathan Harvey Mudd College Recommended Citation Ranganathan, Dhruv, "Gromov-Witten Theory of Blowups of Toric Threefolds" (2012). HMC Senior Theses. 31. https://scholarship.claremont.edu/hmc_theses/31 This Open Access Senior Thesis is brought to you for free and open access by the HMC Student Scholarship at Scholarship @ Claremont. It has been accepted for inclusion in HMC Senior Theses by an authorized administrator of Scholarship @ Claremont. For more information, please contact [email protected]. Gromov–Witten Theory of Blowups of Toric Threefolds Dhruv Ranganathan Dagan Karp, Advisor Davesh Maulik, Reader May, 2012 Department of Mathematics Copyright c 2012 Dhruv Ranganathan. The author grants Harvey Mudd College and the Claremont Colleges Library the nonexclusive right to make this work available for noncommercial, educational purposes, provided that this copyright statement appears on the reproduced ma- terials and notice is given that the copying is by permission of the author. To dis- seminate otherwise or to republish requires written permission from the author. cbna The author is also making this work available under a Creative Commons Attribution– NonCommercial–ShareAlike license. See http://creativecommons.org/licenses/by-nc-sa/3.0/ for a summary of the rights given, withheld, and reserved by this license and http://creativecommons.org/licenses/by-nc-sa/ 3.0/legalcode for the full legal details. Abstract We use toric symmetry and blowups to study relationships in the Gromov– Witten theories of P3 and P1 ×P1 ×P1. These two spaces are birationally equivalent via the common blowup space, the permutohedral variety.
    [Show full text]
  • An Enumerative Geometry Framework for Algorithmic Line Problems in R3∗
    SIAM J. COMPUT. c 2002 Society for Industrial and Applied Mathematics Vol. 31, No. 4, pp. 1212–1228 AN ENUMERATIVE GEOMETRY FRAMEWORK FOR ALGORITHMIC LINE PROBLEMS IN R3∗ THORSTEN THEOBALD† Abstract. We investigate the enumerative geometry aspects of algorithmic line problems when the admissible bodies are balls or polytopes. For this purpose, we study the common tangent lines/transversals to k balls of arbitrary radii and 4 − k lines in R3. In particular, we compute tight upper bounds for the maximum number of real common tangents/transversals in these cases. Our results extend the results of Macdonald, Pach, and Theobald who investigated common tangents to four unit balls in R3 [Discrete Comput. Geom., 26 (2001), pp. 1–17]. Key words. tangents, balls, transversals, lines, enumerative geometry, real solutions, computa- tional geometry AMS subject classifications. 14N10, 68U05, 51M30, 14P99, 52C45 PII. S009753970038050X 1. Introduction. Algorithmic questions involving lines in R3 belong to the fun- damental problems in computational geometry [36, 26], computer graphics [28], and robotics [33]. As an initial reference example from computational geometry, consider the problem of determining which bodies of a given scene cannot be seen from any viewpoint outside of the scene. From the geometric point of view, this leads to the problem of determining the common tangents to four given bodies in R3 (cf. section 2). Other algorithmic tasks leading to the same geometric core problem include com- puting smallest enclosing cylinders [32], computing geometric permutations/stabbing lines [27, 2], controlling a laser beam in manufacturing [26], or solving placement problems in geometric modeling [10, 17].
    [Show full text]
  • Galois Groups in Enumerative Geometry and Applications
    18 August 2021 ArXiv.org/2108.07905 GALOIS GROUPS IN ENUMERATIVE GEOMETRY AND APPLICATIONS FRANK SOTTILE AND THOMAS YAHL Abstract. As Jordan observed in 1870, just as univariate polynomials have Galois groups, so do problems in enumerative geometry. Despite this pedigree, the study of Galois groups in enumerative geometry was dormant for a century, with a systematic study only occuring in the past 15 years. We discuss the current directions of this study, including open problems and conjectures. Introduction We are all familiar with Galois groups: They play important roles in the structure of field extensions and control the solvability of equations. Less known is that they have a long history in enumerative geometry. In fact, the first comprehensive treatise on Galois theory, Jordan's \Trait´edes Substitutions et des Equations´ alg´ebriques"[43, Ch. III], also discusses Galois theory in the context of several classical problems in enumerative geometry. While Galois theory developed into a cornerstone of number theory and of arithmetic geometry, its role in enumerative geometry lay dormant until Harris's 1979 paper \Galois groups of enumerative problems" [31]. Harris revisited Jordan's treatment of classical problems and gave a proof that, over C, the Galois and monodromy groups coincide. He used this to introduce a geometric method to show that an enumerative Galois group is the full symmetric group and showed that several enumerative Galois groups are full- symmetric, including generalizations of the classical problems studied by Jordan. We sketch the development of Galois groups in enumerative geometry since 1979. This includes some new and newly applied methods to study or compute Galois groups in this context, as well as recent results and open problems.
    [Show full text]
  • 五次三維流形以及相交理論grassmannians, Quintic
    國立成功大學 應用數學研究所 碩士論文 格拉斯曼流形、五次三維流形以及相交理論 Grassmannians, quintic threefolds, and intersection theory 研 究 生:宋政蒲 指導教授:章源慶 中 華 民 國 一 ○ 二 年 六 月 摘要 在這篇論文裡,我們將會探討一些格拉斯曼流形與五次三維流形的 相交理論。我們也將介紹格羅莫夫-威騰不變量,以及利用大量子積的結 合性,推導康采維奇的著名公式:計算出通過(3d-1)個一般點的 d 次平面 有理曲線的數目。 關鍵字:格拉斯曼流形、五次三維流形、相交理論、穩定映射、 格羅莫夫-威騰不變量、康采維奇公式。 ABSTRACT . In this thesis, we will investigate the intersection theory of some Grassmannians and the quintic threefolds. We will also introduce the notion of Gromov-Witten invariants, and derive Kontsevich's celebrated formula for the number of plane rational curves of degree d passing through 3d 1 general points from the associativity of the big quantum product. − Keywords: Grassmannian, quintic threefold, intersection theory, stable map, Gromov-Witten invariant, Kontsevich's formula. 誌謝 首先要感謝家人,老爸不斷督促我,老媽也持續地給我鼓勵,讓我度過不少難 關,兩個哥哥雖然因不認同我的想法和做法,而給了我很多壓力,但我仍很感謝他們 讓我很有家的感覺,且因他們讓家裡有穩定的收入,我才能無後顧之憂地做研究。 還有興大保育社、成大野鳥社、墾丁解說志工認識的朋友,讓我在這三年可以到 處遊歷賞鳥,讓我在研究和學習遇到瓶頸時,能夠藉著大自然來抒發壓力和尋找靈感, 讓我的碩士生涯不是苦悶的三年,而是最充實的三年。特別感謝傻剛、婉瑄和國權, 陪我到處賞鳥到處遊玩,還常常討論許多我們關心的時事,也給了我很多觀點。 接下來是在應數所上認識的夥伴,416 的大家、學長們和學弟,常常舉辦賽局理 論研討會,讓我在學習和研究之間得以喘息。而他們也常常給我很多鼓勵和意見。特 別感謝孫維良,總是可以從他那邊聽到很多數學上有趣的事情,也是少數會和我談論 數學的人,同時在學術上,他也是我的楷模。另外還有黛玉,在我趕著論文,神經緊 繃而沮喪的時候,用簡短的一句話化解了我的緊張。以及呂庭維,在口試當天也幫我 跑東跑西的,還幫我煮了一壺讓夏杼教授讚譽有加的咖啡。 再來要感謝夏杼老師和陳若淳老師,同時也是我的口試委員。在口試前總是用玩 笑的口吻,跟我交談,減輕了我口試前的緊張。而在口試結束後也給予我許多鼓勵和 肯定,讓我能下更多的決心走向研究路線。 最後便是我的指導教授-章源慶老師,很感謝他在我一開始想請他當指導教授時, 沒多說甚麼就收了我當學生,也時常給予我指導,而不論我問甚麼樣的問題,總是會 告訴我線索或者相關書籍,讓我不至於沒有方向。在研究上也沒有給我太大的壓力, 且常常會鼓勵我或者是在我因瓶頸而沮喪時安慰我。非常感謝老師這兩年多的照顧! 最後,要謝謝的人太多了,只能謝天又謝地了。 CONTENTS 1. The Grassmannians
    [Show full text]
  • The Enumerative Significance of Elliptic Gromov-Witten Invariants in P
    The Enumerative Significance of Elliptic Gromov-Witten Invariants in P3 Master Thesis Department of Mathematics Technische Universit¨atKaiserslautern Author: Supervisor: Felix R¨ohrle Prof. Dr. Andreas Gathmann May 2018 Selbstst¨andigkeitserkl¨arung Hiermit best¨atigeich, Felix R¨ohrle,dass ich die vorliegende Masterarbeit zum Thema The Enumerative Significance of Elliptic Gromov-Witten Invariants in " P3\ selbstst¨andigund nur unter Verwendung der angegebenen Quellen verfasst habe. Zitate wurden als solche kenntlich gemacht. Felix R¨ohrle Kaiserslautern, Mai 2018 Contents Introduction 1 1 The Moduli Space M g;n(X; β) 5 1.1 Stable Curves and Maps . .5 1.2 The Boundary . .9 1.3 Gromov-Witten Invariants . 11 1.4 Tautological Classes on M g;n and M g;n(X; β)........... 14 2 Dimension 17 3 The Virtual Fundamental Class 27 3.1 Reducing to DR [ DE;1 [···[ DE;n ................ 28 3.2 The Contribution of DR ....................... 31 3.3 Proof of the Main Theorem . 38 A The Ext Functor 41 B Spectral Sequences 43 Introduction Enumerative geometry is characterized by the question for the number of geo- metric objects satisfying a number of conditions. A great source for such prob- lems is given by the pattern \how many curves of a given type meet some given objects in some ambient space?". Here, one might choose to fix a combination of genus and degree of the embedding of the curve to determine its \type", and as \objects" one could choose points and lines. However, the number of objects is not free to choose { it should be determined in such a way that the answer to the question is a finite integer.
    [Show full text]