五次三維流形以及相交理論grassmannians, Quintic
Total Page:16
File Type:pdf, Size:1020Kb
國立成功大學 應用數學研究所 碩士論文 格拉斯曼流形、五次三維流形以及相交理論 Grassmannians, quintic threefolds, and intersection theory 研 究 生:宋政蒲 指導教授:章源慶 中 華 民 國 一 ○ 二 年 六 月 摘要 在這篇論文裡,我們將會探討一些格拉斯曼流形與五次三維流形的 相交理論。我們也將介紹格羅莫夫-威騰不變量,以及利用大量子積的結 合性,推導康采維奇的著名公式:計算出通過(3d-1)個一般點的 d 次平面 有理曲線的數目。 關鍵字:格拉斯曼流形、五次三維流形、相交理論、穩定映射、 格羅莫夫-威騰不變量、康采維奇公式。 ABSTRACT . In this thesis, we will investigate the intersection theory of some Grassmannians and the quintic threefolds. We will also introduce the notion of Gromov-Witten invariants, and derive Kontsevich's celebrated formula for the number of plane rational curves of degree d passing through 3d 1 general points from the associativity of the big quantum product. − Keywords: Grassmannian, quintic threefold, intersection theory, stable map, Gromov-Witten invariant, Kontsevich's formula. 誌謝 首先要感謝家人,老爸不斷督促我,老媽也持續地給我鼓勵,讓我度過不少難 關,兩個哥哥雖然因不認同我的想法和做法,而給了我很多壓力,但我仍很感謝他們 讓我很有家的感覺,且因他們讓家裡有穩定的收入,我才能無後顧之憂地做研究。 還有興大保育社、成大野鳥社、墾丁解說志工認識的朋友,讓我在這三年可以到 處遊歷賞鳥,讓我在研究和學習遇到瓶頸時,能夠藉著大自然來抒發壓力和尋找靈感, 讓我的碩士生涯不是苦悶的三年,而是最充實的三年。特別感謝傻剛、婉瑄和國權, 陪我到處賞鳥到處遊玩,還常常討論許多我們關心的時事,也給了我很多觀點。 接下來是在應數所上認識的夥伴,416 的大家、學長們和學弟,常常舉辦賽局理 論研討會,讓我在學習和研究之間得以喘息。而他們也常常給我很多鼓勵和意見。特 別感謝孫維良,總是可以從他那邊聽到很多數學上有趣的事情,也是少數會和我談論 數學的人,同時在學術上,他也是我的楷模。另外還有黛玉,在我趕著論文,神經緊 繃而沮喪的時候,用簡短的一句話化解了我的緊張。以及呂庭維,在口試當天也幫我 跑東跑西的,還幫我煮了一壺讓夏杼教授讚譽有加的咖啡。 再來要感謝夏杼老師和陳若淳老師,同時也是我的口試委員。在口試前總是用玩 笑的口吻,跟我交談,減輕了我口試前的緊張。而在口試結束後也給予我許多鼓勵和 肯定,讓我能下更多的決心走向研究路線。 最後便是我的指導教授-章源慶老師,很感謝他在我一開始想請他當指導教授時, 沒多說甚麼就收了我當學生,也時常給予我指導,而不論我問甚麼樣的問題,總是會 告訴我線索或者相關書籍,讓我不至於沒有方向。在研究上也沒有給我太大的壓力, 且常常會鼓勵我或者是在我因瓶頸而沮喪時安慰我。非常感謝老師這兩年多的照顧! 最後,要謝謝的人太多了,只能謝天又謝地了。 CONTENTS 1. The Grassmannians G 2; n 1 ::::::::::::::::::::::::::::::::::: 7 ( + ) 2. Quintic Threefold :::::::::::::::::::::::::::::::::::::::::::: 12 3. Lines On the Quintic Threefold ::::::::::::::::::::::::::::::::::: 13 4. Rational Curves of Degree d 2 On the Quintic Threefold ::::::::::::::::::: 16 ≥ 5. Gromov-Witten Invariant ::::::::::::::::::::::::::::::::::::::: 24 6. Kontsevich's Formula for Genus Zero Curves on P2 ::::::::::::::::::::::: 27 Bibliography ::::::::::::::::::::::::::::::::::::::::::::::::: 31 1. The Grassmannians G(2; n + 1) 7 1. THE GRASSMANNIANS G 2; n 1 ( + ) We would like to study the enumerative geometry of G 2; n 1 , the set of 2-dimensional subspaces Cn+1 Pn of , which is also the set of lines of the n dimensional( projection+ ) space . A typical chart of G 2; n 1 is ( + ) 1 0 a11 a1 n 1 ( − ) : 0 1 a a ⎛ 21 ⋯ 2(n−1) ⎞ ⎜ ⎟ So the dimension of G 2; n 1 is 2 ⎝n 1 . ⋯ ⎠ ( + ) ( − ) Cn+1 Now we fix a basis e1; : : : ; en+1 for , and let Vi be the linear space of e1; : : : ; ei . Then we have a collection{ of subspaces} { } −−⇀ Cn+1 0 V0 V1 Vn+1 ; which is called a flag V . { } = ⊂ ⊂ ⋯ ⊂ = Definition 1. For a flag V , we define the Schubert cycle σa;b n 1 a b 0 by P ( P− ≥ ≥ ≥ ) σa;b V ` G 2; n 1 ` Vn−a ; ` Vn+1−b : ( ) = { ∈ ( + ) T ∩ ( ) ≠ ∅ ⊂ ( )} When b is zero, we simply write σa;0 as σa. A chart of σa;b is given by 1 a11 a12 a1 n a 1 0 0 ( − − ) ; 0 1 a a 0 0 ⎛ 21 ⋯ 1(n+⋯1−b−2) ⋯ ⋯ ⎞ ⎜ ⎟ so the dimension of σ⎝a;b is n a 1⋯n ⋯1 b ⋯2 2n a b 2. ⋯ ⎠ ( − − ) + ( + − − ) = − − − 1. The Grassmannians G(2; n + 1) 8 The σa;b V is the closure of cellular decomposition , has codimension 2 n 1 2n a b 2 a b, 2 a b and σa;b V( ) H ( + ) G 2; n 1 . ( − )−( − − − ) = + The[ total( )] cohomology∈ ( (H∗ G+ 2)); n 1 is spanned by σa;b V n 1 a b 0 . Furthermore, if V ′ is another( ( flag,+ there)) exists a deforming{[ ( map)]TV− V≤ ′,≤ we≤ have} ′ → σa;b V σa;b V σa;b: [ ( )] = [ ( )] = Now we are ready to calculate σa;b σc;d. G(2;n+1) Because the dimension of G 2; nS 1 is 2 n ⋅ 1 , σa;b σc;d is not zero unless G(2;n+1) ( + ) ( − ) ⋅ c d 2 n 1 S a b : 1 ;+ if= c ( n− 1) −b( ; d+ )n 1 a: Theorem 1. σa;b σc;d G(2;n+1) ⎧ 0 ; otherwise: ⎪ = − − = − − S ⋅ = ⎨ Proof. ⎪ ⎩⎪ The number of σa;b σc;d is equal to G(2;n+1) S ⋅ ′ σa;b V σc;d V ; G(2;n+1) ′ S [ ( ) ∩ ′ ( )] where Vi intersect Vj transversely. (i.e. if i j n 2;Vi Vj .) Note that + < + ∩ = ∅ P P σa;b V ` G 2; n 1 ` Vn−a ; ` Vn+1−b ; σ (V ′) = {`∈ G(2; n+ 1) T `∩ P(V ′ ) ≠ ∅ ; ` ⊂ P(V ′ )}: c;d n−c n+1−d For a line L σ V ( σ) = {V ′∈ , L( must+ contain) T ∩ ( points) ≠p∅ P ⊂V ( and )}q P V ′ . a;b c;d n−a n−c Because L is in P V , the point q contained in P V ′ has to be in P V ∈ ( n)+∩1−b ( ) n−∈c ( ) ∈ n(+1−b ) Therefore, q P V ′ P V . Similarly, p P V P V ′ . (n−c ) n+1−b n(−a ) n+1−d ( ) Then P V ′ P V and P V P V ′ are not empty n−c∈ ( n)+1∩−b ( ) n−a n+1∈−d ( ) ∩ ( ) ( ) ∩ ( ) ( ) ∩ ( ) P V ′ P Vn 1 b n c n 1 b n 2 n 1 b c n−c + − : P V P V ′ n a n 1 d n 2 n 1 a d ( n−a) ∩ ( n+1−d) ≠ ∅ ⇒ − + + − ≥ + − − ≥ ⇒ ⇒ However, c d(must) ∩ equal( to 2 )n≠ ∅1 ⇒ a −b .+ Therefore,+ − ≥c +n 1 b and− −d ≥n 1 a. + ( − ) − ( + ) = − − = − − 1. The Grassmannians G(2; n + 1) 9 So we know that σa;b ; σc;d 0 unless c is equal to n 1 b and d is equal to n 1 a. How many lines are⟨ in σa;b ⟩V= σc;d V ′ ? The question− is− easy, there is a unique− line− containing both p and q. ( ) ∩ ( ) ∗ The dual basis to σa;b , the basis of H G 2; n 1 , is σn−b−1;n−a−1 . For a cohomology g H2d G 2; n 1 , g a σ , if we want to find a , we can calculate { } ( ( + ))i d;d−i{ } i d 0≤i≤ 2 [ ] ∈ ( ( + )) [ ] = Q g σn−1−(d−i);n−1−d. G(2;n+1) STheorem[ ] 2.⋅ Pieri's formula for G 2; n 1 , σa σb;c( + ) σd;e : {d+e=a+b+c;n−1≥d≥b≥e≥c} ⋅ = Q Proof. Because the codimension of σa σb;c is a b c, then σa σb;c can be written as ⋅ +m+d;e σd;e : ⋅ d+e=a+b+c Furthermore, Q md;e σa σb;c ; σn−1−d;n−1−b σa σb;c σn−1−e;n−1−d G(2;n+1) = ⟨ ⋅ ⟩ = ( ⋅ ) ⋅ ′ ∗ S σa V σb;c V σn−1−e;n−1−d V ; G(2;n+1) ′ ∗ = [ ( ) ∩ ( ) ∩ ( )] where Vi ;Vj ;Vk intersect transversely. S Suppose md;e is not zero, σ V ′ ` G 2; n 1 ` P V ′ ; ` P V ′ b;c n−b n+1−c σ ( ) =V{∗ ∈ (` G+2;) nT ∩1 (` P)V≠∗∅ ⊂ ; `( P V)}∗ n−1−e;n−1−d 1+e 2+d ` P V ′ ,L P V ∗ T n−b (2+d ) = { ∈ ( + ) ∩ ( ) ≠ ∅ ⊂ ( )} P V ′ P V ∗ n b 2 d n 2 d b (1). ∵ ∩ n(−b ) ≠ ∅2+d ⊂ ( ) ` P V ∗ ,L P V ′ ⇒ ( 1)+e∩ ( ) ≠ ∅ ⇒n+1−c− + + ≥ + ⇒ ≥ P V ∗ P V ′ 1 e n 1 c n 2 e c (2). ∵ ∩ 1(+e ) ≠ ∅n+1−⊂c ( ) Now we consider σ V , if line L is also contained to σ V , L must contain point s in P V . ⇒ ( ) ∩ ( a ) ≠ ∅ ⇒ + + + − ≥ + ⇒a ≥ n−a Here P V and P V ′ P V ∗ intersect transversely. n−a n(+1−)c 2+d ( ) ( ) If σ V σ V ′ σ V ∗ is nonempty set, then there exists a line L, L P V a( ) b;c ( n−1)−e;n∩ −1(−d ) n−a and L P V ′ P V ∗ . ( ) ∩n+1−c( ) ∩ 2+d ( ) ∩ ( ) ≠ ∅ ⊂ ( ) ∩ ( ) 1. The Grassmannians G(2; n + 1) 10 Therefore, the intersection P V and P V ′ P V ∗ , the dimension is n−a n+1−c 2+d n( 1 )c 2( d )n∩ 1( d) c 2; is nonempty. ( + − ) + ( + ) − ( + ) = − + So, d c 2 n a is greater than n 1. d c a 0 d c d e b c 0 b e (3). In conclusion,− + + from− (1)(2)(3) we can+ see⇒ that−b; c;− d;≥ e are⇒ related− − ( by+ − − ) ≥ ⇒ ≥ n 1 d b e c 0 : Thus we get a necessary condition of m−d;e ≥0,≥ now≥ we≥ calculate≥ md;e. ≠ Since P V ′ and P V ∗ intersect transversely, we can choose a local coordinate x ; x ; : : : ; x n+1−c 2+d 1 2 n+1 such that the points of P V ′ are represented by ( ) ( n+1)−c ( ) ( ) x1; x2;:::;:::;:::;xn+1−c; 0;:::; 0 and the points of P V ∗ are represented( by ) 2+d ( ) 0;:::; 0; yn−d;:::;:::;:::;yn; yn+1 : The points of P V ′ P (V ∗ can be represented by ) n+1−c 2+d ( ) ∩ ( ) 0;:::; 0; zn−d; : : : ; zn+1−c; 0;:::; 0 : A line L in σ V ′ σ ( V ∗ must contain a point p in) P V ′ and a point q in P V ∗ . b;c n−1−e;n−1−d n−b 1+e Therefore, the( line)∩L can be constructed( ) by ( ) ( ) a11 a1 n b 0 0 ::: 0 0 ( − ) : 0 0 ::: 0 0 a a ⎛ ⋯ 2(n+1−e) ⋯ 2(n+1) ⎞ ⎜ ⎟ But L is in P V ′ P V ∗ which is locally represented by n+1−c ⎝ 2+⋯d ⋯ ⎠ ( ) ∩ ( ) 0;:::; 0; zn−d; : : : ; zn+1−c; 0;:::; 0 : So the line L can be constructed( by ) 0 0 zn−d zn−b 0 0 0 0 0 0 0 0 z z 0 0 ⎛ ⋯ ⋯ ⋯ n⋯+1−e ⋯n ⋯+1−c ⋯ ⎞ ⎜ ⎟ ⎝ n⋯ d 1⋯zeros ⋯ ⋯ ⋯b e zeros ⋯ c⋯zeros⎠ ↑ ( − − ) ↑ ( − ) ↑ 1. The Grassmannians G(2; n + 1) 11 Look at the above matrix, the space it constructs has n d 1 b e c n a 1 zeros, and intersects P V only in one dimension n−a ( − − ) + ( − ) + = − − That means the point s contained in P V and the line L is unique.