Angular Momentum

Total Page:16

File Type:pdf, Size:1020Kb

Angular Momentum Angular Momentum July 19, 2010 Esys W Q Chapter 11, Section 1-3 psys Fnet t Lsys net t Angular Momentum Measures rotational motion – Both spin and orbits Earth orbits the sun and spins on its axis Is a vector L funnel.sfsu.edu/courses/gm309/labs/seasons/facts.html Types of Angular Momentum Angular momentum is split into 2 types Translational Angular Momentum – Angular Momentum relative to some point – Earth’s orbit around the sun Rotational Angular Momentum – An object is spinning around some axis – A spinning top Translational Angular Momentum Defined relative to some point LA rA p Ltrans,A rA p sin Center of mass moves around some point A cross product Direction determined by Right Hand Rule Right Hand Rule Right Hand Rule 2 Clicker Question #1 What direction is the angular momentum vector? – A) Into the board P=mv – B) Out of The board – C) Left r – D) Right Clicker Question #2 What direction is A x B? – A) Into the board – B) Out of The board – C) Left – D) Right θ B A Cross Products Multiply 2 vectors and get another vector L will always be perpendicular to both r and p – For any cross product L r p L ry pz rz py , rz px rx pz , rx py ry px The cross product will give the direction Sample Cross Product Put the vectors tail to tail r ryˆ p mvxˆ L r p 0*(r) 0*(mv) mv*0 0*0 0*0 (r)mv L 0 0 rmv You get the correct direction for L by doing the cross product Translational Angular Momentum An object traveling in a straight line can still have angular momentum – Relative to some point – Important for dealing with collisions Rotational Angular Momentum Object spins around an axis through its center of mass – Bike tire, Earth L I Formula derived from: L r p – Find Ltrans for each particle in a multi-particle system and add them up r p m1r1v1 sin1 m2r2v2 sin2 m3r3v3 sin2 r r sin v r 2 2 2 Lrot [m1r1 m2r2 m3r3 ] I Translation and Moment of Inertia The two equations are equivalent I r p Rotational I is not the same as translational I 2 – Ex: a sphere I Mr 2 rot 5 2 Itrans MR Can have different ω Example: Ball on a String 2 ways of solving Translational Ltrans r mv mvr Rotational L I v r I mr 2 L mrv In both cases the direction is given by the right hand rule upload.wikimedia.org/wikipedia/commons/9/97/Angular_momentum_circle.png Example: Bike Tire All mass is at the edge Split into 20 parts M M L r p R vsin90 R2 trans 20 20 M L 20 R 2 MR2 tot 20 Ltot I L is into the page Starting with Translational you can get rotational Total Angular Momentum Add the two together Ltot Ltrans Lrot Ltrans rA pcm Lrot I Example: The Earth The Earth has an orbit and spin 2 2 L MR2 7.11033 Js rot 5 Earth 24hours 2 L MR2 2.661040 Js trans Sun,Earth 365days Notice that both I and ω are different for each type of L Drawing 3D in 2D Angular momentum will always require 3D – It is a cross product How to draw this easily? Into the page – Arrow feathers going away Out of Page – Arrow head coming towards you Clicker Question #3 Which diagram is the correct representation of L r p – A – B C) p – C B) L – D r r L p A) p p D) L r L r.
Recommended publications
  • Glossary Physics (I-Introduction)
    1 Glossary Physics (I-introduction) - Efficiency: The percent of the work put into a machine that is converted into useful work output; = work done / energy used [-]. = eta In machines: The work output of any machine cannot exceed the work input (<=100%); in an ideal machine, where no energy is transformed into heat: work(input) = work(output), =100%. Energy: The property of a system that enables it to do work. Conservation o. E.: Energy cannot be created or destroyed; it may be transformed from one form into another, but the total amount of energy never changes. Equilibrium: The state of an object when not acted upon by a net force or net torque; an object in equilibrium may be at rest or moving at uniform velocity - not accelerating. Mechanical E.: The state of an object or system of objects for which any impressed forces cancels to zero and no acceleration occurs. Dynamic E.: Object is moving without experiencing acceleration. Static E.: Object is at rest.F Force: The influence that can cause an object to be accelerated or retarded; is always in the direction of the net force, hence a vector quantity; the four elementary forces are: Electromagnetic F.: Is an attraction or repulsion G, gravit. const.6.672E-11[Nm2/kg2] between electric charges: d, distance [m] 2 2 2 2 F = 1/(40) (q1q2/d ) [(CC/m )(Nm /C )] = [N] m,M, mass [kg] Gravitational F.: Is a mutual attraction between all masses: q, charge [As] [C] 2 2 2 2 F = GmM/d [Nm /kg kg 1/m ] = [N] 0, dielectric constant Strong F.: (nuclear force) Acts within the nuclei of atoms: 8.854E-12 [C2/Nm2] [F/m] 2 2 2 2 2 F = 1/(40) (e /d ) [(CC/m )(Nm /C )] = [N] , 3.14 [-] Weak F.: Manifests itself in special reactions among elementary e, 1.60210 E-19 [As] [C] particles, such as the reaction that occur in radioactive decay.
    [Show full text]
  • Rotational Motion (The Dynamics of a Rigid Body)
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Robert Katz Publications Research Papers in Physics and Astronomy 1-1958 Physics, Chapter 11: Rotational Motion (The Dynamics of a Rigid Body) Henry Semat City College of New York Robert Katz University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/physicskatz Part of the Physics Commons Semat, Henry and Katz, Robert, "Physics, Chapter 11: Rotational Motion (The Dynamics of a Rigid Body)" (1958). Robert Katz Publications. 141. https://digitalcommons.unl.edu/physicskatz/141 This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Robert Katz Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 11 Rotational Motion (The Dynamics of a Rigid Body) 11-1 Motion about a Fixed Axis The motion of the flywheel of an engine and of a pulley on its axle are examples of an important type of motion of a rigid body, that of the motion of rotation about a fixed axis. Consider the motion of a uniform disk rotat­ ing about a fixed axis passing through its center of gravity C perpendicular to the face of the disk, as shown in Figure 11-1. The motion of this disk may be de­ scribed in terms of the motions of each of its individual particles, but a better way to describe the motion is in terms of the angle through which the disk rotates.
    [Show full text]
  • Rotation: Moment of Inertia and Torque
    Rotation: Moment of Inertia and Torque Every time we push a door open or tighten a bolt using a wrench, we apply a force that results in a rotational motion about a fixed axis. Through experience we learn that where the force is applied and how the force is applied is just as important as how much force is applied when we want to make something rotate. This tutorial discusses the dynamics of an object rotating about a fixed axis and introduces the concepts of torque and moment of inertia. These concepts allows us to get a better understanding of why pushing a door towards its hinges is not very a very effective way to make it open, why using a longer wrench makes it easier to loosen a tight bolt, etc. This module begins by looking at the kinetic energy of rotation and by defining a quantity known as the moment of inertia which is the rotational analog of mass. Then it proceeds to discuss the quantity called torque which is the rotational analog of force and is the physical quantity that is required to changed an object's state of rotational motion. Moment of Inertia Kinetic Energy of Rotation Consider a rigid object rotating about a fixed axis at a certain angular velocity. Since every particle in the object is moving, every particle has kinetic energy. To find the total kinetic energy related to the rotation of the body, the sum of the kinetic energy of every particle due to the rotational motion is taken. The total kinetic energy can be expressed as ..
    [Show full text]
  • Lecture 24 Angular Momentum
    LECTURE 24 ANGULAR MOMENTUM Instructor: Kazumi Tolich Lecture 24 2 ¨ Reading chapter 11-6 ¤ Angular momentum n Angular momentum about an axis n Newton’s 2nd law for rotational motion Angular momentum of an rotating object 3 ¨ An object with a moment of inertia of � about an axis rotates with an angular speed of � about the same axis has an angular momentum, �, given by � = �� ¤ This is analogous to linear momentum: � = �� Angular momentum in general 4 ¨ Angular momentum of a point particle about an axis is defined by � � = �� sin � = ��� sin � = �-� = ��. � �- ¤ �⃗: position vector for the particle from the axis. ¤ �: linear momentum of the particle: � = �� �⃗ ¤ � is moment arm, or sometimes called “perpendicular . Axis distance.” �. Quiz: 1 5 ¨ A particle is traveling in straight line path as shown in Case A and Case B. In which case(s) does the blue particle have non-zero angular momentum about the axis indicated by the red cross? A. Only Case A Case A B. Only Case B C. Neither D. Both Case B Quiz: 24-1 answer 6 ¨ Only Case A ¨ For a particle to have angular momentum about an axis, it does not have to be Case A moving in a circle. ¨ The particle can be moving in a straight path. Case B ¨ For it to have a non-zero angular momentum, its line of path is displaced from the axis about which the angular momentum is calculated. ¨ An object moving in a straight line that does not go through the axis of rotation has an angular position that changes with time. So, this object has an angular momentum.
    [Show full text]
  • Rotational Motion and Angular Momentum 317
    CHAPTER 10 | ROTATIONAL MOTION AND ANGULAR MOMENTUM 317 10 ROTATIONAL MOTION AND ANGULAR MOMENTUM Figure 10.1 The mention of a tornado conjures up images of raw destructive power. Tornadoes blow houses away as if they were made of paper and have been known to pierce tree trunks with pieces of straw. They descend from clouds in funnel-like shapes that spin violently, particularly at the bottom where they are most narrow, producing winds as high as 500 km/h. (credit: Daphne Zaras, U.S. National Oceanic and Atmospheric Administration) Learning Objectives 10.1. Angular Acceleration • Describe uniform circular motion. • Explain non-uniform circular motion. • Calculate angular acceleration of an object. • Observe the link between linear and angular acceleration. 10.2. Kinematics of Rotational Motion • Observe the kinematics of rotational motion. • Derive rotational kinematic equations. • Evaluate problem solving strategies for rotational kinematics. 10.3. Dynamics of Rotational Motion: Rotational Inertia • Understand the relationship between force, mass and acceleration. • Study the turning effect of force. • Study the analogy between force and torque, mass and moment of inertia, and linear acceleration and angular acceleration. 10.4. Rotational Kinetic Energy: Work and Energy Revisited • Derive the equation for rotational work. • Calculate rotational kinetic energy. • Demonstrate the Law of Conservation of Energy. 10.5. Angular Momentum and Its Conservation • Understand the analogy between angular momentum and linear momentum. • Observe the relationship between torque and angular momentum. • Apply the law of conservation of angular momentum. 10.6. Collisions of Extended Bodies in Two Dimensions • Observe collisions of extended bodies in two dimensions. • Examine collision at the point of percussion.
    [Show full text]
  • Week 11: Chapter 11
    The Vector Product There are instances where the product of two Week 11: Chapter 11 vectors is another vector Earlier we saw where the product of two vectors Angular Momentum was a scalar This was called the dot product The vector product of two vectors is also called the cross product The Vector Product and Torque The Vector Product Defined The torque vector lies in a Given two vectors, A and B direction perpendicular to the plane formed by the The vector (cross) product of A and B is position vector and the force vector defined as a third vector, CAB Fr C is read as “A cross B” The torque is the vector (or cross) product of the The magnitude of vector C is AB sin position vector and the is the angle between A and B force vector More About the Vector Product Properties of the Vector Product The quantity AB sin is The vector product is not commutative. The equal to the area of the order in which the vectors are multiplied is parallelogram formed important by A and B To account for order, remember The direction of C is A BBA perpendicular to the plane formed by A and B If A is parallel to B ( = 0o or 180o), then The best way to A B 0 determine this direction is to use the right-hand Therefore A A 0 rule 1 More Properties of the Vector Final Properties of the Vector Product Product If A is perpendicular to B , then ABAB The derivative of the cross product with The vector product obeys the distributive law respect to some variable such as t is ddA dB ABCABAC x ( + ) = x + x AB
    [Show full text]
  • M34; Torque and Angular Momentum in Circular Motion
    TORQUE AND ANGULAR MOMENTUM MISN-0-34 IN CIRCULAR MOTION by Kirby Morgan, Charlotte, Michigan TORQUE AND ANGULAR MOMENTUM 1. Introduction . 1 2. Torque and Angular Momentum IN CIRCULAR MOTION a. De¯nitions . 1 b. Relationship: ~¿ = dL=dt~ . .1 c. Motion Con¯ned to a Plane . 2 d. Circular Motion of a Mass . .3 3. Systems of Particles a. Total Angular Momentum . 4 shaft b. Total Torque . 4 c. Rigid Body Motion About a Fixed Axis . 5 d. Example: Flywheel . 5 e. Kinetic Energy of Rotation . 6 f. Linear vs. Rotational Motion . 6 4. Conservation of Angular Momentum a. Statement of the Law . 7 b. If the External Torque is not Zero . 7 c. Example: Two Flywheels . 7 d. Kinetic Energy of the Two Flywheels . 8 5. Nonplanar Rigid Bodies . 9 Acknowledgments. .9 Glossary . 9 Project PHYSNET·Physics Bldg.·Michigan State University·East Lansing, MI 1 2 ID Sheet: MISN-0-34 THIS IS A DEVELOPMENTAL-STAGE PUBLICATION Title: Torque and Angular Momentum in Circular Motion OF PROJECT PHYSNET Author: Kirby Morgan, HandiComputing, Charlotte, MI The goal of our project is to assist a network of educators and scientists in Version: 4/16/2002 Evaluation: Stage 0 transferring physics from one person to another. We support manuscript processing and distribution, along with communication and information Length: 1 hr; 24 pages systems. We also work with employers to identify basic scienti¯c skills Input Skills: as well as physics topics that are needed in science and technology. A number of our publications are aimed at assisting users in acquiring such 1.
    [Show full text]
  • Chapter 19 Angular Momentum
    Chapter 19 Angular Momentum 19.1 Introduction ........................................................................................................... 1 19.2 Angular Momentum about a Point for a Particle .............................................. 2 19.2.1 Angular Momentum for a Point Particle ..................................................... 2 19.2.2 Right-Hand-Rule for the Direction of the Angular Momentum ............... 3 Example 19.1 Angular Momentum: Constant Velocity ........................................ 4 Example 19.2 Angular Momentum and Circular Motion ..................................... 5 Example 19.3 Angular Momentum About a Point along Central Axis for Circular Motion ........................................................................................................ 5 19.3 Torque and the Time Derivative of Angular Momentum about a Point for a Particle ........................................................................................................................... 8 19.4 Conservation of Angular Momentum about a Point ......................................... 9 Example 19.4 Meteor Flyby of Earth .................................................................... 10 19.5 Angular Impulse and Change in Angular Momentum ................................... 12 19.6 Angular Momentum of a System of Particles .................................................. 13 Example 19.5 Angular Momentum of Two Particles undergoing Circular Motion .....................................................................................................................
    [Show full text]
  • Lecture 28 3D Rigid Body Dynamics: Equations of Motion
    J. Peraire, S. Widnall 16.07 Dynamics Fall 2009 Version 3.0 Lecture L28 - 3D Rigid Body Dynamics: Equations of Motion; Euler's Equations 3D Rigid Body Dynamics: Euler's Equations We now turn to the task of deriving the general equations of motion for a three-dimensional rigid body. These equations are referred to as Euler's equations. The governing equations are those of conservation of linear momentum L = MvG and angular momentum, H = [I]!, where we have written the moment of inertia in matrix form to remind us that in general the direction of the angular momentum is not in the direction of the rotation vector !. Conservation of linear momentum requires L_ = F (1) Conservation of angular momentum, about a fixed point O, requires _ H0 = M (2) or about the center of mass G _ HG = M G (3) In our previous application of these equations, we specified the motion and used the equations to specify what moments would be required to produce the prescribed motion. In this more general formulation, we allow the body to execute free motions, possibly under the action of external moments. We consider the general motion of a body about its center of mass, first examining this in a inertial reference frame. 1 At an instant of time, we can calculate the angular momentum of the body as H = [I]!. One possible method to obtain the moments and the motion of the body is to perform our analysis in this inertial coordinate system. We would of course align our coordinate system initially with the principal axes of the body.
    [Show full text]
  • 10. Aircraft Equations of Motion
    Aircraft Equations of Motion: Translation and Rotation Robert Stengel, Aircraft Flight Dynamics, MAE 331, 2018 Learning Objectives • What use are the equations of motion? • How is the angular orientation of the airplane described? • What is a cross-product-equivalent matrix? • What is angular momentum? • How are the inertial properties of the airplane described? • How is the rate of change of angular momentum calculated? Lockheed F-104 Reading: Flight Dynamics 155-161 Copyright 2018 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE331.html http://www.princeton.edu/~stengel/FlightDynamics.html 1 Review Questions § What characteristic(s) provide maximum gliding range? § Do gliding heavy airplanes fall out of the sky faster than light airplanes? § Are the factors for maximum gliding range and minimum sink rate the same? § How does the maximum climb rate vary with altitude? § What are “energy height” and “specific excess power”? § What is an “energy climb”? § How is the “maneuvering envelope” defined? § What factors determine the maximum steady turning rate? 2 1 Dynamic Systems Actuators Sensors Dynamic Process: Current state depends on Observation Process: Measurement may prior state contain error or be incomplete x = dynamic state y = output (error-free) u = input z = measurement w = exogenous disturbance n = measurement error p = parameter t or k = time or event index dx(t) y(t) = h[x(t),u(t)] = f [x(t),u(t),w(t),p(t),t] dt z(t) = y(t) + n(t) 3 Ordinary Differential Equations Fall Into
    [Show full text]
  • Physics 3550, Fall 2012 Angular Momentum. Relevant Sections in Text: §3.4, 3.5
    Angular Momentum. Physics 3550, Fall 2012 Angular Momentum. Relevant Sections in Text: x3.4, 3.5 Angular Momentum You have certainly encountered angular momentum in a previous class. The impor- tance of angular momentum lies principally in the fact that it is conserved in appropriate circumstances, as we shall explore. It is worth noting that the angular momentum of elec- trons in atoms is one of the most important physical features of atoms and largely makes them what they are. The angular momentum of a single particle is defined by* ~l = ~r × ~p; where usually the momentum is just ~p = m~v (more on this later). Notice that the angular momentum involves the position vector, which is defined relative to a choice of origin. Thus the angular momentum is defined relative to an origin. It is easy to forget this. Don't. As I mentioned, we focus on angular momentum because of its conservation under appropriate circumstances. What are these circumstances? Well, let the particle move according to Newton's second law, we have d~l = ~v × (m~v) + ~r × F:~ dt The first term involves the cross product of two parallel vectors and so it vanishes. We then get d~l = ~γ; dt where ~γ = ~r × F~ is the torque. Like the position vector and the angular momentum, the torque is always defined relative to a choice of origin. We tacitly assume the torque is defined relative to the same origin as the angular momentum. We see then that the angular momentum of a particle is conserved if and only if the torque vanishes.
    [Show full text]
  • Equation of Motion of System with Internal Angular Momentum
    Equations of Motion of Systems with Internal Angular Momentum -II ManuelM. Dorado Dorado∗ CiRTA,ENITA, SL. S.A., Pol. Ind. Miguel Tres Yuste, Cantos12, Oeste, 28037 s/n Madrid, Spain Abstract Using the Euler’s equations and the Hamiltonian formulation, an attempt has been made to obtain the equations of motion of systems with internal angular momentum that are moving with respect to a reference frame when subjected to an interaction. This interaction involves the application of a torque that is permanently perpendicular to the internal angular momentum vector. mass) L , whose centre of mass moves at a constant velocity ν with respect to a reference frame which INTRODUCTION canbedefinedassoonastheinteractioninthe cylinder starts. It is aimed to obtain the equations The angular momentum of a many-particle sys- of motion to describe the dynamical behaviour of tem with respect to its centre of mass is known as the system from the instant that it undergoes an M the ”internal angular momentum” and is a prop- interaction, by applying a torque that is perma- erty of the system that is independent of the ob- nently perpendicular to the internal angular mo- server. Internal angular momentum is therefore mentum (See Fig.1). and attribute that characterizes a system in the When solving the problem, the following points same way as its mass or charge. In the case of a are taken into account: rigid body and particularly in the case of an ele- (a) The cylinder will continue spinning about its mentary particle, the internal angular momentum longitudinal axis at a constant angular veloc- is also referred to as ”spin”.
    [Show full text]