TABLE 7-5 (From Engel and Cimbala, Fluid Mechanics: Fundamentals

Total Page:16

File Type:pdf, Size:1020Kb

TABLE 7-5 (From Engel and Cimbala, Fluid Mechanics: Fundamentals TABLE 7-5 (from Çengel and Cimbala, Fluid Mechanics: Fundamentals and Applications, McGraw-Hill, 2006) Some common established nondimensional parameters or Πs encountered in fluid mechanics and heat transfer; A is a characteristic area, D is a characteristic diameter, f is a characteristic frequency (Hz), L is a characteristic length, t is a characteristic time, T is a characteristic (absolute) temperature, V is a characteristic velocity, W is a characteristic width, W is a characteristic power, ω is a characteristic radial frequency or angular velocity (radians/s). Other parameters and fluid properties in these Πs include: c = speed of sound, cp, cv = specific heats, dp = particle diameter, DAB = species diffusion coefficient, h = convective heat transfer coefficient, hfg = latent heat of evaporation, k = thermal conductivity and also k = ratio of specific heats, P = pressure, Tsat = saturation temperature, V = volume flow rate, α = thermal diffusivity, β = coefficient of thermal expansion, λ = mean free path length, μ = viscosity, ν = kinematic viscosity, ρ = fluid density, ρf = liquid density, ρp = particle density, ρs = solid density, ρv = vapor density, σs = surface tension, and τ = shear stress. Name Definition Ratio of significance 3 Archimedes ρs gL gravitational force Ar = ()ρρ− number μ 2 s viscous force LL length length aspect ratio AR= or or WD width diameter hL convective heat transfer Biot number Bi = k conduction heat transfer 2 g ( ρρfv− ) L gravitational forces Bond number Bo = σ s surface tension forces PP− v Ca (sometimes σ c ) = 2 ρV pressure - vapor pressure cavitation number ⎛⎞2()PP− inertial pressure sometimes v ⎜⎟2 ⎝⎠ρV Darcy friction 8τ w wall friction forces f = factor ρV 2 inertial forces drag FD drag force C = D 1 2 coefficient 2 ρVA dynamic force V 2 kinetic energy Eckert number Ec = CTP enthalpy ΔΔPP⎛⎞pressure difference Euler number Eu= ⎜⎟sometimes 221 inertial pressure ρρVV⎝⎠2 Fanning 2τ w wall friction forces fF = friction factor ρV 2 inertial forces Fourier αt physical time Fo (sometimes τ ) = number L2 thermal diffusion time Froude VV⎛⎞2 inertial forces Fr= ⎜⎟sometimes number gL ⎝⎠gL gravitational forces Grashof gTLβ Δ 32ρ buoyancy forces Gr = number μ 2 viscous forces CTT( − ) sensible energy Jakob number Ja = P sat hfg latent energy Knudsen λ mean free path length Kn = number L characteristic length Name Definition Ratio of significance k α thermal diffusion Lewis number Le == ρCDP AB D AB species diffusion FL lift force C = lift coefficient L 1 2 2 ρVA dynamic force V flow speed Mach number Ma (sometimes M) = c speed of sound Nusselt Lh convection heat transfer Nu = number k conduction heat transfer ρLVC LV bulk heat transfer Peclet number Pe ==p k α conduction heat transfer W power power number N = P ρD53ω rotational inertia Prandtl ν μC viscous diffusion Pr == P number α k thermal diffusion pressure PP− ∞ static pressure difference C = p 1 2 coefficient 2 ρV dynamic pressure 32 Rayleigh gβρΔTL CP buoyancy forces Ra = number kμ viscous forces Reynolds ρVL VL inertial forces Re == number μ ν viscous forces Richardson Lg5 Δρ buoyancy forces Ri = number ρV 2 inertial forces roughness ε roughness height ratio L characteristic length Schmidt μ ν viscous diffusion Sc == number ρDDAB AB species diffusion Sherwood VL overall mass diffusion Sh = number DAB species diffusion specific heat cP enthalpy k (sometimes γ ) = ratio cv internal energy Stanton h heat transfer St = number ρCVp thermal capacity ρ dV2 particle relaxation time Stokes number Stk (sometimes St) = pp 18μL characteristic flow time Strouhal fL characteristic flow time St (sometimes S or Sr) = number V period of oscillation ρVL2 inertial forces Weber number We = σ s surface tension forces .
Recommended publications
  • Separation Points of Magnetohydrodynamic Boundary
    Journal of Naval Architecture and Marine Engineering June,2018 http://dx.doi.org/10.3329/jname.v15i2.29966 http://www.banglajol.info MATHEMATICAL ANALYSIS OF NON-NEWTONIAN NANOFLUID TRANSPORT PHENOMENA PAST A TRUNCATED CONE WITH NEWTONIAN HEATING N. Nagendra1*, C. H. Amanulla2 and M. Suryanarayana Reddy3 1Department of Mathematics, Madanapalle Institute of Technology and Science, Madanapalle-517325, India. *Email: [email protected] 2Department of Mathematics, Jawaharlal Nehru Technological University, Anantapur, Anantapuramu-515002, India. Email: [email protected] 3Department of Mathematics, JNTUA College of Engineering, Pulivendula-516390, India. Email: [email protected] Abstract: In the present study, we analyze the heat, momentum and mass (species) transfer in external boundary layer flow of Casson nanofluid past a truncated cone surface with Biot Number effect is studied theoretically. The effects of Brownian motion and thermophoresis are incorporated in the model in the presence of both heat and nanoparticle mass transfer Biot Number effect. The governing partial differential equations (PDEs) are transformed into highly nonlinear, coupled, multi-degree non-similar partial differential equations consisting of the momentum, energy and concentration equations via appropriate non-similarity transformations. These transformed conservation equations are solved subject to appropriate boundary conditions with a second order accurate finite difference method of the implicit type. The influences of the emerging parameters i.e. Casson fluid parameter (β)(≥ 1), Brownian motion parameter (Nb) thermophoresis parameter (Nt), Lewis number (Le)(≥ 5), Buoyancy ratio parameter (N )( ≥ 0) Prandtl number (Pr) (7≤ Pr ≤ 100) and Biot number (Bi) (0.25 ≤ Bi ≤ 1)on velocity, temperature and nano-particle concentration distributions is illustrated graphically and interpreted at length.
    [Show full text]
  • General@ Electric Space Sciences Laboratory Theoretical Fluid Physics Section
    4 3 i d . GPO PRICE $ CFSTI PRICE(S) $ R65SD50 Microfiche (MF) , 7.3, We53 July85 THE STRUCTURE OF THE VISCOUS HYPERSONIC SHOCK LAYER SPACE SCIENCES LABORATORY . MISSILE AND SPACE DIVISION GENERAL@ ELECTRIC SPACE SCIENCES LABORATORY THEORETICAL FLUID PHYSICS SECTION THE STRUCTURE OF THE VISCOUS HYPERSONIC SHOCK LAYER BY L. Goldberg . Work performed for the Space Nuclear Propulsion Office, NASA, under Contract No. SNPC-29. f This report first appeared as part of Contract Report DIN: 214-228F (CRD), October 1, 1965. Permission for release of this publication for general distribution was received from SNPO on December 9, 1965. R65SD50 December, 1965 MISSILE AND SPACE DIVISION GENERAL ELECTRIC CONTENTS PAGE 1 4 I List of Figures ii ... Abstract 111 I Symbols iv I. INTRODUCTION 1 11. DISCUSSION OF THE HYPER NIC CO TTINUI 3 FLOW FIELD 111. BASIC RELATIONS 11 IV . BOUNDARY CONDITIONS 14 V. NORMALIZED SYSTEM OF EQUATIONS AND BOUNDARY 19 CONDITIONS VI. DISCUSSION OF RESULTS 24 VII. CONCLUSIONS 34 VIII. REFERENCES 35 Acknowledgements 39 Figures 40 1 LIST OF FIGURES 'I PAGE 1 1 1. Hypersonic Flight Regimes 40 'I 2. Coordinate System 41 3. Profiles Re = 15, 000 42 S 3 4. Profiles Re = 10 43 S 3 5. Profiles Re = 10 , f = -0.4 44 S W 2 6. Profiles Re = 10 45 S 2 7. Profiles Re = 10 , f = do. 4 46 S W Profiles Re = 10 47 8. s 9. Normalized Boundary Layer Correlations 48 10. Reduction in Skin Friction and Heat Transfer with Mass 49 Transfer 11. Normalized Heat Transfer 50 12. Normalized Skin Friction 51 13.
    [Show full text]
  • Turbulent Boundary Layers 7 - 1 David Apsley 7.2.3 Radiation
    7. HEAT TRANSFER SPRING 2009 7.1 Definitions 7.2 Modes of heat transfer 7.3 The Prandtl number 7.4 Dimensionless numbers in free and forced convection 7.5 The energy equation 7.6 Laminar boundary layers with isothermal walls 7.7 Temperature profile in a turbulent boundary layer 7.8 Heat-transfer coefficients 7.9 Temperature integral results 7.10 Engineering heat-transfer calculations 7.11 References Examples 7.1 Definitions Heat transfer is energy in transit due to a temperature difference. The heat flux qh is the rate of heat transfer per unit area. 7.2 Modes of Heat Transfer 7.2.1 Conduction Heat transfer due to molecular activity in the absence of a bulk motion. Fourier ’s Law = − ∇ qh kh T (1) kh is the conductivity of heat . –1 –1 –1 –1 At 20 ºC, kh(water) = 0.604 W m K ; kh(air) = 0.0257 W m K . 7.2.2 Advection Heat transfer due to bulk motion of fluid. = − qh c p (T Te )u (2) cp is the specific heat capacity (at constant pressure). Te is a reference (usually the external or free-stream) temperature. –1 –1 –1 –1 At 20 ºC, cp(water) = 4182 J kg K ; cp(air) = 1007 J kg K . Turbulent Boundary Layers 7 - 1 David Apsley 7.2.3 Radiation Heat transfer by emission of electromagnetic radiation. Stefan-Boltzmann Law = 4 qh Ts (3) (= 5.670 ×10 -8 W m–2 K–4) is the Stefan-Boltzmann constant . is the emissivity ( = 1 for a perfect black body) 7.2.4 Free and Forced Convection For fluids, conduction and advection are usually combined as convection , which may be either: forced convection – flow driven by external means; free (or natural ) convection – flow driven by buoyancy.
    [Show full text]
  • An Experimental Approach to Determine the Heat Transfer Coefficient in Directional Solidification Furnaces
    Journal of Crystal Growth 113 (1991) 557-565 PRECEDING p_GE B,LA(]'_,,_O'_7FILMED North-Holland N9 Y. An experimental approach to determine the heat transfer coefficient in directional solidification furnaces Mohsen Banan, Ross T. Gray and William R. Wilcox Center for Co,stal Growth in Space and School of Engineering, Clarkson University, Potsdam, New York 13699, USA Received 13 November 1990; manuscript received in final form 22 April 1991 f : The heat transfer coefficient between a molten charge and its surroundings in a Bridgman furnace was experimentally determined using m-sttu temperature measurement. The ampoule containing an isothermal melt was suddenly moved from a higher temperature ' zone to a lower temperature zone. The temperature-time history was used in a lumped-capacity cooling model to evaluate the heat i transfer coefficient between the charge and the furnace. The experimentally determined heat transfer coefficient was of the same i order of magnitude as the theoretical value estimated by standard heat transfer calculations. 1. Introduction Chang and Wilcox [1] showed that increasing the Biot number in Bridgman growth affects the A variety of directional solidification tech- position and shape of the isotherms in the furnace. niques are used for preparation of materials, espe- The sensitivity of interface position to the hot and cially for growth of single crystals. These tech- cold zone temperatures is greater for small Blot niques include the vertical Bridgman-Stockbarger, number. horizontal Bridgman, zone-melting, and gradient Fu and Wilcox [2] showed that decreasing the freeze methods. It is time consuming and costly to Biot numbers in the hot and cold zones of a experimentally determine the optimal thermal vertical Bridgman-Stockbarger system results in conditions of a furnace utifized to grow a specific isotherms becoming less curved.
    [Show full text]
  • Chapter 5 Dimensional Analysis and Similarity
    Chapter 5 Dimensional Analysis and Similarity Motivation. In this chapter we discuss the planning, presentation, and interpretation of experimental data. We shall try to convince you that such data are best presented in dimensionless form. Experiments which might result in tables of output, or even mul- tiple volumes of tables, might be reduced to a single set of curves—or even a single curve—when suitably nondimensionalized. The technique for doing this is dimensional analysis. Chapter 3 presented gross control-volume balances of mass, momentum, and en- ergy which led to estimates of global parameters: mass flow, force, torque, total heat transfer. Chapter 4 presented infinitesimal balances which led to the basic partial dif- ferential equations of fluid flow and some particular solutions. These two chapters cov- ered analytical techniques, which are limited to fairly simple geometries and well- defined boundary conditions. Probably one-third of fluid-flow problems can be attacked in this analytical or theoretical manner. The other two-thirds of all fluid problems are too complex, both geometrically and physically, to be solved analytically. They must be tested by experiment. Their behav- ior is reported as experimental data. Such data are much more useful if they are ex- pressed in compact, economic form. Graphs are especially useful, since tabulated data cannot be absorbed, nor can the trends and rates of change be observed, by most en- gineering eyes. These are the motivations for dimensional analysis. The technique is traditional in fluid mechanics and is useful in all engineering and physical sciences, with notable uses also seen in the biological and social sciences.
    [Show full text]
  • Chemically Reactive MHD Micropolar Nanofluid Flow with Velocity Slips
    www.nature.com/scientificreports OPEN Chemically reactive MHD micropolar nanofuid fow with velocity slips and variable heat source/sink Abdullah Dawar1, Zahir Shah 2,3*, Poom Kumam 4,5*, Hussam Alrabaiah 6,7, Waris Khan 8, Saeed Islam1,9,10 & Nusrat Shaheen11 The two-dimensional electrically conducting magnetohydrodynamic fow of micropolar nanofuid over an extending surface with chemical reaction and secondary slips conditions is deliberated in this article. The fow of nanofuid is treated with heat source/sink and nonlinear thermal radiation impacts. The system of equations is solved analytically and numerically. Both analytical and numerical approaches are compared with the help of fgures and tables. In order to improve the validity of the solutions and the method convergence, a descriptive demonstration of residual errors for various factors is presented. Also the convergence of an analytical approach is shown. The impacts of relevance parameters on velocity, micro-rotation, thermal, and concentration felds for frst- and second-order velocity slips are accessible through fgures. The velocity feld heightens with the rise in micropolar, micro-rotation, and primary order velocity parameters, while other parameters have reducing impact on the velocity feld. The micro-rotation feld reduces with micro-rotation, secondary order velocity slip, and micropolar parameters but escalates with the primary order velocity slip parameter. The thermal feld heightens with escalating non-uniform heat sink/source, Biot number, temperature ratio factor, and thermal radiation factor. The concentration feld escalates with the increasing Biot number, while reduces with heightening chemical reaction and Schmidt number. The assessment of skin factor, thermal transfer, and mass transfer are calculated through tables.
    [Show full text]
  • Inertia-Less Convectively-Driven Dynamo Models in the Limit
    Inertia-less convectively-driven dynamo models in the limit of low Rossby number and large Prandtl number Michael A. Calkins a,1,∗, Keith Julienb,2, Steven M. Tobiasc,3 aDepartment of Physics, University of Colorado, Boulder, CO 80309 USA bDepartment of Applied Mathematics, University of Colorado, Boulder, CO 80309 USA cDepartment of Applied Mathematics, University of Leeds, Leeds, UK LS2 9JT Abstract Compositional convection is thought to be an important energy source for magnetic field generation within planetary interiors. The Prandtl number, Pr, characterizing compositional convection is significantly larger than unity, suggesting that the inertial force may not be important on the small scales of convection as long as the buoyancy force is not too strong. We develop asymptotic dynamo models for the case of small Rossby number and large Prandtl number in which inertia is absent on the convective scale. The rele- vant diffusivity parameter for this limit is the compositional Roberts number, q = D/η, which is the ratio of compositional and magnetic diffusivities. Dy- namo models are developed for both order one q and the more geophysically relevant low q limit. For both cases the ratio of magnetic to kinetic energy densities, M, is asymptotically large and reflects the fact that Alfv´en waves have been filtered from the dynamics. Along with previous investigations of asymptotic dynamo models for Pr = O(1), our results show that the ratio M is not a useful indicator of dominant force balances in the momentum equa- tion since many different asymptotic limits of M can be obtained without changing the leading order geostrophic balance.
    [Show full text]
  • Strongly-Coupled Conjugate Heat Transfer Investigation of Internal Cooling of Turbine Blades Using the Immersed Boundary Method
    Strongly-Coupled Conjugate Heat Transfer Investigation of Internal Cooling of Turbine Blades using the Immersed Boundary Method Tae Kyung Oh Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Master of Science In Mechanical Engineering Danesh K. Tafti – Chair Roop L. Mahajan Wing F. Ng May 13th 2019 Blacksburg, Virginia, USA Keywords: Conjugate heat transfer, immersed boundary method, internal cooling, fully developed assumption Strongly-Coupled Conjugate Heat Transfer Investigation of Internal Cooling of Turbine Blades using the Immersed Boundary Method Tae Kyung Oh ABSTRACT The present thesis focuses on evaluating a conjugate heat transfer (CHT) simulation in a ribbed cooling passage with a fully developed flow assumption using LES with the immersed boundary method (IBM-LES-CHT). The IBM with the LES model (IBM-LES) and the IBM with CHT boundary condition (IBM-CHT) frameworks are validated prior to the main simulations by simulating purely convective heat transfer (iso-flux) in the ribbed duct, and a developing laminar boundary layer flow over a two dimensional flat plate with heat conduction, respectively. For the main conjugate simulations, a ribbed duct geometry with a blockage ratio of 0.3 is simulated at a bulk Reynolds number of 10,000 with a conjugate boundary condition applied to the rib surface. The nominal Biot number is kept at 1, which is similar to the comparative experiment. As a means to overcome a large time scale disparity between the fluid and the solid regions, the use of a high artificial solid thermal diffusivity is compared to the physical diffusivity.
    [Show full text]
  • Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer 1. Nusselt Number Average Nusselt Number: Nul = Convective
    Jingwei Zhu http://jingweizhu.weebly.com/course-note.html Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer 1. Nusselt number Average Nusselt number: convective heat transfer ℎ퐿 Nu = = L conductive heat transfer 푘 where L is the characteristic length, k is the thermal conductivity of the fluid, h is the convective heat transfer coefficient of the fluid. Selection of the characteristic length should be in the direction of growth (or thickness) of the boundary layer; some examples of characteristic length are: the outer diameter of a cylinder in (external) cross flow (perpendicular to the cylinder axis), the length of a vertical plate undergoing natural convection, or the diameter of a sphere. For complex shapes, the length may be defined as the volume of the fluid body divided by the surface area. The thermal conductivity of the fluid is typically (but not always) evaluated at the film temperature, which for engineering purposes may be calculated as the mean-average of the bulk fluid temperature T∞ and wall surface temperature Tw. Local Nusselt number: hxx Nu = x k The length x is defined to be the distance from the surface boundary to the local point of interest. 2. Prandtl number The Prandtl number Pr is a dimensionless number, named after the German physicist Ludwig Prandtl, defined as the ratio of momentum diffusivity (kinematic viscosity) to thermal diffusivity. That is, the Prandtl number is given as: viscous diffusion rate ν Cpμ Pr = = = thermal diffusion rate α k where: ν: kinematic viscosity, ν = μ/ρ, (SI units : m²/s) k α: thermal diffusivity, α = , (SI units : m²/s) ρCp μ: dynamic viscosity, (SI units : Pa ∗ s = N ∗ s/m²) W k: thermal conductivity, (SI units : ) m∗K J C : specific heat, (SI units : ) p kg∗K ρ: density, (SI units : kg/m³).
    [Show full text]
  • The Analogy Between Heat and Mass Transfer in Low Temperature Crossflow Evaporation
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by AUT Scholarly Commons The analogy between heat and mass transfer in low temperature crossflow evaporation Reza Enayatollahi*, Roy Jonathan Nates, Timothy Anderson Department of Mechanical Engineering, Auckland University of Technology, Auckland, New Zealand. Corresponding Author: Reza Enayatollahi Email Address: [email protected] Postal Address: WD308, 19 St Paul Street, Auckland CBD, Auckland, New Zealand Phone Number: +64 9 921 9999 x8109 Abstract This study experimentally determines the relationship between the heat and mass transfer, in a crossflow configuration in which a ducted airflow passes through a planar water jet. An initial exploration using the Chilton-Colburn analogy resulted in a coefficient of determination of 0.72. On this basis, a re-examination of the heat and mass transfer processes by Buckingham’s-π theorem and a least square analysis led to the proposal of a new dimensionless number referred to as the Lewis Number of Evaporation. A modified version of the Chilton-Colburn analogy incorporating the Lewis Number of Evaporation was developed leading to a coefficient of determination of 0.96. 1. Introduction Heat and mass transfer devices involving a liquid interacting with a gas flow have a wide range of applications including distillation plants, cooling towers and aeration processes and desiccant drying [1-5]. Many studies have gone through characterising the heat and mass transfer in such configurations [6-9]. The mechanisms of heat and mass transfer are similar and analogical. Therefore, in some special cases where, either the heat or mass transfer data are not reliable or may not be available, the heat and mass transfer analogy can be used to determine the missing or unreliable set of data.
    [Show full text]
  • Quadratic Convective Flow of a Micropolar Fluid Along an Inclined Plate in a Non-Darcy Porous Medium with Convective Boundary Condition
    Nonlinear Engineering 2017; 6(2): 139–151 Ch. RamReddy*, P. Naveen, and D. Srinivasacharya Quadratic Convective Flow of a Micropolar Fluid along an Inclined Plate in a Non-Darcy Porous Medium with Convective Boundary Condition DOI 10.1515/nleng-2016-0073 rate (shear thinning or shear thickening). In contrast to Received August 6, 2016; accepted February 19, 2017. Newtonian fluids, non-Newtonian fluids display anon- linear relation between shear stress and shear rate. But, Abstract: The objective of the present study is to investi- the model of a micropolar fluid developed by Eringen [1] gate the effect of nonlinear variation of density with tem- exhibits some microscopic effects arising from the lo- perature and concentration on the mixed convective flow cal structure and micro motion of the fluid elements. It of a micropolar fluid over an inclined flat plate in anon- provides the basis for the mathematical model of non- Darcy porous medium in the presence of the convective Newtonian fluids which can be used to analyze the behav- boundary condition. In order to analyze all the essential ior of exotic lubricants, polymers, liquid crystals, animal features, the governing non-dimensional partial differen- bloods, colloidal or suspension solutions, etc. The detailed tial equations are transformed into a system of ordinary review of theory and applications of micropolar fluids can differential equations using a local non-similarity proce- be found in the books by Lukaszewicz [2] and Eremeyev et dure and then the resulting boundary value problem is al. [3]. In view of an increasing importance of mixed con- solved using a successive linearisation method (SLM).
    [Show full text]
  • Dimensionless Numbers
    Dimensionless Numbers 3.185 November 24, 2003 Note: you are not responsible for knowing the different names of the mass transfer dimensionless numbers, just call them, e.g., “mass transfer Prandtl number”, as many people do. Those names are given here because some people use them, and you’ll probably hear them at some point in your career. Heat Transfer Mass Transfer Biot Number M.T. Biot Number Ratio of conductive to convective H.T. resistance Ratio of diffusive to reactive or conv MT resistance Determines uniformity of temperature in solid Determines uniformity of concentration in solid Bi = hL/ksolid Bi = kL/Dsolid or hD L/Dsolid Fourier Number Ratio of current time to time to reach steady­state Dimensionless time in temperature curves, used in explicit finite difference stability criterion 2 2 Fo = αt/L Fo = Dt/L Knudsen Number: Ratio of gas molecule mean free path to process lengthscale Indicates validity of line­of­sight (> 1) or continuum (< 0.01) gas models λ kT Kn = = √ L 2πσ2 P L Reynolds Number: Ratio of convective to viscous momentum transport Determines transition to turbulence, dynamic pressure vs. viscous drag Re = ρU L/µ = U L/ν Prandtl Number M.T. Prandtl (Schmidt) Number Ratio of momentum to thermal diffusivity Ratio of momentum to species diffusivity Determines ratio of fluid/HT BL thickness Determines ratio of fluid/MT BL thickness Pr = ν/α = µcp/k Pr = ν/D = µ/ρD Nusselt Number M.T. Nusselt (Sherwood) Number Ratio of lengthscale to thermal BL thickness Ratio of lengthscale to diffusion BL thickness Used to calculate heat transfer
    [Show full text]