El Lugar De Aterrizaje Del Apolo 15 En El Monte Hadley Delta (Una Hazaña Poco Conocida)

Total Page:16

File Type:pdf, Size:1020Kb

El Lugar De Aterrizaje Del Apolo 15 En El Monte Hadley Delta (Una Hazaña Poco Conocida) EL LUGAR DE ATERRIZAJE DEL APOLO 15 EN EL MONTE HADLEY DELTA (UNA HAZAÑA POCO CONOCIDA) Alberto Martos, Jorge Arranz, Carlos de Luis y Fernando Bertran (Traducción del artículo publicado en la página 11 del boletín The Lunar Observer de la sociedad ALPO, en el número de Enero de 2019*) * http://moon.scopesandscapes.com/tlo_back/tlo201901.pdf “Después del Apolo 17, mi favorito es sin duda el Apolo 15 ". Estas palabras, dichas por uno de nosotros que trabajó en la estación de vuelos tripulados de Madrid durante el viaje del Apolo 15, resumen el resultado de un análisis crítico sobre los logros científico de las seis expediciones Apolo a la Luna (preferimos la palabra "expedición", aplicada a los viajes de exploración lunar, en lugar de la palabra "misión", que suena mucho más militar). El vuelo del Apolo 15 fue el primer viaje de las expediciones tipo Apolo "J", donde la letra "J" hace referencia a una larga jornada en la superficie de la luna (2 días y 18 horas, en nuestro caso). Nuestra preferencia por el Apolo 15 se basa en sus principales logros, que pueden resumirse como sigue: el primer aterrizaje lejos del ecuador lunar, a 26º N o 790 km. de distancia; la primera actividad extra-vehicular (SEVA por su siglas en inglés) antes de poner el pie en la superficie lunar, consistente en una descripción del paisaje a los geólogos sentados en el centro de control en Houston, de pie por la escotilla superior del módulo lunar; despliegue del primer vehículo itinerante lunar o LRV (Lunar Roving Vehicle) para mejorar su movilidad exploratoria; desplazarse 28 km. a través la superficie lunar, examinando tres objetivos geológicos ampliamente separados para recoger 77 kg. de muestras lunares (rocas) de tres tipos de suelos lunares: terrae (rocas plutónicas, brechas y fundidos de impacto), maria o “mares” (muestras de vidrio verde hasta entonces desconocidas y basálticas) y rima Hadley (lava volcánica), así como arena y polvo; encontrar la roca más antigua traída a la Tierra hasta entonces (la roca Génesis, de unos 4 mil millones de años de edad); despliegue de un tercer laboratorio autónomo ALSEP (Apollo Lunar Surface Experimental Package) en la superficie; difusión por televisión del experimento de Galileo sobre la caída libre; primer lanzamiento de un sub-satélite (partículas y campos sub-satélite, o P& FS) desde la órbita lunar para explorar el entorno lunar; y levantamiento por primera vez de un mapa de las características de reflectancia en UV y rayos X del suelo lunar, a lo largo del camino de tierra de la nave espacial en órbita, con cámaras espectrales conectadas al compartimiento SIM (Scientific Instrument Module) del módulo de servicio. Esta última característica elevó a 5 el número de EVAs (Actividades Extra Vehiculares) llevadas a cabo por la tripulación, y esta 5ª actividad fue la primera EVA realizada por el piloto del CSM (Módulo de Comando y Servicio). ¿Qué hizo que el resultado del Apolo 15 fuera tan superior al de los anteriores Apolos 11, 12 y 14? Como hemos intentado señalar, la clave del éxito del Apolo 15 fue su gran movilidad proporcionada por el LRV. Pero ¿por qué todas las expediciones precedentes carecieron de un vehículo automóvil? ¿Contó la tripulación del 15 con un lanzador Saturn V más potente y, por lo tanto, pudieron llevar una carga útil más pesada a la Luna? En absoluto. Por lo que conocemos, los cohetes Saturno V fueron exactamente iguales para todo el proyecto Apolo. La razón de la diferencia viene dada por las condiciones de la dinámica de vuelo, es decir, por las características orbitales en cada caso particular. Para entender esta diferencia debemos profundizar en las trayectorias del vuelo Tierra-Luna. Creemos que vale la pena encabezar nuestra observación geológica con un informe de las hazañas del vuelo del Apolo 15. En primer lugar debemos tener en cuenta que una trayectoria de vuelo Tierra-Luna debe conectar dos órbitas circulares situadas en el plano Sol-Tierra-Luna (para aumentar la seguridad del vuelo facilitando la maniobras espaciales), una alrededor de la Tierra, la llamada órbita de estacionamiento terrestre, y la otra alrededor de la Luna, la llamada órbita de captura lunar. La trayectoria teórica de vuelo Tierra-Luna, llamada órbita de transferencia lunar (LTO), debe ser una órbita elíptica que una ambas órbitas circulares y tenga su perigeo cerca de la Tierra y su apogeo cerca de la Luna. De esta manera, una nave espacial lanzada a la Luna desde el perigeo, donde la velocidad es máxima, llegará a su objetivo en el apogeo, donde la velocidad es mínima, y será capturada fácilmente por la gravedad lunar. Para aprovechar las velocidades de rotación y traslación de la Tierra en el lanzamiento, el perigeo debe estar sobre el lado apuesto de la Tierra en el momento de lanzamiento y para facilitar la captura por la gravedad de la Luna, el apogeo debe estar sobre el lado oculto de la Luna en el momento de la llegada. Pero la dinámica espacial impone sus leyes. La velocidad que una nave espacial debe adquirir para llegar a un apogeo situado detrás de la luna (aproximadamente 11,1 km/seg), es sólo un 1% menor que la velocidad de escape del sistema Tierra-Luna (11,2 km/seg). Por esa razón, un pequeño error de exceso en la determinación de este vector de velocidad (velocidad y orientación) podría causar que la nave espacial Apolo fuera lanzada más allá de la órbita lunar y quedara en la órbita solar, sin ninguna posibilidad de rescate. Y los ingenieros del centro de operaciones de la NASA no querían poner en peligro a los astronautas en sus vuelos a la Luna. Había una solución posible: reducir la distancia de apogeo al punto de libración (L1) del sistema Tierra-Luna. Esta solución divide la órbita de transferencia directa en dos ramas: una propulsada desde la órbita terrestre hasta el punto de libración (L1); y la segunda rama, una "caída libre" desde el punto L1 hasta la inserción en la órbita lunar. Como se puede imaginar fácilmente, la forma de esta trayectoria de vuelo curvada parece un "8" que rodea a la Tierra y la Luna, cada una dentro de un seno. De esta manera el peligro de escape desaparece y, como ventaja, el viaje tiene una trayectoria de retorno libre y puede ser abortado en el apogeo si es necesario (se consideró que el vuelo del Apolo 13 podría haber sido abortado en este punto). Una buena alternativa para la gente de la NASA, que apuntaba a una trayectoria sin elementos de azar. Esto es todo acerca de los pros, pero hay que reflexionar sobre los contras. En realidad, con esta técnica el punto de la libración (L1) se convierte en el apogeo de la trayectoria propulsada de la Tierra a L1, y también el apolunio de la trayectoria de "caída libre" de L1 a la Luna. Y debido a esta circunstancia, la nave alcanza el punto de inserción en la órbita lunar en el perilunio, es decir, en el punto donde la velocidad es máxima, capaz de lanzar la nave espacial de vuelta a la Tierra (por eso es una trayectoria de retorno libre). En estas condiciones quedarse en órbita alrededor de la Luna requiere un impulso fuerte de ignición en sentido contrario para anular ese exceso de velocidad hiperbólica en el perilunio y entrar en una órbita lunar elíptica, que se irá redondeando disparando en sentido contrario el motor de la nave espacial con disparos sucesivos a sus pasos por el perilunio. Se guardan así unos 500 Kg. de combustible con dichas maniobras de disparo frenado. Pero en los días de Apolo 15 el comité de ciencia lunar, que asesoró a la NASA en la selección de objetivos lunares en función de su importancia geológica, presionaba argumentando la conveniencia de aterrizar en sitios alejados de la banda ecuatorial (elegida por razones de seguridad en los primeros vuelos). Se quejaban de que, debido a la restricción a la banda ecuatorial para el aterrizaje, todas las expediciones Apolo habían aterrizado hasta el momento en terrenos tipo mare y ninguna en terrenos tipo terrae. Y señalaron varios objetivos situados fuera de esa banda, como la grieta Rima Hadley, cráter Descartes y cráter Litrow. (Se habían considerado también otros puntos, como las colinas de Marius, y los cráteres Censorinus y Aristarchus, pero finalmente fueron abandonados debido al severo recorte de tres vuelos en la duración del Programa Apolo). Esta solicitud de los científicos implicaba volar a la Luna fuera del plano Sol-Tierra-Luna (el fácil utilizado hasta entonces por las naves anteriores de Apolo, que conduce a aterrizar en sitios localizados en la banda ecuatorial), para entrar en una órbita de la Luna inclinada nominalmente 25 grados, de modo que Apolo 15 aterrizase junto a Rima Hadley, al pie de Mons Hadley Delta, 6 grados para que Apolo 16 aterrizase en el cráter Descartes y 21 grados para que Apolo 17 aterrizase en Los Montes Tauro, cerca del cráter Littrow. Afortunadamente, en julio de 1971 los planificadores de la NASA ya habían resuelto el asunto del control de la velocidad de la nave espacial, lo que hacía posible la trayectoria de transferencia directa con un aceptable riesgo pequeño. Apolo 15, 16 y 17, que volaron a la Luna fuera del plano de seguridad en una órbita de transferencia directa, fueron las expediciones de Apolo tipo J, superiores a todos los vuelos anteriores porque parte de los 500 kg. de combustible ahorrados por la nueva trayectoria de vuelo se emplearon en mejorar el Módulo Lunar, que pudiera mantener una estancia de 75 horas en la superficie de la Luna, y llevar un LRV para mejorar la movilidad de la tripulación.
Recommended publications
  • January 2019 Cardanus & Krafft
    A PUBLICATION OF THE LUNAR SECTION OF THE A.L.P.O. EDITED BY: Wayne Bailey [email protected] 17 Autumn Lane, Sewell, NJ 08080 RECENT BACK ISSUES: http://moon.scopesandscapes.com/tlo_back.html FEATURE OF THE MONTH – JANUARY 2019 CARDANUS & KRAFFT Sketch and text by Robert H. Hays, Jr. - Worth, Illinois, USA September 24, 2018 04:40-05:04 UT, 15 cm refl, 170x, seeing 7/10, transparence 6/6. I drew these craters and vicinity on the night of Sept. 23/24, 2018. The moon was about 22 hours before full. This area is in far western Oceanus Procellarum, and was favorably placed for observation that night. Cardanus is the southern one of this pair and is of moderate depth. Krafft to the north is practically identical in size, and is perhaps slightly deeper. Neither crater has a central peak. Several small craters are near and within Krafft. The crater just outside the southeast rim of Krafft is Krafft E, and Krafft C is nearby within Krafft. The small pit to the west is Krafft K, and Krafft D is between Krafft and Cardanus. Krafft C, D and E are similar sized, but K is smaller than these. A triangular-shaped swelling protrudes from the north side of Krafft. The tiny pit, even smaller than Krafft K, east of Cardanus is Cardanus E. There is a dusky area along the southwest side of Cardanus. Two short dark strips in this area may be part of the broken ring Cardanus R as shown on the. Lunar Quadrant map.
    [Show full text]
  • The Moon After Apollo
    ICARUS 25, 495-537 (1975) The Moon after Apollo PAROUK EL-BAZ National Air and Space Museum, Smithsonian Institution, Washington, D.G- 20560 Received September 17, 1974 The Apollo missions have gradually increased our knowledge of the Moon's chemistry, age, and mode of formation of its surface features and materials. Apollo 11 and 12 landings proved that mare materials are volcanic rocks that were derived from deep-seated basaltic melts about 3.7 and 3.2 billion years ago, respec- tively. Later missions provided additional information on lunar mare basalts as well as the older, anorthositic, highland rocks. Data on the chemical make-up of returned samples were extended to larger areas of the Moon by orbiting geo- chemical experiments. These have also mapped inhomogeneities in lunar surface chemistry, including radioactive anomalies on both the near and far sides. Lunar samples and photographs indicate that the moon is a well-preserved museum of ancient impact scars. The crust of the Moon, which was formed about 4.6 billion years ago, was subjected to intensive metamorphism by large impacts. Although bombardment continues to the present day, the rate and size of impact- ing bodies were much greater in the first 0.7 billion years of the Moon's history. The last of the large, circular, multiringed basins occurred about 3.9 billion years ago. These basins, many of which show positive gravity anomalies (mascons), were flooded by volcanic basalts during a period of at least 600 million years. In addition to filling the circular basins, more so on the near side than on the far side, the basalts also covered lowlands and circum-basin troughs.
    [Show full text]
  • Moon Viewing Guide
    MMoooonn MMaapp What lunar features can you find? Use this Moon Map & Viewing Guide to explore different areas of the Moon - no binoculars needed! MMoooonn VViieewwiinngg GGuuiiddee A quick look at the Moon in the night sky – even without binoculars - shows light areas and dark areas that reveal lunar history. Can you find these features? Use the Moon Map (above) to help. Sea of Tranquility (Mare Tanquilitatus) – Formed when a giant t! nd I asteroid hit the Moon almost 4 billion years ago, this 500-mile wide Fou dark, smooth, circular basin is the site of the Apollo 11 landing in 1969. Sea of Rains (Mare Imbrium) – Imbrium Basin is the largest t! nd I basin on the Moon that was formed by a giant asteroid almost 4 Fou billion years ago. Sea of Serenity (Mare Serenitatis) – Apollo 17 astronauts t! sampled some of the oldest rocks on the Moon from edges of nd I Fou the Sea of Serenity. These ancient rocks formed in the Moon’s magma ocean. Lunar Highlands – The lighter areas on the Moon are the lunar t! highlands. These are the oldest regions on the Moon; they formed nd I Fou from the magma ocean. Because they are so old, they have been hit by impact craters many times, making the highlands very rough. Want an extra challenge? If you have a telescope or pair of binoculars, try finding these features: Appenine Mountains (Montes Apenninus) – Did you know there are mountain ranges on the Moon? The rims of the craters and t! nd I basins rise high above the Moon’s surface.
    [Show full text]
  • Rine and the Apennine Mountains. INSTITUTION National Aeronautics and Space Administration, Washington, D.C
    DOCUMENT RESUME ED 053 930 SE 012 016 AUTHOR Simmons, Gene TITLE On the Moon with Apollo 15,A Guidebook to Hadley Rine and the Apennine Mountains. INSTITUTION National Aeronautics and Space Administration, Washington, D.C. PUB DATE Jun 71 NOTE 52p. AVAILABLE FROM Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 (3300-0384 $0.50) EDRS PRICE EDRS Price MF-$0.65 HC-$3.29 DESCRIPTORS *Aerospace Technology, Geology, Reading Materials, Resource Materials IDENTIFIERS *Lunar Studies, Moon ABSTRACT The booklet, published before the Apollo 15 mission, gives a timeline for the mission; describes and illustrates the physiography of the landing site; and describes and illustrates each lunar surface scientific experiment. Separate timelines are included for all traverses (the traverses are the Moon walks and, for Apollo 15, the Moon rides in the Rover) with descriptions of activities at each traverse stop. Each member of the crew and the backup crew is identified. Also included is a bibliography of lunar literature and glossary of terms used in lunar studies. Photographs and diagrams are utilized throughout. Content is descriptive and informative but with a minimum of technical detail. (Author/PR) , ON THE MOON WITH APOLLO 15 A Guidebook to Hadley Rille and the Apennine Mountains U.S. DEPARTMENT OFHEALTH, EDUCATION,& WELFARE OFFICE OF EDUCATION THIS DOCUMENT HAS SEENREPRO- DUCED EXACTLY AS RECEIVEDFROM THE PERSON OR ORGANIZATIONORIG INATING IT. POINTS OF VIEWOR OPIN IONS STATED DO NOTNECESSARILY REPRESENT OFFICIAL OFFICEOF EDU CATION POSITION OR POLICY isr) 1..r1 w fl R CO iiii0OP" O NATIONAL AERONAUTICS AND SPACE ADMINISTRATION June 1971 1 \n ON THE MOON WITH APOLLO 15 A uidebook to Hadley Rille and the Apennine Mountains by Gene Simmons Chief Scientist Manned Spacecraft Center NATIONAL AERONAUTICS AND SPACE ADMINISTRATION June 1971 2 For sale by the Superintendent of Documents, U.S.
    [Show full text]
  • Jjmonl 1407-8.Pmd
    alactic Observer GJohn J. McCarthy Observatory Volume 7, No. 7/8 July/August 2014 Sorry! . Out of Gas The boomerang nebula, about 5000 light years away in the constellation Centaurus, is the last breath of a red giant star which has spent its energy and belched its outer layers into the cosmos. As these gases and stellar dust dissipate, they cool, leaving behind a frigid region (minus 272C - one degree warmer than absolute zero) and the coldest-known spot in the universe. Why "boomerang"? - find out at http://www.spacetelescope.org/images/heic0301a/. Source: European Space Agency, NASA The John J. McCarthy Observatory Galactic Observer New Milford High School Editorial Committee 388 Danbury Road Managing Editor New Milford, CT 06776 Bill Cloutier Phone/Voice: (860) 210-4117 Production & Design Phone/Fax: (860) 354-1595 www.mccarthyobservatory.org Allan Ostergren Website Development JJMO Staff Marc Polansky It is through their efforts that the McCarthy Observatory Technical Support has established itself as a significant educational and Bob Lambert recreational resource within the western Connecticut Dr. Parker Moreland community. Steve Allison Jim Johnstone Steve Barone Carly KleinStern Colin Campbell Bob Lambert Dennis Cartolano Roger Moore Route Mike Chiarella Parker Moreland, PhD Jeff Chodak Allan Ostergren Bill Cloutier Marc Polansky Cecilia Detrich Joe Privitera Dirk Feather Monty Robson Randy Fender Don Ross Randy Finden Gene Schilling John Gebauer Katie Shusdock Elaine Green Jon Wallace Tina Hartzell Paul Woodell Tom Heydenburg Amy Ziffer In This Issue "OUT THE WINDOW ON YOUR LEFT" ............................... 4 COVER PHOTO AND OTHER CREDITS ................................ 16 MONS HADLEY AND THE APENNINES .................................. 5 SECOND SATURDAY STARS .............................................
    [Show full text]
  • Lunar Program Observing List Lunar Observing Program Coordinator: Nina Chevalier 1662 Sand Branch Rd
    Lunar Program Observing List Lunar Observing Program Coordinator: Nina Chevalier 1662 Sand Branch Rd. Bigfoot, Texas 78005 210-218-6288 [email protected] The List The 100 features to be observed for the Lunar Program are listed below. At the top of each section is a space to list the instruments used in the program. After that are five columns: CHK, Object, Feature, Date and Time. The "CHK" column should be used to check off the feature as you observe it. The "Object" column lists the features in Naked Eye, Binocular, and Telescopic order, and tells you what you are observing and when the best time is to observe it. The "Feature" column lists the 100 features to be observed. Finally, the "Date" and "Time" columns allow you to log when you observed the objects. In the last section, we have listed the 10 optional activities, and broken them down as to naked eye, binocular, and telescopic. Also on page 4, we have included four illustrations to help with observing four of the naked eye features. We certainly hope that you find the Lunar Program useful in helping you become more familiar with earth's nearest neighbor. If after completing this program you would like to do more work in this area, you may contact The Association of Lunar and Planetary Observers. Julius L. Benton Jr. ALPO Lunar Recorder % Associates in Astronomy 305 Surrey Road Savannah, Ga. 31410 (912) 897-0951 E-mail: [email protected]. Until then, good luck, clear skies, and good observing. Lunar Program Checklist Naked Eye Objects Instruments Used ____________________________
    [Show full text]
  • Lunar Club Observations
    Guys & Gals, Here, belatedly, is my Christmas present to you. I couldn’t buy each of you a lunar map, so I did the next best thing. Below this letter you’ll find a guide for observing each of the 100 lunar features on the A. L.’s Lunar Club observing list. My guide tells you what the features are, where they are located, what instrument (naked eyes, binoculars or telescope) will give you the best view of them and what you can expect to see when you find them. It may or may not look like it, but this project involved a massive amount of work. In preparing it, I relied heavily on three resources: *The lunar map I used to determine which quadrant of the Moon each feature resides in is the laminated Sky & Telescope Lunar Map – specifically, the one that shows the Moon as we see it naked-eye or in binoculars. (S&T also sells one with the features reversed to match the view in a refracting telescope for the same price.); and *The text consists of information from (a) my own observing notes and (b) material in Ernest Cherrington’s Exploring the Moon Through Binoculars and Small Telescopes. Both the map and Cherrington’s book were door prizes at our Dec. Christmas party. My goal, of course, is to get you interested in learning more about our nearest neighbor in space. The Moon is a fascinating and lovely place, and one that all too often is overlooked by amateur astronomers. But of all the objects in the night sky, the Moon is the most accessible and easiest to observe.
    [Show full text]
  • January 2018
    The StarGazer http://www.raclub.org/ Newsletter of the Rappahannock Astronomy Club No. 3, Vol. 6 November 2017–January 2018 Field Trip to Randolph-Macon College Keeble Observatory By Jerry Hubbell and Linda Billard On December 2, Matt Scott, Jean Benson, Bart and Linda Billard, Jerry Hubbell, and Peter Orlowski joined Scott Lansdale to tour the new Keeble Observatory at his alma mater, Randolph-Macon College in Ashland, VA. The Observatory is a cornerstone instrument in the College's academic minor program in astrophysics and is also used for student and faculty research projects. At the kind invitation of Physics Professor George Spagna— Scott’s advisor during his college days and now the director of the new facility—we received a private group tour. We stayed until after dark to see some of its capabilities. Keeble Observatory at Randolph-Macon College Credit: Jerry Hubbell The observatory, constructed in summer 2017, is connected to the northeast corner of the Copley Science Center on campus. It houses a state-of-the-art $30,000 Astro Systeme Austria (ASA) Ritchey-Chretien telescope with a 16-inch (40-cm) primary mirror. Instrumentation will eventually include CCD cameras for astrophotography and scientific imaging, and automation for the 12-foot (3.6-m) dome. The mount is a $50,000 ASA DDM 160 Direct Drive system placed on an interesting offset pier system that allows the mount to track well past the meridian without having to do the pier-flip that standard German equatorial mounts (GEMs) perform when approaching the meridian. All told, the fully outfitted observatory will be equipped with about $100,000 of instrumentation and equipment.
    [Show full text]
  • 1 the Terminal
    2-29 Two eervice propulsion system firings were required for rendezvous. The first firing, a corrective combination maneuver, was necessary to achieve the proper phase and altitude offset so that the second firing would result in an orbit coelliptic with that of the S-IW. The two firings achieved the desired conditions for rendezvous terminal phase initiation. The terminal phase initiation maneuver was performed with an onbaard computer solution based on optical track- t ing of the s-IVB stage with the sextant. A small midcourse correction was then made, followed by braking and final closure to within 70 feet of the S-IVB. Stationkeeping was performed for approximately 20 minutes, after which a 2-foot-per-second service module reaction control system posigrade maneuver removed the spacecraft from the vicinity of the S-Iw stage. The aext 24-hour period was devoted to a sextant calibration test, a rendezvous navigation test, an attitude con- 1 trol test, and a primsry evaporator test. Tbe crew used the sextant to track the S-IVB visually to distances of as uuch as 320 miles. The service propulsion system was fired six additional times during the mission. The third firing was a 9.1-second maneuver controlled by the stabilization and control system. The maneu- ver was performed to increase the backup deorblt capability of the service module reaction con- trol system. The fourth firing was performed to evaluate the minimum-Impulse capability of the service propulsion engine. The fifth firing was performed to position the spacecraft for an op- tinum deorbit maneuver at the end of the planned orbital phase.
    [Show full text]
  • Rima Hadley English
    The Moon Up Close Rima Hadley WOUTER D’HOYE We are visiting the Apennines mountains on the moon today. This mountain range, like most mountain ranges on the Moon, is named after a mountain range on Earth, and is one of the most fascinating regions on the lunar near side. On the upper left image I have marked the area shown on the right image. The entire Apennines mountain range. The apennines mountains make up the South-Eastern border of Mare Imbrium. At the Southern end one finds the large crater Eratosthenes. The Northern border is formed by Promontorium Fresnel. It’s in this Northern area one finds Rima Hadley, Named after the nearby mountain Mons Hadley Which lends his name from the English mathematician John Hadley. Besides being a mathematician he also was the inventor of the octant, built several telescopes and developed ways to parabolize telescope mirrors. Rima Hadley is the meandering gorge on the Left image. It’s origin is at the Southern end, just north oof the crater Béla. Parallel with Béla there is the elongated crater Taizo. The hornlike protrusion north of Béla is Carlos. All are, like Rima Hadley itself of volcanic origin, and noot impact craters. Rima Hadley is either a lava channel, or a collapsed lava tube. From Béla Rima Hadley meanders on for 130km. The width of Rima Hadley is on average about 1,2km and the depth varies between 180 en 270m, but near the Apollo 15 landing site it is as deep as 370m. About halfway Rima Hadley there is the small crater Hadley C.
    [Show full text]
  • PLUS How to Observe Pluto P. 46
    APOLLO 15 REMEMBERED: p. 14 50 YEARS LATER JULY 2021 The world’s best-selling astronomy magazine Explore the BEST deep-sky gems p. 40 • Orion Nebula • Andromeda Galaxy • Ring Nebula and more! How to observe Pluto p. 46 www.Astronomy.com PLUS V BONUS o l . 4 9 ONLINE • Catch a cool The story of Bob Berman I s s u CONTENT e Venus-Mars premium mirror on the third 7 CODE p. 4 meetup p. 50 makers p. 52 dimension p. 13 NASA hits its stride This view from the slopes of Mount Hadley Delta, near St. George Crater, takes in the Hadley Rille. On the left is a boulder that Scott and Look Irwin sampled. ALL IMAGES ere, Jim! look back th BY NASA AND FILM SCANS/LAB ott: Oh, ’t that Sc k at that! Isn PHOTOS BY THE JOHNSON SPACE at. Oh, loo e, Joe, at th on a slop CENTER UNLESS OTHERWISE NOTED We’re up something? own into the oking back d and we’re lo valley and — ’s beautiful. Irwin: That ar! is spectacul Scott: That Armed with the first rover, intrepid astronauts drove lunar science forward. BY MARK ZASTROW AFTER THREE SUCCESSFUL 6-mile-wide (10 kilometers) clearing LUNAR LANDINGS — and the was hemmed in by the Apennine “successful failure” of Apollo 13 — Mountains and bordered by the NASA was ready to swing for the 0.6-mile-wide (1 km) meandering scientific fences. The previous land- canyon called Hadley Rille, which ings had been considered test flights, may have been created by volcanic H series missions in NASA parlance, activity.
    [Show full text]
  • Rappahannock Astronomy Club
    Rappahannock Astronomy Club Minutes, April 17, 2019, Meeting In attendance: Jean Benson Jerry Hubbell David Bentz Curtis Martin* Bart and Linda Billard Tim Plunkett Scott Busby Matt Scott Glenn Faini Myron Wasiuta Glenn Holliday Michele and Sarah Lewis** *Visitors **Visitors who joined the club at the meeting The meeting began at 7:05 p.m. with introductions. Eleven members and 3 visitors were present (2 visitors joined at the meeting). Program Myron Wasiuta talked about his experiences exploring Apollo Moon landing sites with his telescope. He began with a history of the manned space program that led to the Moon landings, beginning with Mercury and Gemini. The Mercury program goals were first to get men to space using the Redstone rocket and then to get them to orbit using the Atlas rocket. The Gemini program came next. Myron said this program added the goals of launching two people at a time, getting them to orbit for up to 2 weeks to see how men did in orbit for long periods, practicing rendezvous with another spacecraft, and trying extravehicular activity (EVA) in orbit. All these capabilities were important to be able to get men to the Moon. Ed White was the first American to try EVA during Gemini. The first in-orbit rendezvous was between two Gemini spacecraft. They did not dock together. Neil Armstrong was on the Gemini mission that performed a rendezvous with docking to an Agena rocket. It was on the mission that a thruster problem caused a loss of control. The two docked spacecraft began spinning faster and faster, putting the astronauts in danger of losing consciousness.
    [Show full text]