WO 2012/174256 A2 20 December 2012 (20.12.2012) P O P C T

Total Page:16

File Type:pdf, Size:1020Kb

WO 2012/174256 A2 20 December 2012 (20.12.2012) P O P C T (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2012/174256 A2 20 December 2012 (20.12.2012) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12Q 1/68 (2006.0 1) G01N 33/574 (2006.0 1) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, (21) International Application Number: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, PCT/US20 12/042483 DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, (22) International Filing Date: HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, 14 June 2012 (14.06.2012) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (25) Filing Language: English OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, (26) Publication Language: English SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 61/498,296 17 June 201 1 (17.06.201 1) US (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant (for all designated States except US): THE RE¬ GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, GENTS OF THE UNIVERSITY OF MICHIGAN UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, [US/US]; 1600 Huron Parkway, 2nd Floor, Ann Arbor, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, Michigan 48109-2590 (US). EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, (72) Inventors; and TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, (75) Inventors/Applicants (for US only): CHINNAIYAN, ML, MR, NE, SN, TD, TG). Arul M. [US/US]; 51300 Plymouth Valley Drive, Ply mouth, Michigan 48170 (US). DHANASEKARAN, Mo¬ Published: han Saravana [IN/US]; 1108 Maiden Lane Court, Apt. — without international search report and to be republished 107, Ann Arbor, Michigan 48105 (US). KIM, Jung upon receipt of that report (Rule 48.2(g)) [KR/US]; 43425 Scenic Lane, Northville, Michigan 48167 (US). (74) Agent: ARENSON, Tanya A.; Casimir Jones, S.C., 2275 Deming Way, Suite 310, Middleton, Wisconsin 53562 (US). < © (54) Title: DNA METHYLATION PROFILES IN CANCER (57) Abstract: The present invention relates to compositions and methods for cancer diagnosis, research and therapy, including but not limited to, cancer markers. In particular, the present invention relates to methylation levels of genes (e.g., in CGI islands of the promoter regions) as diagnostic markers and clinical targets for prostate cancer. CROSS REFERENCE TO RELATED APPLICATIONS 5 This application claims priority to U.S. Provisional Application No. 61/498,296, filed June 17, 20 1, which is herein incorporated by reference in its entirety. STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT [0 This invention was made with government support under CA069568, CA! 32874, CA 275 and DA021519 awarded by the National Institutes of Health and BC07023 awarded by the Army edical Research and Material Command. The government has certain rights in the invention. FIELD OF THE INVENTION ί5 The present invention relates to compositions and methods for cancer diagnosis, research and therapy, including but not limited to, cancer markers. In particular, the present invention relates to methylation levels of genes (e.g., in CG islands of the promoter regions) as diagnostic markers and clinical targets for prostate cancer. 0 BACKGROUND OF THE INVENTION A central aim in cancer research is to identify altered genes that are causally implicated in oncogenesis. Several types of somatic mutations have been identified including base substitutions, insertions, deletions, translocations, and chromosomal gains and losses, all of which result in altered activity of an oncogene or tumor suppressor gene. First hypothesized in the early 1900's, there is 5 now compelling evidence for a causal role for chromosomal rearrangements in cancer (Rowley, Nat Rev Cancer : 245 (2001 )). Recurrent chromosomal aberrations were thought to be primarily characteristic of leukemias, lymphomas, and sarcomas. Epithelial tumors (carcinomas), which are much more common and contribute to a relatively large fraction of the morbidity and mortality associated with human cancer, comprise less than 1% of the known, disease-specific chromosomal \ rearrangements (Mitelman, Mutat Res 462: 247 (2000)). While hematological malignancies are often characterized by balanced, disease-specific chromosomal rearrangements, most solid tumors have a plethora of non-specific chromosomal aberrations. It is thought that the karyotypic complexity of solid tumors is due to secondary alterations acquired through cancer evolution or progression. Two primary mechanisms of chromosomal rearrangements have been described. In one mechanism, promoter/enhancer elements of one gene are rearranged adjacent to a proto-oncogene, thus causing altered expression of an oncogenic protein. This type of translocation is exemplified by the apposition of immunoglobulin (IG) and T-ee receptor (TCR) genes to MYC leading to 5 activation of this oncogene in B- and T-cell malignancies, respectively (Rabbitts, Nature 372: 43 (1994)). In the second mechanism, rearrangement results in the fusion of two genes, which produces a fusion protein that may have a new function or altered activity. The prototypic example of this translocation is the BCR-ABL gene fusion in chronic myelogenous leukemia (CM L) (Rowley, Nature 243: 290 (1973); de Klein et a ., Nature 300: 765 (1982)). Importantly, this finding led to the [0 rational development of imatinib mesylate (Gleevec), which successfully targets the BCR-ABL kinase (Deininger et al., Blood 105: 2640 (2005)). Thus, diagnostic methods that specifically identify epithelial tumors are needed. SUMMARY OF THE INVENTION [5 The present invention relates to compositions and methods for cancer diagnosis, research and therapy, including but not limited to, cancer markers. In particular, the present invention relates to methylation levels of genes (e.g., in CGI islands of the promoter regions) as diagnostic markers and clinical targets for prostate cancer. Embodiments of the present invention provide compositions, kits, and methods useful in the detection and screening of prostate cancer. Experiments conducted during the course of development of embodiments of the present invention identified aberent methylation status of certain genes in prostate cancer. Some embodiments of the present invention provide compositons and methods for detecting such aberently methylated genes. Identification of aberently methylated genes finds use in screening, diagnostic and research uses. 15 For example, in some embodiments, the present invention provides compositions, kits and methods of screening for the presence of prostate cancer in a subject, comprising contacting a biological sample from a subject with a reagent for detecting the methylation status of one or more genes (e.g., including but not limited to, WFDC2, MAGI2, MEIS2, NTN4, GPRC5B, C9orfI25, FGFR2, AOX!, VAMPS, C14orf!59, PPP1R3C, S100A16 orAMT&s wel l as one or more of the genes listed in Table 4; and detecting the methylation status of said genes using an in vitro assay, wherein a higher degress of methylation of said genes in said sample relative to the level of methylation in normal prostate cells in indicative of prostate cancer in said subject. In some embodiments, the sample is selected from tissue, blood, plasma, serum, urine, urine supernatant, urine cell pellet, semen, prostatic secretions or prostate cells. In some embodiments, the detecting the level of methyiation is carried out utilizing Methyiplex-Next Generation Sequencing (M-NGS) or another suitable assay. In some embodiments, the cancer is localized prostate cancer or metastatic prostate cancer in some embodiments, the methyiation is detected in the 5' non-coding region (e.g., promoter region) of the gene. In some embodiments expression of genes is decreased when an increased level of methyiation is present. n some embodiments, analysis is conducted using a computer implemented method, and results are displayed to a user using a user interface. In some embodiments, the results of the method are used to determine a treatment course of action. In some embodiments, the treatment course of action (e.g., chemotherapy) is administered. In some embodiments, the method is performed again after treatment and is used to determine whether further treatment is needed and/or administered. Additional embodiments are described herein DESCRIPTION O F THE FIGURES Figure 1 shows characterization of genome-wide methyiation patterns in prostate cells by M- NGS (A) Venn diagram represents a 70% overlap between the regions methylated in LNCaP and PrEC cells. (B) In LNCaP an PrEC, the majority of DNA methyiation occurred in intergenic an intronic regions and the genomic distribution of methyiation peaks was similar. (C) Promoter associated CpG islands displayed 7 fold difference in methyiation between LNCaP and PrEC cells. (D) DNA methyiation in APC, CHMP4A, CALML3, CDKN2A, KCTDl, LAMC2, RASSF1, S C1, TINAGLI and TSPAN1 gene promoters in LNCaP (L) ceils; SPON2 in PrEC (P) cells and a negative control region in C were validated by bisulfite sequencing. Figure 2 shows DNA methyiation pattern in prostate tissues (A) Genome -wide distribution of DNA methyiation in various prostate sample groups analyzed. The majority of methyiation peaks are confined to intergenic and intronic regions similar to cell lines. (B) A gradual increase in percent methyiation with cancer progression among promoter CGLs compared CG s located in other genomic regions was observed. * Pearson's Chi-squared test p-value <2x 0 '6 Figure 3 shows promoter DNA methyiation during prostate cancer progression A total of 6619 gene promoters from 6077 unique RefSeq genes harbored DNA methyiation among the various sample groups analyzed (Normal, Benign Adjacent, PCa or MET).
Recommended publications
  • Comprehensive Analysis of Expression and Prognostic Value of the Claudin Family in Human Breast Cancer
    www.aging-us.com AGING 2021, Vol. 13, No. 6 Research Paper Comprehensive analysis of expression and prognostic value of the claudin family in human breast cancer Guangda Yang1, Liumeng Jian2, Qianya Chen1 1Department of Cancer Chemotherapy, Zengcheng District People’s Hospital of Guangzhou, Guangdong Province, China 2Department of Neurology, Zengcheng District People’s Hospital of Guangzhou, Guangdong Province, China Correspondence to: Liumeng Jian; email: [email protected], https://orcid.org/0000-0002-0558-1655 Keywords: claudins, breast cancer, prognosis, ONCOMINE, bc-GenExMiner v4.3 Received: December 2, 2020 Accepted: January 25, 2021 Published: March 10, 2021 Copyright: © 2021 Yang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Claudins (CLDN) are structural components of tight junctions that function in paracellular transport and maintain the epithelial barrier function. Altered expression and distribution of members of the claudin family have been implicated in several cancers including breast cancer (BC). We performed a comprehensive analysis of the expression and prognostic value of claudins in BC using various online databases. Compared with normal tissues, CLDN3, 4, 6, 7, 9, and 14 were upregulated in BC tissues, whereas CLDN2, 5, 8, 10, 11, 15, 19, and 20 were downregulated. A high expression of CLDN2, 5, 6, 9, 10, 11, and 14–20 was associated with better relapse- free survival (RFS), whereas a high CLDN3 expression correlated with poor RFS. In addition, a high expression of CLDN3, 4, 14, and 20 was associated with poor overall survival (OS), whereas that of CLDN5 and CLDN11 was linked to a better OS.
    [Show full text]
  • UNIVERSITY of CALGARY a Novel Neurodevelopmental Disorder Within the Hutterite Population Maps to 16P and a Possible Causative M
    UNIVERSITY OF CALGARY A Novel Neurodevelopmental Disorder within the Hutterite Population Maps to 16p and a Possible Causative Mutation in THOC6 was Identified by Chandree Lynn Beaulieu A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE DEPARTMENT OF MEDICAL SCIENCES CALGARY, ALBERTA JANUARY, 2010 © Chandree Lynn Beaulieu Library and Archives Bibliothèque et Canada Archives Canada Published Heritage Direction du Branch Patrimoine de l’édition 395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre référence ISBN: 978-0-494-62049-6 Our file Notre référence ISBN: 978-0-494-62049-6 NOTICE: AVIS: The author has granted a non- L’auteur a accordé une licence non exclusive exclusive license allowing Library and permettant à la Bibliothèque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par télécommunication ou par l’Internet, prêter, telecommunication or on the Internet, distribuer et vendre des thèses partout dans le loan, distribute and sell theses monde, à des fins commerciales ou autres, sur worldwide, for commercial or non- support microforme, papier, électronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L’auteur conserve la propriété du droit d’auteur ownership and moral rights in this et des droits moraux qui protège cette thèse. Ni thesis. Neither the thesis nor la thèse ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent être imprimés ou autrement printed or otherwise reproduced reproduits sans son autorisation.
    [Show full text]
  • Strand Breaks for P53 Exon 6 and 8 Among Different Time Course of Folate Depletion Or Repletion in the Rectosigmoid Mucosa
    SUPPLEMENTAL FIGURE COLON p53 EXONIC STRAND BREAKS DURING FOLATE DEPLETION-REPLETION INTERVENTION Supplemental Figure Legend Strand breaks for p53 exon 6 and 8 among different time course of folate depletion or repletion in the rectosigmoid mucosa. The input of DNA was controlled by GAPDH. The data is shown as ΔCt after normalized to GAPDH. The higher ΔCt the more strand breaks. The P value is shown in the figure. SUPPLEMENT S1 Genes that were significantly UPREGULATED after folate intervention (by unadjusted paired t-test), list is sorted by P value Gene Symbol Nucleotide P VALUE Description OLFM4 NM_006418 0.0000 Homo sapiens differentially expressed in hematopoietic lineages (GW112) mRNA. FMR1NB NM_152578 0.0000 Homo sapiens hypothetical protein FLJ25736 (FLJ25736) mRNA. IFI6 NM_002038 0.0001 Homo sapiens interferon alpha-inducible protein (clone IFI-6-16) (G1P3) transcript variant 1 mRNA. Homo sapiens UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 15 GALNTL5 NM_145292 0.0001 (GALNT15) mRNA. STIM2 NM_020860 0.0001 Homo sapiens stromal interaction molecule 2 (STIM2) mRNA. ZNF645 NM_152577 0.0002 Homo sapiens hypothetical protein FLJ25735 (FLJ25735) mRNA. ATP12A NM_001676 0.0002 Homo sapiens ATPase H+/K+ transporting nongastric alpha polypeptide (ATP12A) mRNA. U1SNRNPBP NM_007020 0.0003 Homo sapiens U1-snRNP binding protein homolog (U1SNRNPBP) transcript variant 1 mRNA. RNF125 NM_017831 0.0004 Homo sapiens ring finger protein 125 (RNF125) mRNA. FMNL1 NM_005892 0.0004 Homo sapiens formin-like (FMNL) mRNA. ISG15 NM_005101 0.0005 Homo sapiens interferon alpha-inducible protein (clone IFI-15K) (G1P2) mRNA. SLC6A14 NM_007231 0.0005 Homo sapiens solute carrier family 6 (neurotransmitter transporter) member 14 (SLC6A14) mRNA.
    [Show full text]
  • Overexpression of an Activated REL Mutant Enhances the Transformed State of the Human B-Lymphoma BJAB Cell Line and Alters Its Gene Expression Profile
    Oncogene (2009) 28, 2100–2111 & 2009 Macmillan Publishers Limited All rights reserved 0950-9232/09 $32.00 www.nature.com/onc ORIGINAL ARTICLE Overexpression of an activated REL mutant enhances the transformed state of the human B-lymphoma BJAB cell line and alters its gene expression profile M Chin1, M Herscovitch1, N Zhang, DJ Waxman and TD Gilmore Department of Biology, Boston University, Boston, MA, USA The human REL proto-oncogene encodes a transcription factor. Misregulated REL is associated with B-cell factor in the nuclear factor (NF)-kB family. Overexpres- malignancies in several ways (Gilmore et al., sion of REL is acutely transforming in chicken lymphoid 2004). Overexpression of REL protein can transform cells, but has not been shown to transform any mammalian chicken lymphoid cells in vitro. Additionally, the lymphoid cell type. In this report, we show that over- REL locus is amplified in several types of human expression of a highly transforming mutant of REL B-cell lymphoma, including diffuse large B-cell lympho- (RELDTAD1) increases the oncogenic properties of the ma (DLBCL), follicular and primary mediastinal human B-cell lymphoma BJAB cell line, as shown by lymphomas. Moreover, REL mRNA is highly expressed increased colony formation in soft agar, tumor formation in de novo DLBCLs, and this elevated expression in SCID (severe combined immunodeficient) mice, and correlates with increased expression of many adhesion. BJAB-RELDTAD1 cells also show decreased putative REL target genes (Rhodes et al., 2005). activation of caspase in response to doxorubicin. BJAB- Nevertheless, REL has not been shown to be oncogenic RELDTAD1 cells have increased levels of active nuclear in any mammalian B-cell system, either in vitro REL protein as determined by immunofluorescence, or in vivo.
    [Show full text]
  • Genetics and Epigenetics of Atopic Dermatitis: an Updated Systematic Review
    G C A T T A C G G C A T genes Review Genetics and Epigenetics of Atopic Dermatitis: An Updated Systematic Review 1,2, 1,2,3, 1,2,3, Maria J Martin y, Miguel Estravís y , Asunción García-Sánchez * , Ignacio Dávila 1,2,4 , María Isidoro-García 1,2,5,6 and Catalina Sanz 1,2,7 1 Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; [email protected] (M.J.M.); [email protected] (M.E.); [email protected] (I.D.); [email protected] (M.I-G.); [email protected] (C.S.) 2 Network for Cooperative Research in Health–RETICS ARADyAL, 37007 Salamanca, Spain 3 Department of Biomedical and Diagnostics Sciences, University of Salamanca, 37007 Salamanca, Spain 4 Department of Immunoallergy, Salamanca University Hospital, 37007 Salamanca, Spain 5 Department of Clinical Biochemistry, University Hospital of Salamanca, 37007 Salamanca, Spain 6 Department of Medicine, University of Salamanca, 37007 Salamanca, Spain 7 Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca, Spain * Correspondence: [email protected]; Tel.: +3-492-329-1100 These authors equally contribute to the manuscript. y Received: 12 March 2020; Accepted: 15 April 2020; Published: 18 April 2020 Abstract: Background: Atopic dermatitis is a common inflammatory skin disorder that affects up to 15–20% of the population and is characterized by recurrent eczematous lesions with intense itching. As a heterogeneous disease, multiple factors have been suggested to explain the nature of atopic dermatitis (AD), and its high prevalence makes it necessary to periodically compile and update the new information available. In this systematic review, the focus is set at the genetic and epigenetic studies carried out in the last years.
    [Show full text]
  • Morphology, Behavior, and the Sonic Hedgehog Pathway in Mouse Models of Down Syndrome
    MORPHOLOGY, BEHAVIOR, AND THE SONIC HEDGEHOG PATHWAY IN MOUSE MODELS OF DOWN SYNDROME by Tara Dutka A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland July, 2014 © 2014 Tara Dutka All Rights Reserved Abstract Down Syndrome (DS) is caused by a triplication of human chromosome 21 (Hsa21). Ts65Dn, a mouse model of DS, contains a freely segregating extra chromosome consisting of the distal portion of mouse chromosome 16 (Mmu16), a region orthologous to part of Hsa21, and a non-Hsa21 orthologous region of mouse chromosome 17. All individuals with DS display some level of craniofacial dysmorphology, brain structural and functional changes, and cognitive impairment. Ts65Dn recapitulates these features of DS and aspects of each of these traits have been linked in Ts65Dn to a reduced response to Sonic Hedgehog (SHH) in trisomic cells. Dp(16)1Yey is a new mouse model of DS which has a direct duplication of the entire Hsa21 orthologous region of Mmu16. Dp(16)1Yey’s creators found similar behavioral deficits to those seen in Ts65Dn. We performed a quantitative investigation of the skull and brain of Dp(16)1Yey as compared to Ts65Dn and found that DS-like changes to brain and craniofacial morphology were similar in both models. Our results validate examination of the genetic basis for these phenotypes in Dp(16)1Yey mice and the genetic links for these phenotypes previously found in Ts65Dn , i.e., reduced response to SHH. Further, we hypothesized that if all trisomic cells show a reduced response to SHH, then up-regulation of the SHH pathway might ameliorate multiple phenotypes.
    [Show full text]
  • Identification of MAZ As a Novel Transcription Factor Regulating Erythropoiesis
    Identification of MAZ as a novel transcription factor regulating erythropoiesis Darya Deen1, Falk Butter2, Michelle L. Holland3, Vasiliki Samara4, Jacqueline A. Sloane-Stanley4, Helena Ayyub4, Matthias Mann5, David Garrick4,6,7 and Douglas Vernimmen1,7 1 The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, United Kingdom. 2 Institute of Molecular Biology (IMB), 55128 Mainz, Germany 3 Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King's College London, London SE1 9RT, UK 4 MRC Molecular Haematology Unit, Weatherall Institute for Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom. 5 Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany. 6 Current address : INSERM UMRS-976, Institut de Recherche Saint Louis, Université de Paris, 75010 Paris, France. 7 These authors contributed equally Correspondence: [email protected], [email protected] ADDITIONAL MATERIAL Suppl Fig 1. Erythroid-specific hypersensitivity regions DNAse-Seq. (A) Structure of the α-globin locus. Chromosomal position (hg38 genome build) is shown above the genes. The locus consists of the embryonic ζ gene (HBZ), the duplicated foetal/adult α genes (HBA2 and HBA1) together with two flanking pseudogenes (HBM and HBQ1). The upstream, widely-expressed gene, NPRL3 is transcribed from the opposite strand to that of the HBA genes and contains the remote regulatory elements of the α-globin locus (MCS -R1 to -R3) (indicated by red dots). Below is shown the ATAC-seq signal in human erythroblasts (taken from 8) indicating open chromatin structure at promoter and distal regulatory elements (shaded regions).
    [Show full text]
  • Some Bioinformatic Analyses of Human GDAP1 Gene Expression
    Some bioinformatic analyses of human GDAP1 gene expression Khloud Mubarak Algothmi Thesis submitted, in fulfilment of the requirements for the degree of Doctor of Philosophy in Applied science. University of Canberra July 2015 Abstract Charcot- Marie-Tooth (CMT) represents a group of genetic disorders, which cause damage in the peripheral nervous system. It was identified and described in 1886 by Jean-Martin Charcot, Pierre Marie and Howard Henry Tooth. It is the most common inherited disorder of the peripheral nervous system, and affects approximately 1 in every 2,500 people. A severe form of CMT has been linked to mutations in the coding region of Ganglioside-induced Differentiation Associated Protein (GDAP1), a member of the glutathione transferase (GST) family which is located in the outer membrane of mitochondria. GDAP1 mutations cause axonal, demyelinating and intermediate forms of CMT. In some cases the same mutation can cause different CMT phenotypes. The overall hypothesis for this thesis was, that changes in the expression in GDAP1 may lead to these phenotypic differences. The methodology used to investigate the expression of human GDAP1 gene was a bioinformatic approach. The results demonstrated that in normal healthy tissues, GDAP1 had ubiquitous expression, particularly in neural and endocrine tissues. This pattern of expression was different to the expression of mouse GDAP1, where expression was predominantly in nervous tissues. GDAP1 has mainly been studied in the context of peripheral neuropathies, based on its genetic linkage with CMT disease. In this study, the expression of GDAP1 was shown to be altered in some other diseases, such as brain cancers.
    [Show full text]
  • From Array Genotypes to Whole-Genome Sequences: Harnessing Genetic Variation for Dairy Cattle Selection
    From array genotypes to whole-genome sequences: harnessing genetic variation for dairy cattle selection by Adrien M. Butty A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy in Animal Biosciences Guelph, Ontario, Canada © Adrien Butty, September 2019 ABSTRACT FROM ARRAY GENOTYPES TO WHOLE-GENOME SEQUENCES: HARNESSING GENETIC VARIATION FOR DAIRY CATTLE SELECTION Adrien M. Butty Advisor: University of Guelph, 2019 Prof. Dr. Christine F. Baes Genetic markers are currently used as a tool in animal breeding to measure and make use of genetic variation. After the unsuccessful implementation of marker-assisted selection including microsatellites in genetic evaluation models, implementation of genomic selection principles in breeding programs allowed drastic acceleration of the genetic gains made in the dairy industry. Although great genetic improvements have been made possible with the introgression of array- based single nucleotide polymorphisms (SNP) genotypes into genetic evaluation models, more variants are needed to explain a larger proportion of the genetic variance observed in economically important traits. This would allow for more precise estimation of breeding values (EBV) and greater genetic progress. The increase in the number and type of variants through using whole- genome sequencing (WGS), for instance copy number variants (CNV), in genetic evaluation models could contribute to higher accuracies of EBV. Sequencing of a large number of animals is still prohibitively expensive, but the large number of genotyped samples already available allows for 1) the accurate imputation of genotypes to WGS variants, 2) the identification of CNV relying on the signal intensity values produced at the time of array genotyping, and 3) the use of the CNV identified with high confidence in silico to gain knowledge about the genetic architecture of traits of economic importance, for example hoof health traits.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2006/0128764 A1 Downes Et Al
    US 2006O128764A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0128764 A1 DOWnes et al. (43) Pub. Date: Jun. 15, 2006 (54) NON-STEROIDAL FARNESOD X Publication Classification RECEPTOR MODULATORS AND METHODS FOR THE USE THEREOF (51) Int. Cl. A61K 31/4433 (2006.01) (75) Inventors: Michael R Downes, San Diego, CA A6II 3/44 (2006.01) (US); Ronald M Evans, La Jolla, CA A6II 3 L/353 (2006.01) (US) A6II 3/16 (2006.01) (52) U.S. Cl. ........................... 514/357: 514/456; 514/625 Correspondence Address: FOLEY & LARDNER LLP P.O. BOX 80278 (57) ABSTRACT SAN DIEGO, CA 92138-0278 (US) The efficient regulation of cholesterol synthesis, metabo (73) Assignee: THE SALK INSTITUTE FOR BIO lism, acquisition, and transport is an essential component of LOGICAL STUDES lipid homeostasis. The farnesoid X receptor (FXR) is a transcriptional sensor for bile acids, the primary product of (21) Appl. No.: 10/535,043 cholesterol metabolism. Accordingly, the development of potent, selective, Small molecule agonists, partial agonists, (22) PCT Fed: Nov. 14, 2003 and antagonists of FXR would be an important step in PCT No.: PCT/USO3/36137 further deconvoluting FXR physiology. In accordance with (86) the present invention, the identification of novel potent FXR Related U.S. Application Data activators is described. Two derivatives of invention com pounds, bearing stilbene or biaryl moieties, contain mem (60) Provisional application No. 60/426,664, filed on Nov. bers that are the most potent FXR agonists reported to date 15, 2002. in cell-based assays. These compounds are useful as chemi cal tools to further define the physiological role of FXR as (30) Foreign Application Priority Data well as therapeutic leads for the treatment of diseases linked to cholesterol, bile acids and their metabolism and homeo Sep.
    [Show full text]
  • Protective Effects of Propionate Upon the Blood–Brain Barrier
    bioRxiv preprint doi: https://doi.org/10.1101/170548; this version posted February 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Microbiome–host systems interactions: Protective effects of propionate upon 2 the blood–brain barrier 3 4 Lesley Hoyles1*, Tom Snelling1, Umm-Kulthum Umlai1, Jeremy K. Nicholson1, Simon 5 R. Carding2, 3, Robert C. Glen1, 4 & Simon McArthur5* 6 7 1Division of Integrative Systems Medicine and Digestive Disease, Department of 8 Surgery and Cancer, Imperial College London, UK 9 2Norwich Medical School, University of East Anglia, UK 10 3The Gut Health and Food Safety Research Programme, The Quadram Institute, 11 Norwich Research Park, Norwich, UK 12 4Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, 13 Cambridge, UK 14 5Institute of Dentistry, Barts & the London School of Medicine & Dentistry, Blizard 15 Institute, Queen Mary University of London, London, UK 16 17 *Corresponding authors: Lesley Hoyles, [email protected]; Simon 18 McArthur, [email protected] 19 Running title: Propionate affects the blood–brain barrier 20 Abbreviations: ADHD, attention-deficit hyperactivity disorder; ASD, autism spectrum 21 disorder; BBB, blood–brain barrier; CNS, central nervous system; FFAR, free fatty acid 22 receptor; KEGG, Kyoto Encyclopaedia of Genes and Genomes; GO, Gene Ontology; 1 bioRxiv preprint doi: https://doi.org/10.1101/170548; this version posted February 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Chromatin Conformation Links Distal Target Genes to CKD Loci
    BASIC RESEARCH www.jasn.org Chromatin Conformation Links Distal Target Genes to CKD Loci Maarten M. Brandt,1 Claartje A. Meddens,2,3 Laura Louzao-Martinez,4 Noortje A.M. van den Dungen,5,6 Nico R. Lansu,2,3,6 Edward E.S. Nieuwenhuis,2 Dirk J. Duncker,1 Marianne C. Verhaar,4 Jaap A. Joles,4 Michal Mokry,2,3,6 and Caroline Cheng1,4 1Experimental Cardiology, Department of Cardiology, Thoraxcenter Erasmus University Medical Center, Rotterdam, The Netherlands; and 2Department of Pediatrics, Wilhelmina Children’s Hospital, 3Regenerative Medicine Center Utrecht, Department of Pediatrics, 4Department of Nephrology and Hypertension, Division of Internal Medicine and Dermatology, 5Department of Cardiology, Division Heart and Lungs, and 6Epigenomics Facility, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands ABSTRACT Genome-wide association studies (GWASs) have identified many genetic risk factors for CKD. However, linking common variants to genes that are causal for CKD etiology remains challenging. By adapting self-transcribing active regulatory region sequencing, we evaluated the effect of genetic variation on DNA regulatory elements (DREs). Variants in linkage with the CKD-associated single-nucleotide polymorphism rs11959928 were shown to affect DRE function, illustrating that genes regulated by DREs colocalizing with CKD-associated variation can be dysregulated and therefore, considered as CKD candidate genes. To identify target genes of these DREs, we used circular chro- mosome conformation capture (4C) sequencing on glomerular endothelial cells and renal tubular epithelial cells. Our 4C analyses revealed interactions of CKD-associated susceptibility regions with the transcriptional start sites of 304 target genes. Overlap with multiple databases confirmed that many of these target genes are involved in kidney homeostasis.
    [Show full text]