Two Categories of Relations

Total Page:16

File Type:pdf, Size:1020Kb

Two Categories of Relations Two Categories of Relations Technical Rep ort no Peter Knijnenburg Frank Nordemann Dept of Computer Science Leiden University Niels Bohrweg CA Leiden the Netherlands Email peterkcsleidenunivnl Introduction Recently there have app eared two notions of categories of relations in the literature Freyd introduced the notion of al legory FS and Carb oni and Walters introduced the notion of cartesian bicategory of relations CW On the face of it the two approaches lo ok rather dierent In this pap er we show that the latter axiomatization is equal in a categorical sense to an enrichment of the former The approach by Freyd see denitions and is a very smo oth axiomati zation of the notion of category of relations But as Carb oni observed Car the theory is rather rigid In particular the mo dular law is not satisfactory from a theoretical p oint of view it can not even b e stated unless one has an in volution which is the identity on ob jects which in nature never o ccurs unless one is already in a category of relations Hence Carb oni and Walters prop osed another axiomatization denition b elow which is more categorical So b oth approaches have their strong p oints and the result of this pap er allows to exploit them b oth without any p enalty at all This seems to b e particu lar relevant since categories of relations have b een used recently in theoretical computer science to mo del nondeterministic programs HJ She Man Two categories of relations In this section we rep eat the denition of the two categories For the comp o sition of two arrows R and S in a category R S means rst S and then R Furthermore we assume that comp osition binds more tightly than intersection For further categorical background consult FS Mac The rst denition of a categry of relations we consider in this pap er was introduced by Freyd FS Denition A category A is an allegory i it is a locally ordered category whose homposets have binary meets and an antiinvolution R R satisfying the modular law R S T R T R R An al legory is unitary i it has an object U the unit such that is the U largest morphism U U and for every object A there exists a morphism t A U such that t t A A A A We call a relation R X Y a partial map if it is single valued that is if R R The relation is called a map if it is moreover total that is if R R and R R In other words if R is a map then R is its right adjoint R a R One can prove that a relation R has a right adjoint i R is this right adjoint A tabulation of a relation R X Y is given by two maps f Z X and g Z Y such that g f R and f f g g The last Z condition says that f and g are jointly monic For two ob jects X and Y in an unitary allegory the relation t t X Y can b e shown to b e the largest X Y relation from X to Y We denote it by m In the sequel for a category of X Y relations C we let MapC denote the sub category of C consisting of all ob jects and all maps Denition A unitary al legory is called pretabular i for al l objects X and Y the morphism m has a tabulation We denote this tabulation by X Y 0 X Y X and X Y Y We denote the category of pretabular unitary al legories and structure preserving functors by pTUA We have the following lemma FS Lemma MapA is a cartesian category The product of X and Y is given by the tabulation of m X Y A tabular unitary al legory is a unitary allegory in which each relation has a tabulation In FS it is shown that every pretabular unitary allegory can b e fully and faithfully embedded in a tabular unitary allegory Furthermore each tabular unitary allegory is isomorphic to the category Rel C of relations of a regular category C FS JMP Hence we can consider each pretabular unitary allegory as a sub category of a RelC with C regular Next we introduce the second categorical structure for axiomatizing relations as prop osed by Carb oni and Walters CW Denition A category B is a cartesian bicategory of relations i it is a locally ordered category equipped with a functorial tensor product B B B which has an identity object I and natural isomorphisms X X I X Y Y X X Y Z X Y Z satisfying the classical coherence conditions Furthermore for every object X in B there exists a comonoid structure X X X t X I X X satisfying the fol lowing axioms The arrows and t satisfy the equations for X to be a cocommutative X X comonoid object Mac see gure Each morphism R X Y is a lax comonoid homomorphism That is R R R and t R t Y X Y X For each object X and t have a right adjoint and t respec X X X X tively This cocommutative comonoid structure is the only cocommutative comonoid structure on X with structure morphisms having right adjoints Furthermore every object X is discrete in the sense that X X X X We denote the category of cartesian bicategories of relations and structure pre serving functors by CRel The remarkable thing ab out cartesian bicategories of relations is that lo cal limits and the involution op erator are denable CW To b e precise given two relations R S X Y their intersection is given by R S R S X Y The involution of a relation R X Y is given by the comp osite 1 1 1 R 1 1 Y I Y X X Y Y X I X X Y where t X X = I X X X X t X X X I = X X X Again we call a relation R having a right adjoint a map One can prove that this right adjoint necessarily equals the involution The following lemma is proved in CW Lemma MapB is cartesian category For two objects X and Y the 1 0 1 product is given by X Y with projections t and t 0 0 Furthermore for two relations R and S R S R S X X H H H H 1 X H X H X X H H H Hj R X I X X X X X X X 1 1 t X X X X R X X X X 1 1 X X (X X ) X X (X X ) Figure Co commutative comonoid ob ject X The isomorphism It has b een observed earlier Car that the two categories pTUA and CRel are equivalent In this section we prove that they are in fact isomorphic First we describ e the functor A CRel pTUA Let B b e a cartesian bicategory of relations AB is given by the following data The ob jects and morphisms of AB are the ob jects and morphisms of B The order on the homsets in AB is the order in B The involution is given by the denable involution of B The unit is given by I 0 The tabulation of m is given by X Y X and X Y Y X Y Lemma AB is a pretabular unitary al legory Pro of The pro of follows from a number of theorems in CW By Theorem the homsets of B have nite pro ducts By Theorem there exists an antiinvolution such that R S R S The mo dular law follows from Remark ii The axioms for the unit follow from Theorem ii Finally by Theorem i the pro jections form a tabulation of m Next we describ e the functor C pTUA CRel Let A b e a pretabular unitary allegory C A is given by the following data The ob jects and morphisms of C A are the ob jects and morphisms of A The order on the homsets in C A is the order in A The tensor pro duct of two ob jects A and B is given by the domain of the tabulation of m AB The tensor pro duct of two arrows R A C and S B D is given by 0 0 R S R S AB C D C D AB The identity ob ject of the tensor pro duct is given by the unit The required natural isomorphisms are given by 0 0 0 0 h ti h i hh i i where h i is the pairing op erator of MapA h i and t is already present in A Lemma C A is a cartesian bicategory of relations Pro of We work in the internal language of the regular category asso ciated with A Then to prove that is functorial we need to show that T U R S T R U S This amounts to showing that in the internal language for any relations R S T U c dT c eU d f R a cS b d a cT c eR a cdU d f S b d This equivalence holds in any regular category by Frobenius Recipro city see MR It follows immediately from the denition that preserves the order on hom sets Hence is a homomorphism of bicategories The arrows and are maps and that they are isomorphisms satisfying the classical coherence conditions follows from the fact that they are so in MapA Using the internal language again it is easy to show that they are natural For each ob ject X the maps and t satisfy the axioms for X to b e a X X co commutative comonoid structure since they do so in MapA Let R X Y b e an arrow in A Then t R t since it holds in A Y X Furthermore 0 R R 0 R R 0 0 R R R R Hence R is a lax comonoid homomorphism Supp ose and t is another co commutative comonoid structure Then b oth t and t are maps to the terminal ob ject in MapA and hence they are equal From the counit axiom second diagram in gure it follows that 0 and Hence h i since MapA is cartesian It is straightforward to show that Discreteness holds using the internal lan guage Lemma C AB B Pro of Obviously C AB and B are the same bicategory So we only need to check that the extra structure of C AB and B coincide For example 0 supp ose is the diagonal in B and is the diagonal in C AB Since 0 MapB and MapAB are the same cartesian categories h i The other cases are proved similarly Lemma AC A A Pro of Again it is easy to see that AC A and A are the same bicategory 0 0 Let b e the tabulation of the maximal relation m in A and X Y the tabulation of m in AC A Now reasoning in Map A X Y 1 0 t t h t i X Y X Y X U X Y X U X Y Y X Y X Y X Hence for all ob jects X and Y m has the same tabulation
Recommended publications
  • Logic Programming in Tabular Allegories∗
    Logic Programming in Tabular Allegories∗ Emilio Jesús Gallego Arias1 and James B. Lipton2 1 Universidad Politécnica de Madrid 2 Wesleyan University Abstract We develop a compilation scheme and categorical abstract machine for execution of logic pro- grams based on allegories, the categorical version of the calculus of relations. Operational and denotational semantics are developed using the same formalism, and query execution is performed using algebraic reasoning. Our work serves two purposes: achieving a formal model of a logic programming compiler and efficient runtime; building the base for incorporating features typi- cal of functional programming in a declarative way, while maintaining 100% compatibility with existing Prolog programs. 1998 ACM Subject Classification D.3.1 Formal Definitions and Theory, F.3.2 Semantics of Programming Languages, F.4.1 Mathematical Logic Keywords and phrases Category Theory,Logic Programming,Lawvere Categories,Programming Language Semantics,Declarative Programming Digital Object Identifier 10.4230/LIPIcs.ICLP.2012.334 1 Introduction Relational algebras have a broad spectrum of applications in both theoretical and practical computer science. In particular, the calculus of binary relations [37], whose main operations are intersection (∪), union (∩), relative complement \, inversion (_)o and relation composition (;) was shown by Tarski and Givant [40] to be a complete and adequate model for capturing all first-order logic and set theory. The intuition is that conjunction is modeled by ∩, disjunction by ∪ and existential quantification by composition. This correspondence is very useful for modeling logic programming. Logic programs are naturally interpreted by binary relations and relation algebra is a suitable framework for algebraic reasoning over them, including execution of queries.
    [Show full text]
  • MAT 4162 - Homework Assignment 2
    MAT 4162 - Homework Assignment 2 Instructions: Pick at least 5 problems of varying length and difficulty. You do not have to provide full details in all of the problems, but be sure to indicate which details you declare trivial. Due date: Monday June 22nd, 4pm. The category of relations Let Rel be the category whose objects are sets and whose morphisms X ! Y are relations R ⊆ X × Y . Two relations R ⊆ X × Y and S ⊆ Y × Z may be composed via S ◦ R = f(x; z)j9y 2 Y:R(x; y) ^ S(y; z): Exercise 1. Show that this composition is associative, and that Rel is indeed a category. The powerset functor(s) Consider the powerset functor P : Set ! Set. On objects, it sends a set X to its powerset P(X). A function f : X ! Y is sent to P(f): P(X) !P(Y ); U 7! P(f)(U) = f[U] =def ff(x)jx 2 Ug: Exercise 2. Show that P is indeed a functor. For every set X we have a singleton map ηX : X !P(X), defined by 2 S x 7! fxg. Also, we have a union map µX : P (X) !P(X), defined by α 7! α. Exercise 3. Show that η and µ constitute natural transformations 1Set !P and P2 !P, respectively. Objects of the form P(X) are more than mere sets. In class you have seen that they are in fact complete boolean algebras. For now, we regard P(X) as a complete sup-lattice. A partial ordering (P; ≤) is a complete sup-lattice if it is equipped with a supremum map W : P(P ) ! P which sends a subset U ⊆ P to W P , the least upper bound of U in P .
    [Show full text]
  • Relations in Categories
    Relations in Categories Stefan Milius A thesis submitted to the Faculty of Graduate Studies in partial fulfilment of the requirements for the degree of Master of Arts Graduate Program in Mathematics and Statistics York University Toronto, Ontario June 15, 2000 Abstract This thesis investigates relations over a category C relative to an (E; M)-factori- zation system of C. In order to establish the 2-category Rel(C) of relations over C in the first part we discuss sufficient conditions for the associativity of horizontal composition of relations, and we investigate special classes of morphisms in Rel(C). Attention is particularly devoted to the notion of mapping as defined by Lawvere. We give a significantly simplified proof for the main result of Pavlovi´c,namely that C Map(Rel(C)) if and only if E RegEpi(C). This part also contains a proof' that the category Map(Rel(C))⊆ is finitely complete, and we present the results obtained by Kelly, some of them generalized, i. e., without the restrictive assumption that M Mono(C). The next part deals with factorization⊆ systems in Rel(C). The fact that each set-relation has a canonical image factorization is generalized and shown to yield an (E¯; M¯ )-factorization system in Rel(C) in case M Mono(C). The setting without this condition is studied, as well. We propose a⊆ weaker notion of factorization system for a 2-category, where the commutativity in the universal property of an (E; M)-factorization system is replaced by coherent 2-cells. In the last part certain limits and colimits in Rel(C) are investigated.
    [Show full text]
  • Knowledge Representation in Bicategories of Relations
    Knowledge Representation in Bicategories of Relations Evan Patterson Department of Statistics, Stanford University Abstract We introduce the relational ontology log, or relational olog, a knowledge representation system based on the category of sets and relations. It is inspired by Spivak and Kent’s olog, a recent categorical framework for knowledge representation. Relational ologs interpolate between ologs and description logic, the dominant formalism for knowledge representation today. In this paper, we investigate relational ologs both for their own sake and to gain insight into the relationship between the algebraic and logical approaches to knowledge representation. On a practical level, we show by example that relational ologs have a friendly and intuitive—yet fully precise—graphical syntax, derived from the string diagrams of monoidal categories. We explain several other useful features of relational ologs not possessed by most description logics, such as a type system and a rich, flexible notion of instance data. In a more theoretical vein, we draw on categorical logic to show how relational ologs can be translated to and from logical theories in a fragment of first-order logic. Although we make extensive use of categorical language, this paper is designed to be self-contained and has considerable expository content. The only prerequisites are knowledge of first-order logic and the rudiments of category theory. 1. Introduction arXiv:1706.00526v2 [cs.AI] 1 Nov 2017 The representation of human knowledge in computable form is among the oldest and most fundamental problems of artificial intelligence. Several recent trends are stimulating continued research in the field of knowledge representation (KR).
    [Show full text]
  • From Categories to Allegories
    Final dialgebras : from categories to allegories Citation for published version (APA): Backhouse, R. C., & Hoogendijk, P. F. (1999). Final dialgebras : from categories to allegories. (Computing science reports; Vol. 9903). Technische Universiteit Eindhoven. Document status and date: Published: 01/01/1999 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.
    [Show full text]
  • Relations: Categories, Monoidal Categories, and Props
    Logical Methods in Computer Science Vol. 14(3:14)2018, pp. 1–25 Submitted Oct. 12, 2017 https://lmcs.episciences.org/ Published Sep. 03, 2018 UNIVERSAL CONSTRUCTIONS FOR (CO)RELATIONS: CATEGORIES, MONOIDAL CATEGORIES, AND PROPS BRENDAN FONG AND FABIO ZANASI Massachusetts Institute of Technology, United States of America e-mail address: [email protected] University College London, United Kingdom e-mail address: [email protected] Abstract. Calculi of string diagrams are increasingly used to present the syntax and algebraic structure of various families of circuits, including signal flow graphs, electrical circuits and quantum processes. In many such approaches, the semantic interpretation for diagrams is given in terms of relations or corelations (generalised equivalence relations) of some kind. In this paper we show how semantic categories of both relations and corelations can be characterised as colimits of simpler categories. This modular perspective is important as it simplifies the task of giving a complete axiomatisation for semantic equivalence of string diagrams. Moreover, our general result unifies various theorems that are independently found in literature and are relevant for program semantics, quantum computation and control theory. 1. Introduction Network-style diagrammatic languages appear in diverse fields as a tool to reason about computational models of various kinds, including signal processing circuits, quantum pro- cesses, Bayesian networks and Petri nets, amongst many others. In the last few years, there have been more and more contributions towards a uniform, formal theory of these languages which borrows from the well-established methods of programming language semantics. A significant insight stemming from many such approaches is that a compositional analysis of network diagrams, enabling their reduction to elementary components, is more effective when system behaviour is thought of as a relation instead of a function.
    [Show full text]
  • Rewriting Structured Cospans: a Syntax for Open Systems
    UNIVERSITY OF CALIFORNIA RIVERSIDE Rewriting Structured Cospans: A Syntax For Open Systems A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Mathematics by Daniel Cicala June 2019 Dissertation Committee: Dr. John C. Baez, Chairperson Dr. Wee Liang Gan Dr. Jacob Greenstein Copyright by Daniel Cicala 2019 The Dissertation of Daniel Cicala is approved: Committee Chairperson University of California, Riverside Acknowledgments First and foremost, I would like to thank my advisor John Baez. In these past few years, I have learned more than I could have imagined about mathematics and the job of doing mathematics. I also want to thank the past and current Baez Crew for the many wonderful discussions. I am indebted to Math Department at the University of California, Riverside, which has afforded me numerous opportunities to travel to conferences near and far. Almost certainly, I would never have had a chance to pursue my doctorate had it not been for my parents who were there for me through every twist and turn on this, perhaps, too scenic route that I traveled. Most importantly, this project would have been impossible without the full-hearted support of my love, Elizabeth. I would also like to acknowledge the previously published material in this disser- tation. The interchange law in Section 3.1 was published in [15]. The material in Sections 3.2 and 3.3 appear in [16]. Also, the ZX-calculus example in Section 4.3 appears in [18]. iv Elizabeth. It’s finally over, baby! v ABSTRACT OF THE DISSERTATION Rewriting Structured Cospans: A Syntax For Open Systems by Daniel Cicala Doctor of Philosophy, Graduate Program in Mathematics University of California, Riverside, June 2019 Dr.
    [Show full text]
  • Math 395: Category Theory Northwestern University, Lecture Notes
    Math 395: Category Theory Northwestern University, Lecture Notes Written by Santiago Can˜ez These are lecture notes for an undergraduate seminar covering Category Theory, taught by the author at Northwestern University. The book we roughly follow is “Category Theory in Context” by Emily Riehl. These notes outline the specific approach we’re taking in terms the order in which topics are presented and what from the book we actually emphasize. We also include things we look at in class which aren’t in the book, but otherwise various standard definitions and examples are left to the book. Watch out for typos! Comments and suggestions are welcome. Contents Introduction to Categories 1 Special Morphisms, Products 3 Coproducts, Opposite Categories 7 Functors, Fullness and Faithfulness 9 Coproduct Examples, Concreteness 12 Natural Isomorphisms, Representability 14 More Representable Examples 17 Equivalences between Categories 19 Yoneda Lemma, Functors as Objects 21 Equalizers and Coequalizers 25 Some Functor Properties, An Equivalence Example 28 Segal’s Category, Coequalizer Examples 29 Limits and Colimits 29 More on Limits/Colimits 29 More Limit/Colimit Examples 30 Continuous Functors, Adjoints 30 Limits as Equalizers, Sheaves 30 Fun with Squares, Pullback Examples 30 More Adjoint Examples 30 Stone-Cech 30 Group and Monoid Objects 30 Monads 30 Algebras 30 Ultrafilters 30 Introduction to Categories Category theory provides a framework through which we can relate a construction/fact in one area of mathematics to a construction/fact in another. The goal is an ultimate form of abstraction, where we can truly single out what about a given problem is specific to that problem, and what is a reflection of a more general phenomenom which appears elsewhere.
    [Show full text]
  • Generic Programming with Adjunctions
    Generic Programming with Adjunctions Ralf Hinze Department of Computer Science, University of Oxford Wolfson Building, Parks Road, Oxford, OX1 3QD, England [email protected] http://www.cs.ox.ac.uk/ralf.hinze/ Abstract. Adjunctions are among the most important constructions in mathematics. These lecture notes show they are also highly relevant to datatype-generic programming. First, every fundamental datatype| sums, products, function types, recursive types|arises out of an adjunc- tion. The defining properties of an adjunction give rise to well-known laws of the algebra of programming. Second, adjunctions are instrumental in unifying and generalising recursion schemes. We discuss a multitude of basic adjunctions and show that they are directly relevant to program- ming and to reasoning about programs. 1 Introduction Haskell programmers have embraced functors [1], natural transformations [2], monads [3], monoidal functors [4] and, perhaps to a lesser extent, initial alge- bras [5] and final coalgebras [6]. It is time for them to turn their attention to adjunctions. The notion of an adjunction was introduced by Daniel Kan in 1958 [7]. Very briefly, the functors L and R are adjoint if arrows of type L A → B are in one-to- one correspondence to arrows of type A → R B and if the bijection is furthermore natural in A and B. Adjunctions have proved to be one of the most important ideas in category theory, predominantly due to their ubiquity. Many mathemat- ical constructions turn out to be adjoint functors that form adjunctions, with Mac Lane [8, p.vii] famously saying, \Adjoint functors arise everywhere." The purpose of these lecture notes is to show that the notion of an adjunc- tion is also highly relevant to programming, in particular, to datatype-generic programming.
    [Show full text]
  • Abstract Relation-Algebraic Interfaces for Finite Relations Between Infinite
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector The Journal of Logic and Algebraic Programming 76 (2008) 60–89 www.elsevier.com/locate/jlap Relational semigroupoids: Abstract relation-algebraic interfaces for finite relations between infinite types Wolfram Kahl ∗ Department of Computing and Software, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1 Available online 13 February 2008 Abstract Finite maps or finite relations between infinite sets do not even form a category, since the necessary identities are not finite. We show relation-algebraic extensions of semigroupoids where the operations that would produce infinite results have been replaced with variants that preserve finiteness, but still satisfy useful algebraic laws. The resulting theories allow calculational reasoning in the relation-algebraic style with only minor sacrifices; our emphasis on generality even provides some concepts in theories where they had not been available before. The semigroupoid theories presented in this paper also can directly guide library interface design and thus be used for principled relation-algebraic programming; an example implementation in Haskell allows manipulating finite binary relations as data in a point-free relation-algebraic programming style that integrates naturally with the current Haskell collection types. This approach enables seamless integration of relation-algebraic formulations to provide elegant solutions of problems that, with different data organisation, are awkward to tackle. © 2007 Elsevier Inc. All rights reserved. AMS classification: 18B40; 18B10; 03G15; 04A05; 68R99 Keywords: Finite relations; Semigroupoids; Determinacy; Restricted residuals; Direct products; Functional programming; Haskell 1. Introduction The motivation for this paper arose from the desire to use well-defined algebraic interfaces for collection datatypes implementing sets, partial functions, and binary relations.
    [Show full text]
  • Categories with Fuzzy Sets and Relations
    Categories with Fuzzy Sets and Relations John Harding, Carol Walker, Elbert Walker Department of Mathematical Sciences New Mexico State University Las Cruces, NM 88003, USA jhardingfhardy,[email protected] Abstract We define a 2-category whose objects are fuzzy sets and whose maps are relations subject to certain natural conditions. We enrich this category with additional monoidal and involutive structure coming from t-norms and negations on the unit interval. We develop the basic properties of this category and consider its relation to other familiar categories. A discussion is made of extending these results to the setting of type-2 fuzzy sets. 1 Introduction A fuzzy set is a map A : X ! I from a set X to the unit interval I. Several authors [2, 6, 7, 20, 22] have considered fuzzy sets as a category, which we will call FSet, where a morphism from A : X ! I to B : Y ! I is a function f : X ! Y that satisfies A(x) ≤ (B◦f)(x) for each x 2 X. Here we continue this path of investigation. The underlying idea is to lift additional structure from the unit interval, such as t-norms, t-conorms, and negations, to provide additional structure on the category. Our eventual aim is to provide a setting where processes used in fuzzy control can be abstractly studied, much in the spirit of recent categorical approaches to processes used in quantum computation [1]. Order preserving structure on I, such as t-norms and conorms, lifts to provide additional covariant structure on FSet. In fact, each t-norm T lifts to provide a symmetric monoidal tensor ⊗T on FSet.
    [Show full text]
  • DRAFT: Category Theory for Computer Science
    DRAFT: Category Theory for Computer Science J.R.B. Cockett 1 Department of Computer Science, University of Calgary, Calgary, T2N 1N4, Alberta, Canada October 12, 2016 1Partially supported by NSERC, Canada. 2 Contents 1 Basic Category Theory 5 1.1 The definition of a category . 5 1.1.1 Categories as graphs with composition . 5 1.1.2 Categories as partial semigroups . 6 1.1.3 Categories as enriched categories . 7 1.1.4 The opposite category and duality . 7 1.1.5 Examples of categories . 8 1.1.6 Exercises . 14 1.2 Basic properties of maps . 16 1.2.1 Epics, monics, retractions, and sections . 16 1.2.2 Idempotents . 17 1.3 Finite set enriched categories and full retractions . 18 1.3.1 Retractive inverses . 18 1.3.2 Fully retracted objects . 21 1.3.3 Exercises . 22 1.4 Orthogonality and Factorization . 24 1.4.1 Orthogonal classes of maps . 24 1.4.2 Introduction to factorization systems . 27 1.4.3 Exercises . 32 1.5 Functors and natural transformations . 35 1.5.1 Functors . 35 1.5.2 Natural transformations . 38 1.5.3 The Yoneda lemma . 41 1.5.4 Exercises . 43 2 Adjoints and Monad 45 2.1 Basic constructions on categories . 45 2.1.1 Slice categories . 45 2.1.2 Comma categories . 46 2.1.3 Inserters . 47 2.1.4 Exercises . 48 2.2 Adjoints . 49 2.2.1 The universal property . 49 2.2.2 Basic properties of adjoints . 52 3 4 CONTENTS 2.2.3 Reflections, coreflections and equivalences .
    [Show full text]