Staphylococcus Aureus

Total Page:16

File Type:pdf, Size:1020Kb

Staphylococcus Aureus REVIEWS New antimicrobial agents for methicillin-resistant Staphylococcus aureus Marin H Kollef In bacterial and fungal infections, optimal outcomes are ABSTRACT obtained through the timely provision of adequate antimi- crobial coverage in an initial anti-infective treatment regi- In bacterial and fungal infections, optimal outcomes are men.Crit However, Care Resusc selecting ISSN: 1441-2772 appropriate 7 Decem- antimicrobial obtained through the timely provision of adequate regimensber 2009 to treat11 4 282-286 infections in the intensive care unit can be antimicrobial coverage in an initial anti-infective treatment ©Crit Care Resusc 2009 challengingwww.jficm.anzca.edu. because of au/aaccm/journal/publi-the expansion of antibiotic resist- regimen. However, selecting appropriate antimicrobial ance.cations.htm Multidrug anti-infective regimens are typically needed regimens to treat infections in the intensive care unit is to adequatelyReviews cover the common important pathogens in challenging because of the expansion of antibiotic ICUs. The term “ESKAPE” has been coined for the group resistance. Multidrug anti-infective regimens are typically that causes most hospital-acquired infections able to needed to adequately cover common important pathogens “escape” our antibiotic arsenal in the United States: Entero- in ICUs. coccus faecium, Staphylococcus aureus, Klebsiella pneumo- Here, we describe novel antibacterial agents in the late niae, Acinetobacter baumannii, Pseudomonas aeruginosa, stages of clinical development that show potential for and Enterobacter spp. Their existence mandates the discov- treating methicillin-resistant Staphylococcus aureus (MRSA) ery of new antimicrobial agents. Here, we describe novel infections. antibacterial agents in the late stages of clinical develop- These include the fifth-generation cephalosporins, ment that show potential for treating methicillin-resistant ceftaroline and ceftobiprole; the glycopeptides, S. aureus (MRSA) infections. dalbavancin, oritavancin, and telavancin; and iclaprim. Crit Care Resusc 2009; 11: 282–286 Ceftaroline Ceftaroline fosamil is a fifth-generation cephalosporin pro- drug with activity against a broad range of gram-positive and Early-phase clinical trials established a dosing regimen for gram-negative bacteria. The active agent, ceftaroline, is ceftaroline of 600 mg intravenously (IV) every 12 hours (as a active against MRSA and has a minimum inhibitory concen- 1-hour infusion) as the preferred regimen for future study. μ tration for 90% of organisms (MIC90) of 1–2 g/mL because Less than 20% of the drug is protein bound in serum, and it of its enhanced binding to penicillin-binding protein 2a has a volume of distribution similar to the extracellular fluid (PBP2a), as compared with other β-lactam antibiotics.1 The volume at around 16–17 L. Ceftaroline is primarily elimi- drug is also active against penicillin- and cephalosporin- nated by renal excretion, and multiple-dose pharmaco- resistant Streptococcus pneumoniae and β-haemolytic strep- kinetic studies have shown the half-life is around 2.5–3 tococci, and has variable activity against Enterococcus faeca- hours. It does exhibit an extended half-life or area under the lis but little or no activity against vancomycin-resistant plasma concentration time curve under conditions of mild- Enterococcus faecium. Against relevant gram-negative path- to-moderate renal impairment, and would be expected to ogens, it has broad-spectrum activity similar to that of require dose adjustment in these populations. No data are ceftriaxone. However, its MICs are generally higher than currently available on ceftaroline clearance in dialysis. Its those of cefepime against most non-fermenting gram-nega- potential for use in pneumonia is supported by the finding tive bacteria and Enterobacteriaceae, and it is expected to be that lung tissue penetration in rabbits at the end of inactive against Pseudomonas spp. and Acinetobacter spp. ceftaroline infusion was 42% of serum concentrations.2 Ceftaroline appears to be a weak inducer of AmpC β- A phase II clinical trial has compared ceftaroline (preferred lactamases, and, like other clinically available cephalosporins regimen for 7–14 days) with vancomycin (1 g IV every 12 (besides cefepime), is labile to AmpC and expected to be hours, with or without aztreonam (1 g IV every 8 hours) for clinically ineffective against AmpC isolates. Like other the treatment of complicated skin and skin structure infec- advanced-generation cephalosporins, ceftaroline is not relia- tion (cSSSI).3 Clinical cure rates were similar for the ceftaro- bly active against strains of Enterobacteriaceae that produce line (96.7%) and standard therapy (88.9%) groups. Phase III extended spectrum β-lactamases (ESBLs). clinical trials for this indication are now complete, but data 282 Critical Care and Resuscitation • Volume 11 Number 4 • December 2009 REVIEWS had not been published at the time of writing. Perhaps diabetic foot and mixed bacterial cSSSI infections and more interesting for ICU practitioners, phase III trials are compared ceftobiprole (500 mg IV every 8 hours) with currently ongoing to compare 5–7 days of ceftaroline vancomycin (1 g IV every 12 hours) plus ceftazidime (1 g IV therapy with ceftriaxone (1 g IV daily) for treatment of every 8 hours) for 7–14 days. Clinical cure rates were also community-acquired pneumonia. similar for the ceftobiprole (90.5%) and standard therapy (90.2%) groups. Ceftobiprole (500 mg IV every 8 hours) was also compared with a combination of ceftazidime and Ceftobiprole linezolid for treatment of nosocomial pneumonia.7 Ceftobiprole medocaril is another fifth-generation cepha- Although the study showed ceftobiprole was non-inferior losporin pro-drug, with a broad spectrum of activity similar versus the combination regimen, it was unexpectedly asso- to that of ceftaroline. Like ceftaroline, ceftobiprole was ciated with lower cure rates in patients with ventilator- designed to maximise binding to PBP2a and yield potent associated pneumonia, particularly those younger than 45 μ 4 anti-MRSA activity, with an MIC90 of 2 g/mL. Ceftobiprole years and those with high creatinine clearance. is active against cephalosporin-resistant S. pneumoniae and ampicillin-susceptible E. faecalis, but not E. faecium. Cefto- biprole has broader gram-negative activity than ceftaroline; Dalbavancin it appears to have a gram-negative spectrum of activity Dalbavancin is a lipoglycopeptide currently under investiga- intermediate between that of ceftriaxone and cefepime, tion. It has a bacteriocidal mechanism of action similar to largely because of its greater stability to AmpC β-lactam- that of other glycopeptides in that it complexes with the D- ases than ceftriaxone and ceftaroline. Ceftobiprole also has alanyl-D-alanine (D-Ala-D-Ala) terminal of peptidoglycan and activity against P. aeruginosa, and MICs against this patho- inhibits transglycosylation and transpeptidation.8 Like teico- gen are generally similar to those of cefepime and ceftazi- planin, dalbavancin possesses a lipophilic side chain that dime. Activity against Acinetobacter spp. appears to be leads to both high protein-binding and an extended half- highly variable. As with other advanced-generation cepha- life, which allows once-weekly dosing. losporins, ceftobiprole is not reliably active against ESBL- Dalbavancin is more potent than vancomycin against producing bacteria. staphylococci, and is highly active against both methicillin- The volume of distribution is similar to the extracellular susceptible S. aureus (MSSA) and MRSA, with MIC90 values fluid volume, at about 18 L, although this may be doubled of < 0.13 mg/L and 0.25 mg/L, respectively. Dalbavancin is in patients with ventilator-associated pneumonia. There are also active against vancomycin-intermediate S. aureus μ currently no data on the epithelial lining fluid penetration of (VISA), although MIC90 ranges are higher, at 1–2 g/mL. It ceftobiprole, but a pharmacokinetic study is ongoing to inhibits streptococci, including penicillin-resistant S. pneu- evaluate concentrations of ceftobiprole in bronchoalveolar moniae, and enterococci with the VanB or VanC phenotype, lavage fluid after IV infusion. The drug is 16% bound to but is not active against enterococci with the VanA pheno- plasma proteins, is primarily eliminated in the urine, and has type. a half-life of around 3–4 hours. Because of its extensive Dalbavancin is administered intravenously, and the most renal clearance, dose adjustments have been proposed for commonly used dose in clinical trials has been 1000 mg on patients with mild-to-moderate renal impairment. Ceftobi- Day 1, followed by 500 mg weekly thereafter. This dose prole appears to be removed effectively by some haemodi- achieves a maximum serum concentration of 312 μg/mL, alysis modalities. with mean serum concentrations > 35 μg/mL maintained for Results of early phase clinical trials and Monte Carlo a 7-day dosing period. The drug has a volume of distribu- simulations suggested two dosing regimens for ceftobip- tion of 0.11 L/kg and a half-life of 147–258 hours, support- role: 500 mg IV as a 1-hour infusion every 12 hours for ing once-weekly dosing. Only 40% is eliminated by the treatment of gram-positive infections, and 500 mg IV as a kidneys, with no apparent need for dose adjustments in the 2-hour infusion every 8 hours for empirical treatment of setting of either moderate renal or hepatic impairment. It mixed gram-positive and gram-negative infections. Two
Recommended publications
  • P0469 In-Vitro Activity of Oritavancin Against Daptomycin And/Or Linezolid Resistant Enterococcus Faecium Clinical Isolates: a Single Centre Study
    P0469 In-vitro activity of oritavancin against daptomycin and/or linezolid resistant Enterococcus faecium clinical isolates: a single centre study Abhay Dhand*1, Nicholas Feola1, Leslie Lee1, Guiqing Wang1 1Westchester Medical Center Background: Oritavancin is a novel antibiotic with potent activity against a broad range of gram- positive organisms. Resistance to daptomycin, linezolid and other antibiotics among enterococcus is on the rise in many US hospitals. Oritavancin may provide an alternative antibiotic therapy for serious infections caused by such very resistant enterococci. The aim of this study was to evaluate in vitro antimicrobial susceptibility of oritavancin against enterococci with focus on Daptomycin non- susceptible (DNSE) and Linezolid resistant (LRE) clinical isolates. Materials/methods: DNSE and LRE clinical isolates were recovered from patients in a tertiary medical center in suburban New York City from May 2015 through December 2016. Daptomycin susceptibility was determined by MicroScan WalkAway™ System and confirmed by E-test. Susceptibility of oritavancin and linezolid was performed by broth microdilution using the Sensititre™ panel in accordance with the guidelines of the Clinical and Laboratory Standards Institute and package insert of the manufacturer. The isolates were confirmed by analysis of 16S rRNA gene sequence or by the MALDI Biobiotyper CA System™. Results: A total of 24 nonduplicate E. faecium clinical isolates were analyzed in this study. 19/24 isolates were DNSE (6-96 μg/ml), 4/24 were LRE (8-16 μg/ml) and 2/24 were both DNSE and LRE. The MIC50 and MIC90 of oritavancin against combined resistant enterococci isolates was 0.06 μg/ml and 0.25 μg/ml (range: 0.008 – 0.25 μg/ml) respectively.
    [Show full text]
  • Use of Ceftaroline Fosamil in Children: Review of Current Knowledge and Its Application
    Infect Dis Ther (2017) 6:57–67 DOI 10.1007/s40121-016-0144-8 REVIEW Use of Ceftaroline Fosamil in Children: Review of Current Knowledge and its Application Juwon Yim . Leah M. Molloy . Jason G. Newland Received: November 10, 2016 / Published online: December 30, 2016 Ó The Author(s) 2016. This article is published with open access at Springerlink.com ABSTRACT infections, CABP caused by penicillin- and ceftriaxone-resistant S. pneumoniae and Ceftaroline is a novel cephalosporin recently resistant Gram-positive infections that fail approved in children for treatment of acute first-line antimicrobial agents. However, bacterial skin and soft tissue infections and limited data are available on tolerability in community-acquired bacterial pneumonia neonates and infants younger than 2 months (CABP) caused by methicillin-resistant of age, and on pharmacokinetic characteristics Staphylococcus aureus, Streptococcus pneumoniae in children with chronic medical conditions and other susceptible bacteria. With a favorable and those with invasive, complicated tolerability profile and efficacy proven in infections. In this review, the microbiological pediatric patients and excellent in vitro profile of ceftaroline, its mechanism of action, activity against resistant Gram-positive and and pharmacokinetic profile will be presented. Gram-negative bacteria, ceftaroline may serve Additionally, clinical evidence for use in as a therapeutic option for polymicrobial pediatric patients and proposed place in therapy is discussed. Enhanced content To view enhanced content for this article go to http://www.medengine.com/Redeem/ 1F47F0601BB3F2DD. Keywords: Antibiotic resistance; Ceftaroline J. Yim (&) fosamil; Children; Methicillin-resistant St. John Hospital and Medical Center, Detroit, MI, Staphylococcus aureus; Streptococcus pneumoniae USA e-mail: [email protected] L.
    [Show full text]
  • Cefalexin in the WHO Essential Medicines List for Children Reject
    Reviewer No. 1: checklist for application of: Cefalexin In the WHO Essential Medicines List for Children (1) Have all important studies that you are aware of been included? Yes No 9 (2) Is there adequate evidence of efficacy for the proposed use? Yes 9 No (3) Is there evidence of efficacy in diverse settings and/or populations? Yes 9 No (4) Are there adverse effects of concern? Yes 9 No (5) Are there special requirements or training needed for safe/effective use? Yes No 9 (6) Is this product needed to meet the majority health needs of the population? Yes No 9 (7) Is the proposed dosage form registered by a stringent regulatory authority? Yes 9 No (8) What action do you propose for the Committee to take? Reject the application for inclusion of the following presentations of cefalexin: • Tablets/ capsules 250mg • Oral suspensions 125mg/5ml and 125mg/ml (9) Additional comment, if any. In order to identify any additional literature, the following broad and sensitive search was conducted using the PubMed Clinical Query application: (cephalexin OR cefalexin AND - 1 - pediatr*) AND ((clinical[Title/Abstract] AND trial[Title/Abstract]) OR clinical trials[MeSH Terms] OR clinical trial[Publication Type] OR random*[Title/Abstract] OR random allocation[MeSH Terms] OR therapeutic use[MeSH Subheading]) Only one small additional study was identified, which looked at the provision of prophylactic antibiotics in patients presenting to an urban children's hospital with trauma to the distal fingertip, requiring repair.1 In a prospective randomised control trial, 146 patients were enrolled, of which 69 were randomised to the no-antibiotic group, and 66 were randomised to the antibiotic (cefalexin) group.
    [Show full text]
  • Dalvance Generic Name: Dalbavancin Manufacturer1: DURATA Therapeutics Drug Class1,2,3,4: Antibiotic
    Brand Name: Dalvance Generic Name: dalbavancin Manufacturer1: DURATA therapeutics Drug Class1,2,3,4: Antibiotic Uses: Labeled Uses1: Treatment of adult patients with acute bacterial skin and skin structure infections caused by susceptible isolates of the following Gram-positive microorganisms: Staphylococcus aureus (including methicillin-susceptible and methicillin-resistant strains), Streptococcus pyogenes, Streptococcus agalactiae, Streptococcus anginosus group (including S. anginosus, S. intermedius, S. constellatus) Mechanism of Action:1,2,3,4 This drug is a lipoglycopeptide which binds to the D-alanyl-D-alanine terminus of the stem pentapeptide in nascent cell wall. Through this above mechanism it prevents cross-linking and interferes with cell wall synthesis. Dalbavancin is bactericidal in vitro against Staphylococcus aureus and Streptococcus pyogenes. Pharmacokinetics1,2,3,4 Tmax End of infusion time Vd 7-13L t1/2 346 hours Clearance .0513 l/h Protein binding (albumin) 93% (primarily to albumin) Bioavailability 100% Metabolism1,2,3,4: A minor metabolite- hydroxy-dalbavancin has been observed in the urine of healthy subjects, however quantifiable plasma concentrations have not been observed. Elimination1,2,3,4: Urine (33% as unchanged drug, 12% as hydroxy metabolite) Feces (20%) Efficacy: Boucher HW, Wilcox M, Talbot GH, Puttagunta S, Das AF, Dunne MW. Once-Weekly Dalbavancin versus Daily Conventional Therapy for Skin Infection. N Engl J Med 2014; 370:2169-2179. Study Design: Double blind, double dummy, randomized controlled study Description of Study: Discover 1 and Discover 2 were international, multicenter, randomized trials conducted from 2011 through 2012 at 54 and 86 investigative sites, respectively. The studies had the same design. Patients with acute bacterial skin and skin-structure infection were stratified then randomly assigned to receive dalbavancin intravenously on days 1 and 8 or vancomycin intravenously for at least 3 days with the option to switch to oral linezolid to complete 10 to 14 days of therapy.
    [Show full text]
  • Criteria for Use of Dalbavancin for Acute Bacterial Skin/Soft Tissue Infection (Abssti)
    Criteria for Use of Dalbavancin for Acute Bacterial Skin/Soft Tissue Infection (abSSTI) 1. Patients meeting any of the following are NOT ELIGIBLE for dalbavancin therapy: a. History of hypersensitivity reaction to lipoglycopeptide antibiotics (vancomycin, televancin, dalbavancin, oritavancin). b. Patients with acute bacterial skin or skin structure infections such as superficial/simple cellulitis/erysipelas, impetiginous lesion, furuncle, or simple abscess that only requires surgical drainage for cure. c. Infection thought to be caused by gram-negative bacteria d. Infection due to an organism suspected or known to be resistant to dalbavancin or vancomycin 2. For outpatient use (i.e. ED) a. Contact infectious disease for authorization: ABX approval pager (see ON-CALL schedule) b. The following clinical criteria must be met: i. Pre-antibiotic blood cultures must be drawn. ii. Clinical condition expected to require ≥ 24 hours of IV antibiotics – must not qualify for oral antibiotic therapy. iii. Presence of cellulitis, major abscess or a wound infection associated with at least 75cm2 of erythema highly suspected or known to be caused by gram-positive bacteria. iv. The size of the infection must be clearly documented and/or outlined prior to leaving the ED, preferably with a photograph. v. Patient to be discharged to home ± home health (not to skilled nursing facility). c. Required follow up must be set up prior to leaving the ED: i. Must document patient contact info for follow up, preferably reliable cell phone number. ii. Must have follow up within 48-72H with Dr. Turnipseed (916-765-0196) or Rominski. 1. Email patient name, MRN, and phone number.
    [Show full text]
  • Medicines to Treat Bacterial Infections
    Government of Western Australia North Metropolitan Health Service Women and Newborn Health Service Medicines to treat bacterial infections This brochure contains some information on Important: Antibiotic resistance can the medicines you may have been prescribed affect us all. to treat a bacterial infection either in hospital or on discharge. Please talk to your doctor or Help limit the development of antibiotic pharmacist if you would like more information resistance by using antibiotics correctly. on a specific antibiotic. Make sure you: Take antibiotics exactly as prescribed. What is an antibiotic? • Antibiotics are medicines used to treat • Follow instructions on how many times a infections caused by bacteria. They are not day and for how long to take them. effective against viral infections such as the • Do not stop treatment early, even if you common cold and the ‘flu’. feel better. Medicine Other information Amoxicillin May be taken with or without food. Amoxicillin/ Take with the first bite of a meal. clavulanic acid Cefalexin May be taken with or without food. Take on an empty stomach with a glass of water, 1 hour before or 2 hours after food. Ciprofloxacin Do not take dairy products, antacids, iron, zinc or calcium within 2 hours of the dose. Clindamycin Take with a full glass of water. May be taken with or without food. Take with food or milk. Remain upright for an hour after dose to prevent damage to the Doxycycline lining of your throat. Do not take dairy products, antacids, iron, zinc or calcium within 2 hours of the dose. Take on an empty stomach, 1 hour before or 2 hours after food.
    [Show full text]
  • Dalbavancin (Dalvance®)
    DalbavancinDalbavancin (Dalvance (Dalvance®)®) IV Only Use requires formal ID Consult Activity: Coverage against Staphylococcus aureus (including MSSA and MRSA), Streptococcus pyogenes, Streptococcus agalactiae (Group B Strep.) and Streptococcus anginosus group (including S. anginosus, S. intermedius, S. constellatus) No clinical data, but activity in vitro vs. Enterococcus faecalis (vancomycin-susceptible strains only), Enterococcus faecium (vancomycin-susceptible strains only), vancomycin-intermediate S. aureus (not vancomycin-resistant strains) Criteria for Use: Treatment of adult patients with acute bacterial skin and skin structure infections (ABSSSI) caused by susceptible gram-positive isolates Unable to use vancomycin (due to intolerance, MIC >2mg/L, or infection unresponsive to vancomycin despite therapeutic concentrations) Unable to use other agents (refer to empiric therapy for ABSSSI) Unacceptable Uses: Infections due to vancomycin-resistant enterococci Contraindicated in patients with known hypersensitivity to dalbavancin. Due to the possibility of cross-reactivity to glycopeptide, avoid in patients with previous glycopeptide hypersensitivity due to long half-life Dosing in Adults: Standard dose: Administration should be over 30 minutes 1 Dose Regimen: 1500mg IV once 2 Dose Regimen: 1000mg IV once, then 500mg IV on day 8 Renal dose adjustment: 1 Dose Regimen CrCl <30 mL/min 1125 mg IV 2 Dose Regimen CrCl <30 mL/min: 750mg IV once, then 325mg IV day 8 If receiving regularly scheduled hemodialysis: No dosage adjustment No hepatic dose adjustment anticipated Monitoring: Baseline BUN/Scr, AST/ALT/bili, CBC w/ diff, infusion-related reactions Considerations for Use: In clinical trials, 6 (0.9%) patients in the dalbavancin arm had ALT elevations greater than 5x ULN including 3 with ALT >10x ULN.
    [Show full text]
  • CLSI Subcommittee on Antimicrobial Susceptibility Testing CLSI AST News Update Janet a Hindler, MCLS MT(ASCP) F(AAM), Editor Audrey Schuetz, MD, MPH, FCAP, Editor
    Volume 3, Issue 1 Winter 2018 CLSI Subcommittee on Antimicrobial Susceptibility Testing CLSI AST News Update Janet A Hindler, MCLS MT(ASCP) F(AAM), Editor Audrey Schuetz, MD, MPH, FCAP, Editor The CLSI Outreach Working Group (ORWG) is providing this Newsletter to highlight some recent issues related to antimicrobial susceptibility Inside This Issue: testing (AST) and reporting. We are listing links to some new educational materials and reminding you where you can find information about the 21st Century Cures Act – Exciting News .......4 CLSI AST Subcommittee proceedings. Feature Article - Understanding Pharmacokinetics (PK) and Pharmacodynamics (PD) .................................5 CLSI 2018 AST Webinar: M100, M02, and M07 Updates Case Study - Direct Detection of MRSA/MSSA This hour and a half webinar will help you identify the latest changes in from Positive Blood Cultures .........................9 the updated editions of M100, M02, and M07. Don’t miss the opportunity to learn directly from leading AST experts. Burning Question - When Should Clinical Microbiology Laboratories Perform Date Options: Carbapenemase Detection Tests? ..............12 February 7, 2018 | 1:00-2:30 PM Eastern (US) Time Respiratory Illnesses and the Need for February 8, 2018 | 3:00-4:30 PM Eastern (US) Time Antibiotic Stewardship ..................................15 Moderator: Janet A. Hindler, MCLS MT(ASCP) F(AAM) Antimicrobial Susceptibility Testing of Speakers: Romney M. Humphries, PhD, D(ABMM) Bacteria Associated with Community- Audrey Schuetz, MD, MPH, FCAP Acquired Pneumonia .....................................18 Nonmember Price: $99.00. | Earn 1.5 PACE® CE credits. Hot Topic - Candida auris ..............................20 Member discounts apply. Register today. What does the CLSI AST Subcommittee do? The first edition of the CLSI AST News Update (Volume 1, Issue 1, Spring 2016) described details about the organization and operation of the CLSI AST Subcommittee.
    [Show full text]
  • Antibiotic Use Guidelines for Companion Animal Practice (2Nd Edition) Iii
    ii Antibiotic Use Guidelines for Companion Animal Practice (2nd edition) iii Antibiotic Use Guidelines for Companion Animal Practice, 2nd edition Publisher: Companion Animal Group, Danish Veterinary Association, Peter Bangs Vej 30, 2000 Frederiksberg Authors of the guidelines: Lisbeth Rem Jessen (University of Copenhagen) Peter Damborg (University of Copenhagen) Anette Spohr (Evidensia Faxe Animal Hospital) Sandra Goericke-Pesch (University of Veterinary Medicine, Hannover) Rebecca Langhorn (University of Copenhagen) Geoffrey Houser (University of Copenhagen) Jakob Willesen (University of Copenhagen) Mette Schjærff (University of Copenhagen) Thomas Eriksen (University of Copenhagen) Tina Møller Sørensen (University of Copenhagen) Vibeke Frøkjær Jensen (DTU-VET) Flemming Obling (Greve) Luca Guardabassi (University of Copenhagen) Reproduction of extracts from these guidelines is only permitted in accordance with the agreement between the Ministry of Education and Copy-Dan. Danish copyright law restricts all other use without written permission of the publisher. Exception is granted for short excerpts for review purposes. iv Foreword The first edition of the Antibiotic Use Guidelines for Companion Animal Practice was published in autumn of 2012. The aim of the guidelines was to prevent increased antibiotic resistance. A questionnaire circulated to Danish veterinarians in 2015 (Jessen et al., DVT 10, 2016) indicated that the guidelines were well received, and particularly that active users had followed the recommendations. Despite a positive reception and the results of this survey, the actual quantity of antibiotics used is probably a better indicator of the effect of the first guidelines. Chapter two of these updated guidelines therefore details the pattern of developments in antibiotic use, as reported in DANMAP 2016 (www.danmap.org).
    [Show full text]
  • Antibacterial Drug Usage Analysis
    Department of Health and Human Services Public Health Service Food and Drug Administration Center for Drug Evaluation and Research Office of Surveillance and Epidemiology Drug Use Review Date: April 5, 2012 To: Edward Cox, M.D. Director Office of Antimicrobial Products Through: Gerald Dal Pan, M.D., MHS Director Office of Surveillance and Epidemiology Laura Governale, Pharm.D., MBA Deputy Director for Drug Use Division of Epidemiology II Office of Surveillance and Epidemiology Hina Mehta, Pharm.D. Drug Use Data Analysis Team Leader Division of Epidemiology II Office of Surveillance and Epidemiology From: Tracy Pham, Pharm.D. Drug Use Data Analyst Division of Epidemiology II Office of Surveillance and Epidemiology Drug Name(s): Systemic Antibacterial Drug Products Application Type/Number: Multiple Applicant/sponsor: Multiple OSE RCM #: 2012-544 **This document contains proprietary drug use data obtained by FDA under contract. The drug use data/information in this document has been cleared for public release.** 1 EXECUTIVE SUMMARY The Division of Epidemiology II is providing an update of the drug utilization data in terms of number of kilograms or international units of selected systemic antibacterial drug products sold from manufacturers to various retail and non-retail channels of distribution for years 2010-2011 as a surrogate for nationwide antibacterial drug use in humans. Propriety drug use databases licensed by the FDA were used to conduct this analysis. Data findings are as follows: During years 2010 and 2011, the majority of kilograms of selected systemic antibacterial drug products sold were to outpatient retail pharmacy settings. Approximately 3.28 million kilograms of selected systemic antibacterial drug products were sold during year 2010, and around 3.29 million kilograms were sold during year 2011.
    [Show full text]
  • Consideration of Antibacterial Medicines As Part Of
    Consideration of antibacterial medicines as part of the revisions to 2019 WHO Model List of Essential Medicines for adults (EML) and Model List of Essential Medicines for children (EMLc) Section 6.2 Antibacterials including Access, Watch and Reserve Lists of antibiotics This summary has been prepared by the Health Technologies and Pharmaceuticals (HTP) programme at the WHO Regional Office for Europe. It is intended to communicate changes to the 2019 WHO Model List of Essential Medicines for adults (EML) and Model List of Essential Medicines for children (EMLc) to national counterparts involved in the evidence-based selection of medicines for inclusion in national essential medicines lists (NEMLs), lists of medicines for inclusion in reimbursement programs, and medicine formularies for use in primary, secondary and tertiary care. This document does not replace the full report of the WHO Expert Committee on Selection and Use of Essential Medicines (see The selection and use of essential medicines: report of the WHO Expert Committee on Selection and Use of Essential Medicines, 2019 (including the 21st WHO Model List of Essential Medicines and the 7th WHO Model List of Essential Medicines for Children). Geneva: World Health Organization; 2019 (WHO Technical Report Series, No. 1021). Licence: CC BY-NC-SA 3.0 IGO: https://apps.who.int/iris/bitstream/handle/10665/330668/9789241210300-eng.pdf?ua=1) and Corrigenda (March 2020) – TRS1021 (https://www.who.int/medicines/publications/essentialmedicines/TRS1021_corrigenda_March2020. pdf?ua=1). Executive summary of the report: https://apps.who.int/iris/bitstream/handle/10665/325773/WHO- MVP-EMP-IAU-2019.05-eng.pdf?ua=1.
    [Show full text]
  • Computational Antibiotics Book
    Andrew V DeLong, Jared C Harris, Brittany S Larcart, Chandler B Massey, Chelsie D Northcutt, Somuayiro N Nwokike, Oscar A Otieno, Harsh M Patel, Mehulkumar P Patel, Pratik Pravin Patel, Eugene I Rowell, Brandon M Rush, Marc-Edwin G Saint-Louis, Amy M Vardeman, Felicia N Woods, Giso Abadi, Thomas J. Manning Computational Antibiotics Valdosta State University is located in South Georgia. Computational Antibiotics Index • Computational Details and Website Access (p. 8) • Acknowledgements (p. 9) • Dedications (p. 11) • Antibiotic Historical Introduction (p. 13) Introduction to Antibiotic groups • Penicillin’s (p. 21) • Carbapenems (p. 22) • Oxazolidines (p. 23) • Rifamycin (p. 24) • Lincosamides (p. 25) • Quinolones (p. 26) • Polypeptides antibiotics (p. 27) • Glycopeptide Antibiotics (p. 28) • Sulfonamides (p. 29) • Lipoglycopeptides (p. 30) • First Generation Cephalosporins (p. 31) • Cephalosporin Third Generation (p. 32) • Fourth-Generation Cephalosporins (p. 33) • Fifth Generation Cephalosporin’s (p. 34) • Tetracycline antibiotics (p. 35) Computational Antibiotics Antibiotics Covered (in alphabetical order) Amikacin (p. 36) Cefempidone (p. 98) Ceftizoxime (p. 159) Amoxicillin (p. 38) Cefepime (p. 100) Ceftobiprole (p. 161) Ampicillin (p. 40) Cefetamet (p. 102) Ceftoxide (p. 163) Arsphenamine (p. 42) Cefetrizole (p. 104) Ceftriaxone (p. 165) Azithromycin (p.44) Cefivitril (p. 106) Cefuracetime (p. 167) Aziocillin (p. 46) Cefixime (p. 108) Cefuroxime (p. 169) Aztreonam (p.48) Cefmatilen ( p. 110) Cefuzonam (p. 171) Bacampicillin (p. 50) Cefmetazole (p. 112) Cefalexin (p. 173) Bacitracin (p. 52) Cefodizime (p. 114) Chloramphenicol (p.175) Balofloxacin (p. 54) Cefonicid (p. 116) Cilastatin (p. 177) Carbenicillin (p. 56) Cefoperazone (p. 118) Ciprofloxacin (p. 179) Cefacetrile (p. 58) Cefoselis (p. 120) Clarithromycin (p. 181) Cefaclor (p.
    [Show full text]