Abiotic Plant Disorders  Symptoms, Signs and Solutions a Diagnostic Guide to Problem Solving Robert E

Total Page:16

File Type:pdf, Size:1020Kb

Abiotic Plant Disorders  Symptoms, Signs and Solutions a Diagnostic Guide to Problem Solving Robert E Extension Bulletin E-2996 • New • June 2007 Abiotic Plant Disorders Symptoms, Signs and Solutions A Diagnostic Guide to Problem Solving Robert E. Schutzki Bert Cregg Department of Horticulture Departments of Horticulture and Forestry Michigan State University Michigan State University The term “abiotic disorders” refers to a wide array of plant problems. We use the word “abiotic” to indicate that the symptom is not caused by a biological agent such as an insect, mite or patho- gen. Abiotic disorders are associated with non-living causal factors such as weather, soils, chemicals, mechanical injuries, cultural practices and, in some cases, a genetic predisposition within the plant itself. Abiotic disorders may be caused by a single extreme environ- mental event such as one night of severe cold following a warm spell or by a com- plex of interrelated factors or events. They can also be caused by chronic con- ditions such as a prolonged drought or plant selection inappropriate for the ex- isting site conditions (e.g., planting an acid-loving species in an alkaline soil). Abiotic plant problems are sometimes velop severe leaf yellowing or chlorosis ABIOTIC termed “physiological disorders”. This re- and have reduced rates of photosynthesis. plant disorders flects the fact that the injury or symptom The cumulative and subtle nature of are associated we see, such as reduced growth or crown many physiological disorders can often with non-living causal factors. dieback, is ultimately due to the cumula- make them difficult to diagnose. An ex- tive effects of the causal factors on the treme event such as a severe late freeze or physiological processes needed for plant a misapplied herbicide is an obvious growth and development. When a tree is “smoking gun” to indicate the underly- affected by severe drought, for example, ing cause of injury. More often, however, water stress will result in closure of the diagnosing abiotic problems requires pores, or stomata, on the leaf. This con- careful consideration of plant and site serves water in the leaf but also reduces factors through a process of elimination the rate of photosynthesis and the ability to determine the source and potential of the plant to produce sugars for growth. remedy for the problem. If the drought stress occurs during hot Abiotic disorders are usually classified weather, stomatal closure also limits the by causal factor or symptom. In this cooling effect of transpiration, and leaf bulletin, we will present abiotic disor- scorch may occur. Nutritional imbalances ders whose origins are due to biological/ also limit growth by reducing photosyn- botanical factors, environmental (climate thetic rate and other physiological and and weather) conditions, soil conditions, metabolic processes. Some plants, such as chemical applications, animal damage and pin oak, have a limited ability to take up cultural practice. We will also provide a iron under alkaline soil conditions. Iron is framework for diagnosing problems and essential for synthesis of chlorophyll, so suggest steps to mitigate abiotic injuries pin oaks on alkaline soils frequently de- before or after they occur. For unknown reasons, some of these Biological/Botanical mutant cultivars exhibit a tendency to The genetic makeup of produce shoots that revert to their spe- a species is expressed cies type. Genetic reversions are fairly through its physiological common on dwarf Alberta spruce and and morphological char- Harlequin Norway maple. To maintain acteristics. Whether these the cultivar characteristics, genetic rever- characteristics are per- sions need to be pruned out quickly and ceived as normal or ab- completely when they are observed. normal depends on the individual circumstances Chimeras and location where they Chimeras are botanical abnormalities are found. Understand- that are often confused with nutritional ing the basis for these or chemical disorders. “Chimera” is a characteristics can be use- term used to describe a single plant with ful in determining wheth- two genetically different tissue types. er they need to be Leaf variegation is the most common addressed and can aid in example of chimeras in plant species. outlining a course of ac- The difference in foliage color and the tion. In many cases, these banding of those colors are due to cell characteristics are a fact of mutations in the meristematic tissue nature and simply need to layers. Chimeras can be stable, in that the be appreciated for what genetic differences are consistent and re- they are; in other cases, producible. These chimeras have spawned they can be altered or cor- numerous of our variegated plant culti- rected by simple measures. vars. Chimeras can also be unstable and Here are some common unpredictable, surfacing sporadically on abiotic abnormalities that either shoots or individual leaves. The Genetic reversion on are biological/botanical in Bumald spireas are known for the spo- Harlequin maple. origin. radic appearance of unstable leaf chimeras. The stability of the chimera depends on Genetic mutations and the tissue layer where the mutation oc- reversions curs. If you discover variegation on an Genetic anomalies are prevalent in individual stem and not over the entire the plant world and often garner much plant, it is possible that it is a chimera and attention. For example, not an abiotic disorder related to plant seedling growers often nutrition or chemical injury. find mutants in their nursery beds. Albino seedlings are common seedling mutants. Be- cause they lack chloro- phyll, these seedlings quickly die off once they exhaust energy reserves from the seed. However, many mutants are stable and sustain growth. These stable mutants can Chimera on Anthony Waterer spirea. exhibit unique form, foli- age, flower, stem and other characteristics that Leaf abscission and retention warrant their develop- Leaves emerge in the spring, func- Genetic reversion on ment and introduction tion during the growing season, turn dwarf Alberta spruce. into the trade. colors and drop in the fall. Leaf drop occurs whether the plant is deciduous systems, signs of graft incompatibility or evergreen; it just happens with dif- may be visible as an uncharacteristic in- ferent aged leaves. There are times tensity of the fall color. Disruption of when leaf drop or retention is normal translocation leads to a buildup of sugars and times when it may be related to a during leaf senescence that intensifies fall plant problem. foliage color. This is especially the case Leaf abscission or drop is triggered in on Acer rubrum cultivars with known in- the fall by seasonal changes in day- compatibility problems. Graft incompat- length. Chlorophyll degrades, and the ibility issues on these Acer rubrum plant hormones abscisic acid and ethyl- cultivars led to production on their own ene cause an abscission layer to be roots. Graft incompatibility remains a formed at the base of the petiole. In concern in fruit tree production. Incom- evergreen species, needles usually func- patibility is not easily detected and can tion for 2 to 3 years, depending on the surface at various times in a plant's life. species. Normal leaf yellowing and ab- Unfortunately, for many it surfaces when scission occur on the insides of the stem the trees are mature and affected by on 2- or 3-year-old wood. Yellowing or wind or some other environmental con- browning of needles on the shoot tips is dition. Graft incompatibility can result a sign of problems. If a stem or leaf is in semimature trees snapping off at the injured or dies before seasonal changes base in wind storms. Failure of the tis- occur, abscission layers will not form and sue union is visible at the trunk/root col- leaves will remain on the stem. Leaves lar. On plant species with known remaining on isolated stems in the fall or problems, check on the budding or graft- winter are signs of stem or leaf problems. ing practices during production. Anoth- Stems may be girdled by an insect borer er form of incompatibility occurs when or mechanical injury, causing a break in there are differences in growth rates be- Leaf retention vascular connections resulting in stem tween the scion and the understock. on oak. death and leaf retention. An early kill- These differences can lead to dispropor- ing frost prior to the formation of the tional growth at the junction of the two abscission layer may cause dead leaves to tissues. be retained throughout the winter. In some deciduous plant species, leaf Galls and burls retention is a normal characteristic. Galls and burls are ab- Marcescent leaves are the dead leaves normal growths on retained by some plant species. Typical woody plants. They can examples of genera exhibiting marces- occur on branches, trunks cent leaves are oaks and beeches. Species and, in some cases, on within these genera do not complete the roots of woody plants. formation of the abscission layer until Galls may be caused by the following spring. Leaves will fall an insect or disease; how- when bud break occurs and stems resume ever, the origin or causal Proliferation of trunk sprouts growth. If leaf retention is a concern, factors for burls and other leads to callus buildup. identify the plant species, check for evi- callus outgrowths are dence of stem injury, and review recent unknown. Abnormal weather conditions. growths form through a proliferation of cells. Graft incompatibility These cells continue to Graft incompatibility is due to the fail- develop and do not dif- ure of the bud or graft union between a ferentiate into normal tis- scion and an understock. For unknown sue types. In some cases, reasons, the tissues of the two plant parts the outgrowth results do not form a stable union. Failure of the from a cluster of shoots. Callus knob formed from union disrupts translocation in both the Each year, new shoots are reoccurring trunk sprouts.
Recommended publications
  • Managing Potassium for Organic Crop Production by Robert Mikkelsen an Adequate K Supply Is Essential for Both Organic and Conventional Crop Production
    NORTH AMERICA Managing Potassium for Organic Crop Production By Robert Mikkelsen An adequate K supply is essential for both organic and conventional crop production. Potas- sium is involved in many plant physiological reactions, including osmoregulation, protein synthesis, enzyme activation, and photosynthate translocation. The K balance on many farms is negative, where more K is removed in harvested crops than is returned again to the soil. An overview of commonly used K fertilizers for organic production is provided. otassium is an essential nutrient for plant growth, but it often receives less attention than N and P in many crop Pproduction systems. Many regions of the U.S.A. and all of the Canadian provinces remove more K during harvest than is returned to the soil in fertilizer and manure (Figure 1). In the U.S.A., an average of only 3 units of K is replaced as fertilizer and manure for every 4 units of K removed in crops, resulting in a depletion of nutrients from the soil and increasing occur- rences of deficiency in many places. Potassium is the soil cation required in the largest amount by plants, regardless of nutrient management philosophy. 1,400 Removal 1,200 Hay and forage crops can remove hundreds of pounds of K from the soil Manure each year, placing a heavy demand on soil resources. 1,000 Fertilizer Large amounts of K are required to maintain plant health 800 and vigor. Some specific roles of K in the plant include os- moregulation, internal cation/anion balance, enzyme activa- 600 tion, proper water relations, photosynthate translocation, and 400 protein synthesis.
    [Show full text]
  • Section 4. Nutrient Management for Water Quality
    SECTION FOUR NUTRIENT MANAGEMENT FOR WATER QUALITY Many hobby farmers measure success by the abundance of their harvest of fruits and vegetables or their forage crops. This achievement can often be traced back to healthy soil and nutrient management practices. SOME HOBBY FARMERS ARE FORTUNATE TO HAVE SITES WITH A THICK LAYER OF FERTILE SOIL RICH IN MICROORGANISMS. HOWEVER, EVEN GOOD SOILS CAN BECOME NUTRIENT DEPLETED OR ERODE OVER TIME. REGARDLESS OF WHAT YOU ARE GROWING, SOILS WILL GENERALLY NEED TO BE MANAGED TO RETURN NUTRIENTS INTO THE SOIL TO SUPPORT HEALTHY PLANT GROWTH. THE HOBBY FARMER SHOULD CONSIDER THE FOLLOWING QUESTIONS IN DEVELOPING A HEALTHY SOILS MANAGEMENT PLAN: • Why does annual soil testing help save time and money? • What nutrients are needed for plant health? (Hint: It’s not just about nitrogen, phosphorus, and potassium) • What’s the difference between fertilizers and soil amendments? Organic and synthetic? • How can you improve nutrient retention in your soil through crop rotation, succession planting, intercropping, and companion planting? • What are the best techniques to compost and to recycle and reuse materials you likely already have? • How should you apply fertilizers, manure, and soil amendments for best results? While nutrients are an essential component of many natural environments, an overabundance in our surface water can cause a reduction in water quality. SECTION FOUR :: NUTRIENT MANAGEMENT FOR WATER QUALITY Phosphorus and nitrogen from fertilizers can result in: • excessive aquatic plant growth choking waterways and making them impassable; • depletion of dissolved oxygen which is essential for fsh; and • creating an ideal environment for toxic algal blooms that can be a health threat to people and pets, often causing recreational areas to close.
    [Show full text]
  • Nutrient Management and Imbalances David H
    98 Nutrient Management and Imbalances David H. Gent, J Robert Sirrine, and Heather M. Darby Hop plants produce abundant biomass in the form of bines, leaves, and cones. High- yielding plants such as hop require adequate nutrition. Many of the various nutrients required by hop may be deficient or in excess of the crop’s needs. It can be difficult to pinpoint the cause of abnormal plant symptoms, especially if multiple production factors lead to the same symptom. General symptoms associated with nutrient imbalances are described in this section, as well as known nutrient interactions with diseases and arthropod pests. Fertilization recommendations are beyond the scope of this pest management guide and are not provided. Recommendations vary widely in published literature, differing among production regions, varieties, irrigation methods, soil types, and production goals. Readers should seek input from local experts for guidance appropriate to their region and situation. Boron Iron Boron deficiency can result in delayed Iron deficiency is first observed on emergence of shoots; stunting, distortion, young leaves as yellowing between veins, and crinkling of young leaves (Fig. 257); while veins remain green (Fig. 260, right- and yellowing and death of shoot tips (Fig. hand image, and Fig. 261). Iron deficiency 258). Leaves of affected plants may be small is most common in alkaline soils, although and brittle, and may develop a fluffy-tipped it can be induced in highly acidic soils appearance due to impaired development (approximately pH 5.7 or less) because of lobes (Fig. 259). Deficiencies are most of enhanced solubility and uptake of common in acid and/or sandy textured soils.
    [Show full text]
  • Equipment for Handling & Selecting Plants
    Equipment for handling & selecting plants “ Index We are ready to serve you 4 About TTA 12 Clients 14 Innovation 16 Employees 18 Service 20 Headquarters 24 TTA USA, LLC 28 Sectors 30 Forestry 32 Pot plants 34 Bedding plants 36 Vegetables 38 Soft fruits 40 Herbs 42 Equipment 44 Transplanting 48 Selecting 50 Gapping 100% 52 Various 56 Projects 58 Plant grippers 60 Imaging systems 62 Why TTA? 66 Get in touch 2 3 About TTA TTA is a Dutch enterprise, founded in 1996. Since the start of the company, TTA has been focusing on the production of equipment for handling and selecting young living plants. TTA developed and expanded merely thanks to client requests for more or new machi- nery. TTA offers its clients a wide range of equipment, suiting the needs of professional growers. TTA strongly believes that quality and control are of the utmost importance. Therefore, the entire development, software, production, installation, sales and service are available in- house. Our experienced sales team is dedicated to fulfilling our clients’ wishes. The main goal of this partnership is to find the most suitable equipment. Reducing production costs and increasing efficiency are key. ‘Handle with care’ is TTA’s slogan when it comes down to young plants. We are proud to say that the majority of globally produced plants is handled by TTA equipment. The TTA team is ready to serve you! 4 5 Simon den Hartigh Anne den Hartigh Owner Founder Active in 30 countries over 6 continents Family-owned business Member of Eurogroep TTA is founded by Anne den Hartigh with the goal to deliver the fastest transplanter in the world.
    [Show full text]
  • Nutrient Deficiency Symptoms in Plants (DPI Vic)
    April, 1995 Nutrient deficiency symptoms of AG0257 plants ISSN 1329-8062 David Beardsell, Knoxfield Plants must absorb certain elements to live and grow. Carbon (C), hydrogen (H), and oxygen (O) are the elements supplied from air and water. The growing media generally supplies the remaining nutrients required for plant growth. The major elements or macronutrients required by the plant are nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and sulphur (S). The minor elements, trace elements or micronutrients necessary for healthy plant production are molybdenum (Mo), copper (Cu), zinc (Zn), manganese (Mn), boron (B), iron (Fe), and chlorine (Cl). Deficiencies or imbalances in supply of these essential elements can cause growth reductions, and in more severe cases visual symptoms are expressed in leaves and flowers. Nitrogen deficiency (N) Nitrogen is required by plants in higher concentrations than any of the other elements, except potassium in certain instances. Plants grown without nitrogen grow very slowly. Plants are stunted and show a general yellowing of the foliage. The symptoms of nitrogen deficiency will first occur in the older leaves. The leaves turn from a pale green Figure 1. Symptoms of nitrogen deficiency include stunted plant colour to a yellow and eventually leaf drop occurs. The growth. The Eucalyptus gunni plant on the right hand side younger leaves remain green for longer periods of time but exhibits this symptom. The plant on the left hand side has an eventually the whole plant exhibits a pale green to yellow adequate supply of nitrogen. colour. Potassium deficiency (K) Phosphorus deficiency (P) Deficiency symptoms of potassium are also exhibited in Deficiency symptoms of this element, like nitrogen, are the older leaves of the plant first.
    [Show full text]
  • Using Manure and Compost As Nutrient Sources for Vegetable Crops
    Nutrient Management for Fruit & Vegetable Crop Production Carl J. Rosen and Peter M. Bierman Department of Soil, Water, and Climate University of Minnesota USING MANURE AND COMPOST AS NUTRIENT SOURCES FOR VEGETABLE CROPS Manure is a valuable fertilizer for any farming operation and has been used for centuries to supply needed nutrients for crop growth. The use of manure has generally declined on many farms over the past 50 years due to: 1) Farm specialization with increasing separation of crop and livestock production, 2) Cost of transporting manure, which is a bulky, relatively low analysis nutrient source, and 3) Increased availability of high analysis synthetic fertilizers that usually provide a cheaper source per unit of nutrient than manure. Despite these limitations, manure (and other organic nutrient sources) produced on or near a vegetable farm provide many benefits and should be beneficially utilized whenever possible. Manure and compost not only supply many nutrients for crop production, including micronutrients, but they are also valuable sources of organic matter. Increasing soil organic matter improves soil structure or tilth, increases the water-holding capacity of coarse-textured sandy soils, improves drainage in fine-textured clay soils, provides a source of slow release nutrients, reduces wind and water erosion, and promotes growth of earthworms and other beneficial soil organisms. Most vegetable crops return small amounts of crop residue to the soil, so manure, compost, and other organic amendments help maintain soil organic matter levels. Proper use of manure and compost is essential from both a production and environmental standpoint. Applying rates that are too low can lead to nutrient deficiency and low yields.
    [Show full text]
  • Plant Nutrition and IPM – with an Emphasis on Trees & Vines
    Plant Nutrition and IPM – with an emphasis on trees & vines Gregg Young, M.A. Certified Professional Agronomist Pest Control Advisor Sustainable Ag Expo San Luis Obispo, Ca. November 15, 2016 Gregg Young, CPAg 2016 www.qfirst.net 1 The Disease Triangle It takes all 3 components for disease to Pest / infect Pathogen Environmental Susceptible Conditions Host Gregg Young, CPAg 2016 2 www.qfirst.net The Disease Triangle It takes all 3 components for disease to Pest / infect Pathogen Environmental Susceptible Conditions Host Gregg Young, CPAg 2016 3 www.qfirst.net Often in IPM we spend our efforts monitoring the pest/disease and the environmental conditions Gregg Young, CPAg 2016 www.qfirst.net 4 All of the biomass that makes up a mature tree or vine comes from the soil, water & air Gregg Young, CPAg 2016 www.qfirst.net 5 Modern agriculture squeezes the most it can out of the agroecosystem Pears, Apples: 20+ tons/ac Tomatoes: 50+ tons/ac Grapes: 5-12 tons/ac Hay crops: 20+ tons/ac 6 Gregg Young, CPAg 2016 www.qfirst.net Crops need a biologically active, aerated root zone Gregg Young, CPAg 2016 www.qfirst.net 7 Drip irrigation – nutrient removal is from a smaller area; nutrient management is critical 8 Gregg Young, CPAg 2016 www.qfirst.net Early pioneers who called for attention to soil fertility in managing pests & diseases: • J.I. Rodale (1898-1971) "Healthy Soil = Healthy Food = Healthy People" • William Albrecht (1888-1974) “Food is fabricated fertility” 9 Gregg Young, CPAg 2016 www.qfirst.net 10 Gregg Young, CPAg 2016 www.qfirst.net Early Researchers: Nutrient-Pest & Disease Relations: • We may also speculate on the possibility of influencing the population development of these mites by enhancing their food substrate through managing the fertilization of the host plant.
    [Show full text]
  • Comparative Performance of Integrated Nutrient Management
    agronomy Article Comparative Performance of Integrated Nutrient Management between Composted Agricultural Wastes, Chemical Fertilizers, and Biofertilizers in Improving Soil Quantitative and Qualitative Properties and Crop Yields under Arid Conditions Nasser Al-Suhaibani 1, Mostafa Selim 2, Ali Alderfasi 1 and Salah El-Hendawy 1,3,* 1 Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, KSA, P.O. Box 2460, Riyadh 11451, Saudi Arabia; [email protected] (N.A.-S.); [email protected] (A.A.) 2 Field Crops Research Department, Agricultural Division, National Research Centre, 33 Bohouth St., Dokki, Giza 12622, Egypt; [email protected] 3 Department of Agronomy, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt * Correspondence: [email protected]; Tel.: +966-5-3531-8364 Received: 29 July 2020; Accepted: 1 October 2020; Published: 3 October 2020 Abstract: The primary goal of integrated nutrient management (INM) strategies is to substitute a portion of chemical fertilizers with a more sustainable and environmentally safe organic compost in order to mitigate soil degradation, improve crop production, and protect the environment. Therefore, the present study was conducted to assess the impacts of different INM practices, namely full-dose 1 1 NPK (T1), compost of cow manure at 5 t ha− (T2), compost of poultry manure at 5 t ha− (T3), 1 compost of mixed sheep and camel manure at 5 t ha− (T4), 50% NPK combined with the mixture 1 1 of the three types of composts at the rate of 5 t ha− (T5) or 10 t ha− (T6), and mixture of the three 1 1 1 types of composts at the rate of 10 t ha− (T7), 15 t ha− (T8), or 20 t ha− (T9) with or without biofertilizers for each treatment on several physiochemical and biological proprieties of soil and final grain yield of field crops after 2 years of field-scale experiments.
    [Show full text]
  • Community Horticulture Fact Sheet # 7 Growing Transplants USING
    Community Horticulture Fact Sheet # 7 Growing Transplants USING TRANSPLANTS WHERE TO START SEEDS Two tips for productive gardening are: Warmth and moisture are more 1. Always have plenty of young important than direct light for sprouting seedlings around to fill in empty most seeds. Once seedlings are up spots in your garden. (For example, though, they should be moved to a where carrots did not come up well place that gets at least six hours of or where slugs ate half of your direct sunlight a day. A large south spinach seedlings.) window may work or plants can go into 2. Grow early and late (fall-winter) a cold frame, if the weather is not too crops using varieties selected for cold. If plants lean dramatically towards these seasons. the window and get spindly, fluorescent lights are the answer. A four-foot long, two-bulb fixture is adequate for two full nursery flats of plants. Inexpensive 40- watt cool white bulbs are as good as the more costly full-spectrum “plant light” bulbs for growing transplants. These lights are not as strong as The key to putting both of these secrets sunlight! They must be positioned 2-3 to work for you is to start as many crops inches away from the plants’ tops. as possible indoors in containers (or (Mounting them with link chains allows outside in a cold frame). Then easy movement.) They should be kept transplant them into the garden when on 16-18 hours a day. (An you need them. Using transplants gives appliance timer is a you a two-week to two-month head start handy addition to in the spring plus a big jump on your set-up.) succeeding crops, since you always have established plants to put into the Ideal temperatures for most seeds garden instead of just seeds.
    [Show full text]
  • Plant Nutrient Management - V.L
    MANAGEMENT OF AGRICULTURAL, FORESTRY, AND FISHERIES ENTERPRISES – Vol. I - Plant Nutrient Management - V.L. Bailey, L. Kryzanowski PLANT NUTRIENT MANAGEMENT V.L. Bailey and L. Kryzanowski Agronomy Unit, Alberta Agriculture Food, and Rural Development, Canada Keywords: Soil, fertilizer, nitrogen, phosphorus, potassium, sulfur, crop uptake, crop removal, precision farming Contents 1. Introduction 2. Macronutrients for Crop Production 2.1. Nitrogen 2.2. Phosphorus 2.3. Potassium 2.4. Sulfur 3. Removal of Nutrients by Crops 3.1. Cereals 3.2. Forages 3.3. Legumes 3.4. Oilseeds 3.5. Root Crops 4. Replacement of Soil Nutrients 4.1. Nitrogen Fixation 4.2. Mycorrhiza 4.3. Organic Amendments 4.4. Commercial Fertilizers 4.5. Crop Rotation Management 5. Precision Farming 6. Future Concerns Acknowledgements Glossary Bibliography Biographical Sketches Summary UNESCO – EOLSS Plant nutrient management is critical to the sustainability of agricultural production systems. Nitrogen,SAMPLE phosphorus, potassium aCHAPTERSnd sulfur are the four macronutrients required for crop growth. In order to maintain agricultural sustainability, nutrients that are removed from the soil by crops must be replaced. Different crops have different nutrient demands and the proportion of nutrients taken up by the plant may not be the same as that exported. There are several methods of ensuring that soil nutrient replacement occurs. (1) Biological mechanisms—includes symbiotic associations of crops with specialized microorganisms, such as nitrogen fixers or mycorrhiza. (2) Return of nutrients to the soil as organic amendments such as crop residues, livestock manure, and other amendments. (3) Commercially produced inorganic fertilizers are the most widely used method to replace soil nutrients, and the wide variety of fertilizers ©Encyclopedia of Life Support Systems (EOLSS) MANAGEMENT OF AGRICULTURAL, FORESTRY, AND FISHERIES ENTERPRISES – Vol.
    [Show full text]
  • Seeding and Transplanting One for Blackbird, One for the Crow, One for the Cutworm, and One to Grow
    Seeding and Transplanting One for blackbird, one for the crow, one for the cutworm, and one to grow. ~ American saying Indoors or Outdoors? What crops are best started indoors in containers? Plants that can tolerate root disturbance and will benefit from a jump on the season are best to start indoors. You can find this information on seed packets and in planting guides. • Cool weather crops such as broccoli, cauliflower, and cabbage can be transplanted into the garden up to a month before the last danger of frost. • Warm weather crops, like tomatoes, peppers, and melons, should be transplanted into the garden after all danger of frost is past in your area. • Flowers planting requirements vary, so check the seed packets. You can find your average last frost dates by asking local gardeners or your Cooperative Extension Office (Master Gardeners). What crops are better started outdoors? Some crops prefer to be started directly in the garden. Root crops such as carrots, radish and beets don't transplant well, nor do other crops such as corn, beans, peas, squash, melons, and cucumbers. Sometimes, caring for seeds directly sown in the garden is a challenge at schools (e.g., protecting them from pests, keeping seed beds watered). In that case, you can start corn, beans, peas, squash, melons, and cucumbers in containers. However, you should do so in larger individual containers rather than the pricking out method described above. Seeding Outdoors Direct sowing methods Seeds planted directly in the garden can be drilled (poked), broadcast (sprinkled) or planted in little furrows (lines).
    [Show full text]
  • 119 Transplanting Guide
    TRANSPLANTING GUIDE Planting guide covers: Selecting high-quality nursery trees Handling, transporting and storing nursery trees Transplanting ball and burlap, container and bare root trees Post-planting maintenance 1. Selecting high-quality nursery trees The goal in selecting nursery plants is to purchase those plants most likely to become successfully established and to mature in the landscape in order to meet design expectations with a minimum of maintenance. To do that, choose plants with good root systems and healthy, well-formed and undamaged crowns and trunks. In addition, any plant that you purchase should have a professional pedigree: grown in a nursery, dug and prepared for shipping by trained workers, and maintained properly while awaiting purchase. That is, buy plants from nurseries with good reputations and whose people you trust. Chances are that plants from reputable nurseries will have been treated properly and will establish reliably. There are specific characteristics to look for (and look out for) when selecting nursery plants. a. Trunk and Branch Characteristics 1. Buy plants that have a form typical of the species. 2. Shoots should show good vigor and growth. 3. Branches should be well-spaced and have good branch attachment. Avoid narrow branch attachments that may have included bark. 4. Crowns should be reasonably free of wounds and/or evidence of insect damage and/or disease. 5. Avoid top-heavy trees and plants that have been severely headed back. 6. Trunks should be straight, free from wounds or diseases and show trunk flare and proper trunk taper. b. Foliage Characteristics 1. Foliage should have good color, with no sign of insect pests and/or diseases.
    [Show full text]