Tritrophic Interactions in Maize Storage Systems
Total Page:16
File Type:pdf, Size:1020Kb
Tritrophic Interactions in Maize Storage Systems A dissertation submitted to the University of Neuchatel for the degree of Doctor of Natural Sciences Presented by Anita Savidan Institute of Zoology Laboratory of Animal Ecology and Entomology, Neuchatel, 2002 CONTENTS ____________________________________________________________ Summary……………………………………………………………………………………..3 Résumé……………………………………………………………………………………….6 General Introduction……………………………………………………………………….....9 Outline……………………………………………………………………………………....24 Chapter 1 : Maize resistance to storage pests…………………………………………….27 Chapter 2 : Direct Benefits from parasitic wasps for maize seed…………….…………..66 Chapter 3 : Effect of maize varieties on the performance of parasitoids of storage pests……………………………………………………………….90 Chapter 4 : Olphactory attraction of parasitic wasps to stored maize…………………....130 Chapter 5 : Effect of storage method on maize storage pests and their natural enemies……………………………………………………………. ..157 Chapter 6 : Interaction of maize wevils and parasitoids with different storage methods in the field………………………………………………….185 General Discussion……………………………………………………………………... ...210 Outlook………………………………………………………………………………….…216 References………………………………………………………………………………….218 Curriculum vitae…………………………………………………………………………...224 2 SUMMARY ___________________________________________________________________________ The interaction and compatibility of natural enemies with two currently used strategies of integrated pest management to lower post-harvest losses in maize were investigated, namely insect resistance, and storage practice. In a first study, insect resistance of a large number of maize genotypes, including Mexican landraces and tropical hybrids, was tested against five common storage pests in tropical maize stores. A large range of resistance was found to the maize weevil, Sitophilus zeamais, the larger grain borer, Prostephanus truncatus and the coffee beetle, Araecerus fasciculatus. The most resistant maize genotypes were a Mexican landrace and a population from the Caribbean. These genotypes were resistant to all storage beetle. However, they were susceptible to the Angoumois grain moth, Sitotroga cerealella, indicating that different mechanisms were responsible for resistance to this pest. The genotype most resistant to the moth larvae was a white tropical hybrid (CML264xCML254). None of the maize genotypes was resistant to the Indian meal moth, Plodia interpunctella. The wild relative of maize, teosinte, protected by its fruitcase was completely resistant to attack by the maize weevil and the Angoumois grain moth. No resistance factor inherent to this wild grain that could be of use to increase resistance in domesticated maize was found. These studies on the interactions of the pest insects with different maize varieties were conducted to use the results for the design of further studies that also included the natural enemies of the pests. The chance that maize seed germinate after being attacked by the maize weevil or the Angoumois grain moth is reduced but not lost, and varies among maize genotypes. If the immature of the Angoumois grain moth is successfully attacked by a parasitoid; Pteromalus cerealellae, the rate of germination is significantly higher indicating that seeds may obtain a direct benefit from attracting parasitoids. 3 There was no difference in effectiveness of the maize weevil parasitoid, Anisopteromalus calandrae, in eliminating its host in maize kernels of resistant or susceptible maize genotypes, despite the high level of kernel hardness in some varieties, indicating that maize resistance can work in synergy with this natural enemy. There was a small but consistent difference in the effectiveness of Pteromalus cerealellae to parasitize the Angoumois grain moth in kernels of a susceptible and a resistant genotype. This difference was found in three distinct experiments and was thought to be due to a higher detectability of the host in the resistant maize genotype. Therefore, for the control of this insect pest, maize resistance is also synerchistic with the effectiveness of the natural enemy. Using a six-arm olfactometer, the maize weevil parasitoid, A. calandrae was shown to be attracted to odors from infested and uninfested maize when experienced, but showed no attraction to intact maize kernels when they lacked preemergence or oviposition experience with this seed. The female parasitoids showed no preference for the odors of any of six maize genotypes, neither infested nor intact. The odors of the kernels of the six maize varieties were collected, but detectable volatile compounds only emanated from infested maize. There was no difference in quantity and quality of the volatile blends among the varieties. Two of the four consistently detected compounds were identified as pentadecane and tridecane and we suspect that the other two are (Z) -7-pentadecene and (Z) -6-pentadecene which have been previously reported to be associated with granary weevil and mite infestation in wheat. Storing maize as shelled grain or on the cob was shown to have an impact on the storage pests as well as on their natural enemies in laboratory experiments. The increase of the maize weevil population was greatly reduced when maize was stored on the cob, but the efficiency of the parasitoid, A. calandrae, was also negatively affected in this case. In contrast, the larger grain borer had a higher rate of increase on maize stored on the cob, and 4 the performance of its predator, Teretriosoma nigrescens, was not affected by the storage method. The Angoumois grain moth showed a slightly higher rate of increase on maize stored as shelled grain. Its parasitoid, P. cerealellae, was highly efficient on this storage method but had almost no impact on pest increase when maize was stored on the cob. In a field experiment, maize was exposed to a natural insect infestation in the humid tropics. Fewer maize weevils emerged from maize stored on the cob than from shelled maize and even fewer emerged from cobs stored with the husk on. Two parasitoids, Anisopteromalus calandrae and Lariophagus distinguendus had a significant impact on maize weevil density only in maize stored as shelled grain, where they parasitized up to 67% of suitable hosts. Nevertheless, 100 % of the shelled grain was damaged after only 11 weeks in storage, whereas 50% of grains were still undamaged when they were stored with the husk on after four months in storage. Hence, in this case storage method was considerably more important than the impact of the parasitoids. In conclusion, it was found that grain resistance is compatible with parasitoids. However, no maize variety showed cross resistance to all storage pests. All maize varieties examined were equally attractive to the parasitoid Anisopteromalus calandrae. The best storage method to reduce insect infestation is not always beneficial to the pests’ parasitoids and the evaluation of importance of the impact of each of these control measures under realistic conditions should be decisive for their application. 5 RESUME ________________________________________________________________ Pour limiter les pertes post-récoltes du maïs, deux stratégies sont couramment utilisées dans la lutte intégrée contre les ravageurs : la résistance variétale du grain contre les insectes ravageurs, et la méthode de stockage du grain. L’interaction et la compatibilité, de ces deux stratégies avec des ennemis naturels ont fait l’objet de cette recherche. Dans une première étude, la résistance d’un grand nombre de génotypes de maïs, dont des races mexicaines et des hybrides tropicaux, a été testée contre cinq ravageurs fréquents dans les greniers de maïs des régions tropicales. Certaines de ces variétés sont très résistantes contre le charançon du maïs, Sitophilus zeamais, le grand capucin du maïs, Prostephanus truncatus, et la bruche des graines du café, Araecerus fasciculatus. Les génotypes les plus résistants sont une race Mexicaine et une population des Caraïbes. Les variétés montrent des degrés de résistance similaires contre chacun des trois ravageurs. Par contre les variétés les plus résistantes sont susceptibles aux attaques de la mite Angoumois des graines, Sitotroga cerealella, indiquant que d’autres facteurs sont responsables de la résistance contre ce ravageur. La variété la plus résistante est un hybride tropical. Aucun génotypes de maïs n’est résistant contre la mite Indienne de la farine, Plodia interpunctella. Les graines du maïs sauvage, teosinte, protégées par des glumes lignifiés sont complètement résistantes à l’attaque du charançon du maïs et de la mite Angoumois. Aucun facteur de résistance inhérent à la graine de teosinte, qui puisse être utilisé pour améliorer la résistance du maïs domestiqué n’a été mis en évidence. Ces études sur l’interaction des insectes ravageurs avec les varietés du maïs ont servi de base pour concevoir les études suivantes, qui incluent les enemies naturels des ravageurs. La capacité des graines de maïs de germer suite à une attaque par S. zeamais ou S. cerealella est réduite mais non nulle et le degré de germination varie suivant le génotype du 6 maïs. Si la larve de S. cerealella est attaquée et tuée par un parasitoide, Pteromalus cerealellae, le degré de germination est nettement plus élevé, suggérant que les graines peuvent obtenir un bénéfice direct si elles sont attractives pour les parasitoides. L’efficacité du parasitoide Anisopteromalus calandrae pour réduire S. zeamais est la même quelle que soit la variété de maïs sur laquelle